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Abstract

The objective of many signal processing problems is to detect signals buried in a

noisy background. Many of these signal detection problems have sparsity structure

that can be exploited to reduce noise or reduce complexity. This dissertation will focus

on two such problems: multi-sensor sequential change-point detection and multiuser

detection, and it will present new methods to exploit sparsity: the mixture sequential

detection procedure and reduced-dimension multi-user detection (RD-MUD).

In multi-sensor change-point detection, sensors are deployed to monitor the abrupt

emergence of a change-point. The change-point is an event that a↵ects the observa-

tions of a subset of sensors simultaneously. Typically the subset of sensors that are

a↵ected is unknown, and the level-of-a↵ectedness of each a↵ected sensor is also un-

known. The goal is to detect the change-point as soon as possible once it occurs, and

rarely make false detections if it does not occur. An empirical observation is that the

number of a↵ected sensors is usually small compared to the total number of sensors.

This is a form of sparsity. For this problem, traditional methods have not exploited

the sparsity structure: they either assume all sensors are a↵ected by the change-point

and use observations from all sensors and, hence, include too much noise from the

observations of the una↵ected sensors, or assume only one sensor is a↵ected, use only
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observations from the a↵ected sensor with the highest level-of-a↵ectedness, and ig-

nore observations from other a↵ected sensors. We develop a mixture procedure that

exploits this sparsity. In particular, we model this sparsity by assuming that each

sensor has a small probability p

0

to be a↵ected by the change-point. The value of p
0

is

a guess for p. Based on this model, we form a mixture log generalized likelihood ratio

(GLR) statistic and present a mixture detection procedure. The mixture statistic

essentially applies a non-linear weighting function, which is parameterized by p

0

, on

the log GLR statistic of each sensor before combining them. This nonlinear weighting

function automatically emphasizes the statistics from the sensors that are a↵ected by

the change-point and suppresses those from the sensors that are not a↵ected. We

derive a theoretical approximation for the false alarm rate, which is captured by the

average-run-length (ARL), and a theoretical approximation for the expected detec-

tion delay. The accuracy of these approximations is verified by numerical studies. We

also demonstrate that the mixture procedure is robust against the lack of knowledge

of p. Numerical studies compare the new mixture procedure with other proposed

procedures.

The multiuser detection (MUD) problem arises in multiuser communication sys-

tems, where multiple users communicate simultaneously with a receiver. The receiver

receives a signal consisting of a set of known waveforms modulated by the information

symbols of the users that is contaminated by noise. The receiver has to determine

which users are active and their information symbols. The conventional solutions to

the MUD problem all consist of a matched-filter bank (MF-bank) front-end, followed

by digital signal processing. The MF-bank front-end uses a set of correlators, where

each one correlates the received signal with a signature waveform. Hence the number
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of correlators used in the conventional matched-filter bank is equal to the number of

users in the system. We present a reduced-dimension multiuser detector (RD-MUD)

structure that significantly decreases the number of required correlation branches in

the receiver front-end, while still achieving performance similar to that of the conven-

tional matched-filter (MF) bank. RD-MUD exploits the fact that the number of active

users is typically small relative to the total number of users in the system and relies on

ideas of analog compressed sensing to reduce the number of correlators. The correlat-

ing signals used by each correlator are chosen as an appropriate linear combination of

the users’ spreading waveforms, which in turn are chosen from a large class of spread-

ing codes. We derive the probability-of-error when using two methods for recovery

of active users and their transmitted symbols: the reduced-dimension decorrelating

(RDD) detector, which combines subspace projection and thresholding to determine

active users and sign detection for data recovery; and the reduced-dimension decision-

feedback (RDDF) detector, which combines decision-feedback orthogonal matching

pursuit for active user detection and sign detection for data recovery. We identify

conditions such that error is dominated by active user detection. We then show that

the number of correlators needed to achieve a small probability-of-error under these

conditions is on the order of the logarithm of the number of users in the system for a

given projection method based on random discrete Fourier transform (DFT) matri-

ces. Thus, RD-MUD has significantly fewer correlators than the number of correlators

required by MUD using the conventional MF-bank. Our theoretical results take into

consideration the e↵ects of correlated signature waveforms as well as near-far issues.

The theoretical performance results for both detectors are validated with numerical

simulations.
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Chapter 1

Introduction

Statistical signal processing is an important topic in modern science and engineering.

While many good methods have been established for classic problems, developing

e�cient signal processing tools for problems in large scale systems that involve large

amount of data presents new challenges. For these problems, computational com-

plexity becomes a major issue. For example, in a typical wireless network, there may

be thousands of users whose data need to be processed simultaneously. In a sensor

network, there may be thousands of sensors deployed to detect an event of interest.

In developing signal processing methods for these problems, a major challenge is to

process data from all users or sensors without too much complexity either in sig-

nal processing algorithms or in digital circuitry. Another issue is non-homogeneity

of the data. In a sensor network, the signal may be a local disturbance that only

a↵ects a small subset of sensors. All the una↵ected sensors observe only noise. If

we want to detect e�ciently the emergence of such a signal, it is important to use

only the observations that contain useful information and to suppress noise from the

non-a↵ected sensors. Another requirement for some applications is real-time signal

4
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processing. With this requirement, we cannot a↵ord algorithms with high complexity

due to their large processing times.

We can go a long way towards approaching complexity-reduction and real-time

processing by exploiting sparsity, a property inherent in many statistical signal de-

tection problems that may take di↵erent forms depending on specific settings. This

dissertation will focus on two such problems: sequential multi-sensor change-point de-

tection and multi-user detection. The major contributions of the dissertation consist

of the following:

• We present a new method for the sequential multi-sensor change-point detec-

tion. A mixture procedure, which will be discussed in more detail in Chapter

3, exploits sensor sparsity - the fact that the fraction of sensors a↵ected by the

change-point, p, is relatively small, to achieve a quicker detection. We model

the sensor sparsity by assuming that the probability for each sensor to be af-

fected by the change-point is p
0

. Based on this model, we form a mixture log

generalized likelihood ratio (GLR) statistic, and derive the mixture procedure.

The mixture statistic essentially applies a non-linear weighting function, which

is parameterized by p

0

, on the log GLR statistic of each sensor before com-

bine them. We develop theoretical approximations to two performance metrics

of the mixture procedure and also demonstrate its performance via numerical

simulations.

• We present a new reduced-dimension multiuser detection (RD-MUD) method

for multiuser detection in communication systems. RD-MUD exploits user spar-

sity to reduce the number of correlators used at the MUD receiver front-end and

still achieve a performance comparable to that of the conventional MUD. Here
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user sparsity refers to the empirical observation that the number of active users

at any particular time is usually small compared to the total number of users.

We develop theoretical and numerical results to characterize the performance

of the RD-MUD detectors in terms of their probability-of-error. The error is

due to an error in detecting the active users or detecting the wrong symbol of

an active user.

1.1 Multi-Sensor Change-Point Detection

In multi-sensor change-point detection, sensors are deployed to monitor the abrupt

emergence of a signal. The emergence of such a signal will simultaneously change

the distribution of the observations from a subset of sensors. Such a signal is called

a change-point. Mathematically, the multi-sensor change-point problem can be de-

scribed as follows. Suppose N sensors make sequences of observations: yn,t, n =

1, · · · , N , and t = 0, 1, 2 · · · . At an unknown time , a change-point occurs and si-

multaneously changes the distribution of observations for a subset of sensors, n 2 Na,

t �  + 1. The cardinality of the subset Na is M , and 1  M  N . We would

like to detect the occurrence of the change-point using observations yn,t. The goal

is to detect the change-point as soon as possible after it occurs, while keeping the

frequency of false alarms as low as possible. In the change-point detection literature,

the frequency of false alarms is usually replaced by a related performance metric,

the average-run-length (ARL), which by definition is the expected time before (incor-

rectly) announcing a change of distribution when none has occurred.
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Figure 1.1: The five sequences in the picture demonstrate observations from five
sensors. The sensor index is n and the time index is t. A change-point happens at
time  = 25, with location marked by a red star, aillustrates an instance where the
change-point a↵ects the observations ofM = 3 out of N = 5 sensors. The post-change
means of the observed changes are di↵erent for these a↵ected sensors.
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Fig. 1.1 illustrates an instance where the change-point a↵ects the observations

of M = 3 out of N = 5 sensors. The observations before the change-point are

independent and identically distributed (i.i.d.) with normal distribution that has

zero mean and unit variance. A change-point that occurs at  = 25 a↵ects sensors

with index 2, 3 and 4 and raises expected values of observations from these sensors.

In particular, after the change-point, the a↵ected sensors have observations that are

i.i.d. with normal distribution that has mean µn > 0, n = 2, 3, 4; the una↵ected

sensors have observations that are i.i.d. with the same distribution as before the

change-point. The change-point time , the subset Na, the size M of the subset, and

the post-change means µn, n 2 Na, of the a↵ected sensors are all unknown.

Wireless sensor detection 

61 

Central 
Node 

Figure 1.2: One example of change-point problem with spatial structure. A change-
point that occurs abruptly changes the distributions of a subset of sensors simultane-
ously. The observations of the a↵ected sensors have larger means. In this example,
the di↵erent post-change means, or the level-of-a↵ectedness, of the a↵ected sensors
are spatially correlated. The sensors that are spatially close tend to have similar
post-means.

Multi-sensor change-point problems arise in many real world applications. For
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example, in network intrusion detection, network anomalies such as TCP/SYN flood-

ing may lead to changes in Internet tra�c, and these changes can be modeled as

change-points in the network tra�c data, as studied in [50]. For TCP/SYN flooding

detection, observations consist of data collected at several points in the Internet. The

data are the number of TCP/SYN packets received by each destination IP address

per unit of time. An attack may dramatically increase the number of TCP/SYN

packets for multiple destination IP addresses at the same time, which can be mod-

eled as a change-point. The goal is to provide algorithms to detect a change-point,

under computational constraints to process the data on-line. Typically, the number

of destination IP addresses we record data simultaneous is very large, which can be

up to several thousands and even millions.

Another envisioned application of change-point detection is sensor networks, where

multiple sensors are used to make measurements and a change-point may alters the

distribution of the measurements from a subset of sensors, as illustrated in Fig. 1.2.

An example is the california freeway performance measurement system which com-

prises of a collection of 25,000 sensors. Each sensor reports the number of vehicles

that crossed the sensors within every past five minutes[69]. These measurements

are used to generate a real-time tra�c map. On average, however, unto 40% of the

sensors may fail per day. The goal is to detect the failed sensor quickly in order to

generate a map without their measurements.

In multi-sensor change-point detection problems, the level-of-a↵ectedness of each

sensor a↵ected by the change-point may be related or not. In some problems, spatially

closed sensors tend to have high level-of-a↵ectedness simultaneously. These problems

have a spatial structure, which relates the level-of-a↵ectedness of each sensor a↵ected
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by the change-point. We call such problems structured problems. The spatial structure

is determined by known sensor locations and the locations of the sources of the change-

point, and decays according to some function. Examples of structured problems

include epidemiological monitoring for disease outbreaks [68], fMRI scanning [75], and

on-line monitoring of the emergence of a signal with known profile [81]. On the other

hand, we call the other problems that do not have a spatial structure unstructured

problems. On example of the unstructured problem is the network intrusion detection

[50] that we discuss earlier. There level-of-a↵ectedness in that example is the mean of

the number of TCP/SYN packets for each IP addresses. In that problem, the means

tend to be uncorrelated. Non-structured problems have been discussed in [84], [56],

[19], [64], and [50] with variations depending on the envisioned applications.

In Chapter 3, we are primarily interested in an unstructured multi-sensor detection

problem, where the number of sensors N is large, and the number of sensors a↵ected

by the change-point M is relatively small. Moreover, the number and the subset of

a↵ected sensors are unknown. The a↵ected sensors and the level-of-a↵ectedness of

the a↵ected sensors are unknown. To achieve e�cient detection, the detection proce-

dure should use only the observations of the a↵ected sensors, ignore noise from the

una↵ected sensors, and take into consideration the unknown and non-homogeneous

level-of-a↵ectedness of each a↵ected sensor.

There have been a number of suggested methods to find an e�cient multi-sensor

change-point detection procedure. These methods compute a detection statistic for

each sensor, and combine these statistics in various ways, such as Mei’s procedure

[56] and a procedure suggested by Tartakovsky and Veeravalli [84]. Their works

have not exploited the empirical observation that the fraction of sensors a↵ected
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by the change-point is typically small. Another drawback of these two procedures

is that they assume the distributions of the observations after the change-point is

completely prescribed. However, in practice, complete knowledge about the post-

change distributions is usually not available. When the true distributions deviate from

the assumed ones, the proposed methods both su↵er from performance degradation,

in particular long detection delays.

We develop a mixture procedure, which models the fact that the fraction of af-

fected sensor by the change-point is p, by assuming that each sensor has a probability

p

0

to be a↵ected. The value of p
0

is a guess for p. Based on this model, we form

a mixture of the log generalized likelihood ratio (GLR) statistic using observations

from each sensor, and derive a mixture detection procedure. The mixture statistic

essentially applies a nonlinear weighting function on the log GLR statistic of each sen-

sor before combining them, and automatically emphasizes statistics of the a↵ected

sensors and suppresses those of the non-a↵ected sensors. The nonlinear weighting

function is parameterized by p

0

. To characterize the performance of the mixture pro-

cedure, we derive theoretical approximation for its ARL and expected detection delay.

We validate that the approximations have good numerical accuracy. We demonstrate

numerically that the mixture procedure is robust against the misspecification of p
0

,

and has good performance compared with other existing procedures.

1.2 Reduced-Dimension Multiuser Detection

Multiaccess communication, in which several transmitters share a common channel

(Fig. 1.3), is a common protocol in wireless systems today. Examples include cellular

networks where mobile telephones transmit to a base station, satellite systems where
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ground stations communicate with a satellite, wireless local-area networks (LANs)

where many laptops share a common access point, or sensor networks where di↵erent

sensors communicate with a data collecting central node. A common feature of these

communication systems is that the receiver obtains a noisy version of the superposi-

tion of the signals sent by the active transmitter, and the signals carry information

messages. We call the message sources in the multiaccess channel users [96].

63 

Multi-User detection: traditional and new 
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Figure 1.3: Multiuser communication network.

In this work, we are interested in detecting the information messages sent by

di↵erent users, which is called multiuser detection (MUD) (there are other important

aspects of the multiaccess communication network, for example, capacity [21][35] and

throughput [40]). Multiuser detection (MUD) is a well-studied problem in multiuser

communications and signal processing (see, e.g., [26][60][96] for classic reviews with

extensive reference lists and [2][74][46] for some recent development in the field). In a

typical multiuser system, a number of users communicate simultaneously with a given

receiver by modulating information symbols onto their unique signature waveforms,

which can be characterized by the chip waveform and the signature sequences (also
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called the spreading code) [101]. The received signal consists of a noisy version of

the superposition of the transmitted waveforms, and this signal is used to detect

the symbols of all users simultaneously. While there has been a large body of work

developed for the multiuser detection problem over the last several decades, it is

not yet widely implemented in practice, largely due to its complexity. That is the

fundamental issue we address in the second part of the dissertation.

MF-bank front-end 

Received 

signal 

 Correlator, signature waveform 1 

D
igital 

D
etector 

Correlator, signature waveform 2 

Correlator, signature waveform N 

Information 
symbols 

Figure 1.4: Diagram of conventional MUD using MF-bank.

The structure of a MUD detector typically consists of a front-end that processes

the analog received signal followed by a digital detector. The front-end is a bank of

matched-filters (MF-bank), with each matched filter correlating the received signal

with the signature waveform of a di↵erent user, as illustrated in Fig. 1.4 (which

assumes there are N users). The digital detector can be linear, which linearly trans-

forms the front-end output and detects user data separately in one pass, or it can be

nonlinear, which detects user data jointly or iteratively. Both linear and nonlinear

MUD have su�ciently high complexity to preclude their wide adoption in real sys-

tems. The complexity of MUD arises both in the analog circuitry for decorrelation

as well the digital signal processing for data detection of each user. We measure the
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first part of the complexity by the number of correlators used at the front-end, and

measure the second part of digital signal processing complexity by complexity-per-bit

[54], which is the number of real floating point operations required per bit decision.

Both the linear and nonlinear detectors require the number of correlators equal to the

number of users. The complexity-per-bit of the nonlinear detectors are exponential

in the number of users in the system for the maximum likelihood sequence estimator

(MLSE), and less for the DF (decision feedback) detector. The complexity-per-bit of

the linear detectors are linear in the number of users, which is much lower complexity

than that of the nonlinear methods. In a typical communication system, there may

be thousands of users. Hence, the complexity of the conventional methods has been

a major obstacle for implementing the MF-bank based conventional MUD detectors.

In the second part of the dissertation, Chapter 4, we develop a low complexity

front-end for MUD along with corresponding digital detectors. We call this struc-

ture a reduced-dimension multiuser detector (RD-MUD). The RD-MUD reduces the

number of correlators while still achieving performance similar to that of conventional

MUDs that are based on the MF-bank front-end. We reduce complexity by exploit-

ing the fact that at any given time the number of active users, K, is typically much

smaller than the total number of users, N . This analog signal sparsity allows us to use

techniques from analog compressed sensing, which exploits sparsity in analog signals

(see, e.g., [57][30][27][58][28][59][36] and [24] for more details on these techniques).

Our RD-MUD has a front-end that correlates the received signal with M correlating

signals, where M is much smaller than N . The correlating signals are formed as linear

combinations of the signature waveforms via a (possibly complex) coe�cient matrix

A, as is done in the analog compressed sensing literature for sparse signal recovery.
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Our choice of A will be shown to be crucial for performance. The output of the

RD-MUD front-end can thus be viewed as a projection of the MF-bank output onto

a lower dimensional detection subspace. To recover information from this detection

subspace, we process the front-end output using algorithms that combine ideas from

compressed sensing and MF-bank based conventional MUD. We study two such detec-

tors in detail: the reduced-dimension decorrelating (RDD) detector, a linear detector

that combines subspace projection and thresholding to determine active users with a

sign detector for data recovery [37][11], and the reduced-dimension decision-feedback

(RDDF) detector, a nonlinear detector that combines decision-feedback orthogonal

matching pursuit (DF-OMP) [63][85] for active user detection with sign detection

for data recovery in an iterative manner. We present theoretical probability-of-error

performance guarantees for these two specific detectors in terms of the coherence of

the matrix A in a non-asymptotic regime with a fixed number of users and active

users. Based on these results, we develop a lower bound on the number of correlators

M needed to attain a certain probability-of-error performance. For example, if A

is a random partial discrete Fourier transform matrix, the M required by these two

specific detectors is on the order of logN . We validate these theoretical performance

results via numerical examples.

Previous work on MUD based on active user detection falls into two categories:

conventional methods and compressed sensing methods. Specifically, to detect active

users in the system, conventional MUD approaches use techniques such as the mul-

tiple signal classification algorithm (MUSIC) [102], quickest change detection [61],

random set theory, sphere detection and Bayesian filter [10][3][4][14]. In particular,

[61] focuses on the on-online detection of the entrance of a new user into the system,
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and [102][10][14] consider the case when the number of active users is unknown. There

has also been work about detecting a subset of active users of interest [71], which be-

longs to a more general technique called group detection [89]. The group detection

technique partitions active users into groups and jointly detects users within a group

using the generalized likelihood ratio test. A compressed sensing approach has also

been applied for active user detection. However, in contrast to our approach, which

processes analog signals, most existing work on exploiting compressed sensing ideas

for signal detection based on the original compressed sensing results [18][22] assume

discrete signals. In particular, most prior work on MUD exploiting user sparsity

applies compressed sensing techniques on discrete signals via matrix multiplication

[32][31][47][41][42][106], whereas in our work the compressed sensing techniques are

incorporated into the RD-MUD analog front-end. Furthermore, RD-MUD aims at

detecting active users as well as their transmitted symbols, whereas prior work [5][6]

[32][31][47] aims at detecting only the active users and hence the problem is equiv-

alent to support recovery. These prior works establish conditions on the number of

correlators M required to achieve a zero probability-of-error of active user detection

when the number of users N tends to infinity. While providing important insights

into complexity reduction in large systems, they do not answer questions for practical

system design with a finite number of users, such as how many correlators should

be used to achieve a target probability-of-error. There is another branch of com-

pressed detection work that focuses on detecting the presence of a discrete signal

that is sparse in time [43][42][39]. This work is not relevant to our problem since the

multiuser signal we consider is sparse in the number of users.

Our RD-MUD consists of two stages: active user detection and data detection of
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active users. The first stage is closely related to [9]. However, our problem di↵ers in

that the probability-of-error must consider errors in both stages. We derive conditions

under which the probability-of-error is dominated by errors in the first stage. Also,

the decision-feedback (DF) detector we consider is di↵erent in its active user detection

because it subtracts out detected data symbols whose values are from a finite alphabet

(rather than subtracting out the estimated data symbols whose values are real) from

the second stage, which makes detection of the remaining active users easier.

The rest of the dissertation is organized as follows. Chapter 2 reviews some back-

ground knowledge about change-point detection and multiuser detection. Chapter 3

presents the mixture procedure for multi-sensor change-point detection. Chapter 4

introduces the reduced-dimension multi-user detection. Finally Chapter 5 concludes

the dissertation with discussions about future research.



Chapter 2

Background

In this chapter, we review some fundamentals that will be used for later development.

In particular, we will review the classic one-sensor change-point detection problem.

Then we will review two topics related to the reduced-dimension multiuser detection

(RD-MUD): conventional multi-user detection and compressed sensing.

2.1 Classic One-Sensor Change-Point Detection

In the classical single-sensor change-point detection problem, the sensor observes a

sequence of independent random variables yt, t = 1, 2, · · · . If there is no change-point,

all the observations, yt, t = 1, 2, · · · are independent and identically distributed (i.i.d.)

with a known probability density function (pdf) f

0

. However, if there is a change-

point occurs at , initially and up to time , the observations y
1

, y

2

, · · · , y are i.i.d.

with a known pdf f
0

, and after the change-point, the observations y+1

, y+2

, · · · are

i.i.d. with a di↵erent pdf f
1

. The parameter , the time at which the change-point

happens, is unknown. An important question to ask after observing t observations

18
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is whether the change-point occurs, i.e.,  < t, or whether the change-point never

occurs.

There are two di↵erent versions of the change-point detection problems, one where

the total number of observations T is fixed, and we can detect o✏ine after acquiring

all T samples. A second version of the change-point detection has the total number

of observations not fixed. The samples yt, t = 1, 2, · · · are observed sequentially and

we have to detect online as we acquire new samples. In this chapter we will focus on

the second case, the sequential change-point detection. For sequential change-point

detection, the goal is to detect the occurrence of the change-point with a minimal

detection delay after , subject to having a large number of observations until a

change-point is incorrectly detected when there is no change (which is related to the

false alarm rate). The two performance metrics: the expected detection delay and

the false alarm rate will be defined more precisely below.

Historically the applications of change-point detection have come from quality

control. Later the change-point detection problem has been applied to a more general

setting. The literature of single-sensor change-point detection is immense. See, for

example, [49][48][8][66] for surveys. Solutions proposed for the single-sensor problem

are usually either variations of the Page-Lorden CUSUM procedure [62][51] or of the

Shiryaev-Roberts procedure [76][72].

Let P and E denote the probability and expectation when the change-point

occurs at the th observation,  = 0, 1, · · · . The probability P is defined on the

infinite dimensional product space. For any finite dimensional vector (y
1

, · · · , yt) and
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Borel set B ⇢ Rt,

P{(y
1

, · · · , yt) 2 B} =

8

>

<

>

:

R

B f0(y1) · · · f0(y)f1(y+1

) · · · f
1

(yt)dy1 · · · dyt, t > ,

R

B f0(y1) · · · f0(yt)dy1 · · · dyt, 1  t  .

(2.1)

For a measurable real-valued function defined on this infinite dimensional product

space, its expectation is defined as:

E[g] =
Z

gdP, (2.2)

provided the integral exists. Let P1 and E1 denote the probability and the expec-

tation when there is no change, i.e.,  = 1. The probability P1 is defined on the

infinite dimensional product space. For any finite dimensional vector (y
1

, · · · , yt) and

Borel set B ⇢ Rt,

P{(y
1

, · · · , yt) 2 B} =

Z

B
f

0

(y
1

) · · · f
0

(yt)dy1 · · · dyt, t = 1, 2, · · · . (2.3)

The expectation of a measurable real-valued function defined in the infinite dimen-

sional product space is given by

E1[g] =

Z

gdP1
. (2.4)

The detection procedure we are seeking is a stopping rule of the form

T = inf{t : Ft(y1, · · · , yt) � b, t = 1, 2, · · · }, (2.5)
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for some time-varying function Ft of observations, and a threshold b > 0. A desired

stopping rule should minimize the expected detection delay and rarely stop when

the change-point has not occurred. We usually consider the worst-case expected

detection delay after a change-point occurs, which is the largest expected detection

delay maximized over all possible change-point times  = 0, 1, · · · , denoted as

sup
k�0

E[T � k|T > k], (2.6)

also referred to as the expected detection delay in the change-point detection literature.

The expected period of false alarm, i.e. detecting a change-point, when there is no

change-point, denoted as E1[T ], is referred to as the average run length (ARL).

The above change-point detection problem can be formulated as a sequential hy-

pothesis testing. The null hypothesis is that there is no change-point, and hence

y

1

, y

2

, · · · are independent and identically distributed (i.i.d.) with probability density

function (pdf) f
0

. An alternative hypothesis is that there is a change-point that oc-

curs at 0    t, such that y
1

, · · · , y are i.i.d. with pdf f
0

, while y+1

, · · · , yt are

i.i.d. with pdf f
1

. Here  = 0 means that the change-point happens from the first

observation, and  = t means that the change-point has not occurred at time t. Since

the change-point occurs at an unknown time , we have to test a composite hypoth-

esis that  happens somewhere between 0 and t. For such a composite hypothesis

test, the log likelihood ratio statistic is given by

max
0kt

t
X

l=k+1

log(f
1

(yl)/f0(yl)). (2.7)

The log likelihood ratio is a random process in t, with a drift-rate given by E[log(f
1

(yl)/f0(yl))].
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This drift-rate is negative before the change-point occurs l  , and is positive after

the change-point occurs l � +1. These facts can be shown using Jensen’s inequality.

Before the change-point occurs l  , the drift-rate is given by

E[log(f
1

(yl)/f0(yl))]  logE[f
1

(yl)/f0(yl)]

= log

Z

(f
1

(u)/f
0

(u)) · f
0

(u)du = log 1 = 0,
(2.8)

with equality if and only if f
1

= f

0

. However, we are not interested in the trivial case

that f

1

= f

0

, and hence E[log(f
1

(yl)/f0(yl))] < 0 for l  . After the change-point

occurs l � + 1, the drift rate is given by

E[log(f
1

(yl)/f0(yl))] �� logE[f
0

(yl)/f1(yl)]

=� log

Z

(f
0

(u)/f
1

(u)) · f
1

(u)du = � log 1 = 0,
(2.9)

with equality if and only if f
1

= f

0

. Again since we are not interested in the trivial

case that f

1

= f

0

, hence E[log(f
1

(yl)/f0(yl))] > 0 for l �  + 1. Hence, intuitively,

when there is a change-point, we can detect its occurrence by comparing the log

likelihood ratio statistic with a positive threshold b and claiming a detection when it

exceeds the threshold. In other words, we can choose the function Ft in (2.5) to be

the log likelihood ratio (2.7).

Define St =
Pt

l=1

log(f
1

(yl)/f0(yl)) and S

0

= 0. Then the statistic (2.7) can be

written as

St � min
0kt

Sk, (2.10)

which is referred to as the CUSUM statistic [8]. The related CUSUM procedure is
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defined by a stopping time

T = inf

⇢

t : St � min
0kt

Sk � b

�

, (2.11)

for a threshold b > 0. The CUSUM procedure was first considered by Page in [62].

An important instance of the CUSUM procedure is when the pre-change and

post-change distributions are normal. Assume f

0

is normal pdf with zero mean

and unit variance, and f

1

is normal pdf with mean µ and unit variance. Then

log(f
1

(yl)/f0(yl)) = ylµ� µ

2

/2, and the CUSUM procedure becomes

T = inf

(

t : max
0kt

t
X

l=k+1

(ylµ� µ

2

/2) � b

)

. (2.12)

When the post-change mean of the normal distribution is unknown, we can use a

hypothetical value for µ or use the generalized likelihood ratio (GLR) statistic, where

the unknown change-point mean is replaced by its maximum likelihood estimate at

time t. If we assume the change-point happens at  = k, the maximum likelihood

estimate for the post-change mean is given by

µ̂k =
t

X

l=k+1

yl/(t� k). (2.13)

In this case, the detection procedure based on the GLR is given by

T = inf

8

<

:

t : max
0kt

"

t
X

l=k+1

yl

#

2

/[2(t� k)] � b

9

=

;

. (2.14)

The properties of this GLR procedure have been analyzed in [78].
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The two performance metrics of a change-point detection procedure, i.e., the ARL

and the expected detection delay, can be evaluated by several frequently used identi-

ties and tools, which are given here for future reference. Wald’s identity is particular

useful for evaluating detection delays (see, e.g., [80]):

Lemma 1 (Wald’s Identity). Let y
1

, y

2

, · · · be a sequence of i.i.d. random variables.

Define St =
Pt

l=1

yl. Let T be any integer-valued random variable such that {T = t} is

an event determined by y

1

, · · · , yt (and is independent of yt+1

, · · · ) for all t = 1, 2, · · · ,

and assume that E[T ] < 1. Then E[ST ] = E[T ]E[y
1

].

Consider the stopping time T = inf{t : St � b} for an integer t. Then if the

process achieves the threshold b at the stopping time T , we must have ST = b, from

which we can easily evaluate the expected value of T using Wald’s identity in Lemma

1 to obtain E[T ] = b/E[y
1

]. However, the random process generally will have an

overshoot over the threshold b at the stopping time and hence ST 6= b. To account

for this overshoot, we can write Wald’s identity as

b+ E [ST � b] = E[T ]E[y
1

], (2.15)

and evaluate the expected overshoot E [ST � b] via renewal theory (see, e.g., [80]). In

particular, the following results from [80] can be used.

Lemma 2 (Siegmund [80]). With the definition in Lemma 1, if E[y
1

] > 0 and E[y
1

] <

1, then as b ! 1

E [ST � b] ! E[S2

⌧ ]

2E[S⌧ ]
=

E[y2
1

]

2E[y
1

]
�

1
X

n=1

1

n

E[S�
n ], (2.16)
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where ⌧ = inf{t : St > 0}, and x

� , |min{0, x}|.

Lemma [80] can be proven using renewal theory and Theorem 8.43 in [80].

Lemma 3 (Kac). With the definition in Lemma 1, if E[y
1

] > 0 and E[y
1

] < 1,

E


min
1kt

Sk

�

= �
t

X

k=1

1

k

E[S�
k ]. (2.17)

A proof of Lemma 3 can be found in Section 8.4 and problem 8.14 in [80].

2.2 Multi-User Detection

As we have briefly discussed in Chapter 1, multiuser detection (MUD) has many

examples in communications and signal processing. In multiuser systems, the users

communicate simultaneously with a given receiver by modulating information sym-

bols onto their unique signature waveforms, which can be characterized by the chip

waveform and the signature sequences (also called the spreading code) [101]. The

received signal consists of a noisy version of the superposition of the transmitted

waveforms. The MUD has to detect the symbols of all users simultaneously.

The channel model associated with the MUDmay be synchronous or asynchronous.

In the synchronous channel model [54], the transmission rate of all users is the same

and their symbol epochs are perfectly aligned. This requires closed-loop timing con-

trol or synchronization among all transmitters. In the asynchronous channel model

[93][55], user time epochs need not be aligned and the transmitted waveforms arrive at

the receiver with di↵erent time delays. Allowing users to be asynchronous simplifies

system design but complicates the system model. The synchronous channel model
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can be viewed as a special case of the asynchronous channel with delays of all users

to be the same. In this paper we will focus on the synchronous channel model.

Part of the MUD problem is signature sequence selection, for which there has

been a large body of work, both theoretical [97][73][98][99][88][86][44][52][38][87][12]

and practical [101][82]. If we require the signature waveforms to be orthogonal, for a

system with bandwidth B, the number of orthogonal signature waveforms available

(and hence the number of users that the system can support) is approximately 2TB

[96]. This hard limit on system capacity can be relaxed if we allow nonorthogonal

signature waveforms, and instead require the crosscorrelation of the selected signature

waveforms to be su�ciently low. In this work, we do not consider optimizing signa-

ture waveforms and hence our results will be parameterized by the crosscorrelation

properties of the signature waveforms used in our design. When the signature wave-

forms are nonorthogonal, there is mutual interference among users, which degrades

system performance for all users.

An important issue in multiuser systems with nonorthogonal signature waveforms

is the near-far problem [96]: a strong user with high enough power at the receiver

may cause severe performance degradation of a weak user. One of the key challenges

in MUD is to design a detector that works well when user signals are received at

di↵erent power levels. Such detectors are discussed in more detail below.

While there has been a large body of work developed for the multiuser detection

problem over the last several decades, it is not yet widely implemented in practice,

largely due to its complexity and high-precision A/D requirements. The complexity

of MUD arises both in the analog circuitry for decorrelation as well as in the digital

signal processing for data detection of each user. We characterize the decorrelation
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complexity by the number of correlators used at the receiver front-end, and measure

the data detection complexity by the complexity-per-bit [54], which is the number of

real floating point operations required per bit decision.

The conventional MUD detection structure consists of a matched-filter (MF) bank

front-end followed a linear or nonlinear digital multiuser detector. The MF-bank

front-end (shown in Fig. 1.4 and later in Fig. 4.2) is a set of correlators, each

correlating the received signal with the signature waveform of a di↵erent user. Hence

the conventional MUD requires the number of correlators to be equal to the number

of users. The MF-bank front-end obtains a set of su�cient statistics for MUD when

the receiver noise is Gaussian.

To recover user data from the MF-bank output, various digital detectors have been

developed. Verdu in a landmark paper [93] establishes the optimal MUD detector as

the maximum likelihood sequence estimator (MLSE), which minimizes the probabil-

ity of error for symbol detection. The upper bound on the probability of error for

symbol detection, or the bit-error-rate (BER), was derived in [93] and the analysis is

also given in [92]. Although the MLSE detector can nearly eliminate the degradation

in performance due to multiuser interference, it has two main limitations: complexity

and the requirement for complete channel state information associated with all users

[96]. The complexity-per-bit of the MLSE detector is exponential in the number of

users when the signature waveforms are nonorthogonal. To address the complexity

issue, other MUD suboptimal detectors have been developed. The MLSE detector is

an example of a nonlinear detector that detects symbols of all users jointly. Another

example of a nonlinear detector is the decision feedback (DF) detector [91][90], which

is based on the idea of interference cancellation and takes various forms. One such
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form is the successive interference cancellation (SIC) detector [100][25]. The idea of

successive interference cancellation dates back to the information theoretic study of

the Gaussian multiple-access channel [20]. The DF detector decodes symbols itera-

tively and subtracts the detected symbols of strong users first to facilitate detection

of weak users. The DF detector also requires complete channel state information but

it has less complexity-per-bit than the MLSE detector. The number of correlators

required by the DF detector is also equal to the number of users. The DF detector

is a good compromise between complexity and performance among all nonlinear and

linear techniques (see, e.g., [90]). For this reason we will analyze the DF detector

below as an example of a nonlinear detector, but in a reduced dimensional setting.

Linear detection methods, which apply a linear transform to the receiver front-end

output and then detect each symbol separately, have lower complexity than nonlinear

methods but also worse performance. Linear MUD techniques include the single-user

detector, the decorrelating detector and the minimum mean-square-error (MMSE)

detector. The single-user detector is the simplest linear detector, which follows the

MF-bank front-end with conventional single-user detection in each branch. Thus

single-user detection demodulates symbols by comparing the front-end branch out-

put with a threshold [54]. When the signature waveforms are orthogonal and syn-

chronous, the single-user detector coincides with the MLSE detector and it minimizes

the probability-of-error [96]. In this case, by correlating with each user’s signature

waveform, the MF-bank maximizes the output signal-to-noise ratio (SNR) for each

individual user. When the signature waveforms are nonorthogonal, users interfere

with each other, so the probability-of-error of the single-user detector degrades [26].

A linear detector that eliminates user inference is the decorrelating detector [54][55],
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which, for each user, projects the received signal onto the subspace associated with

the signature waveform of that user. This projection amplifies noise when the sig-

nature waveforms are nonorthogonal. The decorrelating detector also gives the best

joint estimate of symbols and amplitudes in the absence of knowledge of the com-

plete channel state information [54], and it maximizes the near-far resistance among

all linear detectors [94]. The near-far resistance is a performance measure for the de-

gree of robustness against the near-far problem achieved by a multiuser detector [96].

The MMSE detector [103][104][67] is designed to minimize the mean-square-error

(MSE) between symbols and the linearly transformed MF-bank front-end output.

The MMSE detector takes into account the background noise and interference, and

hence to some extent it mitigates the noise amplification e↵ect of the decorrelating

detector in the low and medium SNR regimes [90]. A drawback of the MMSE de-

tector is that it requires complete channel state information and it does not achieve

the optimal near-far resistance. When the signal-to-noise power ratio (SNR) goes to

infinity, the MMSE detector converges to the decorrelating detector [96]. Because of

the many advantages of the decorrelating detector, it has received much attention in

the MUD literature and is one of the most common linear detectors in MUD [60].

Hence, in this paper, we will focus on the decorrelating detector as an example of a

linear detector in the reduced-dimension setting. The decorrelating detector requires

inverting the correlation matrix of the signature waveforms, but this computation

can be done o✏ine once the signature waveforms are selected. Its complexity-per-bit

(other than inverting the correlation matrix) can be shown to be linear in the number

of users [54].

The complexity-per-bit and required channel-state-information (CSI) requirements
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for di↵erent MUD detectors are summarized in Table 2.1 and Table 2.2, respectively.

Table 2.1: Complexity-per-bit of MUD detectors (N users, K active users).

MUD detectors Complexity-per-bit
MLSE Exponential in N when signature waveforms nonorthogonal

DF detector Proportional to NK

Decorrelating detector Linear in N

MMSE Linear in N

2.3 Compressed Sensing

Compressive sensing is a new field that has attracted much interest from theorists and

practitioners. Compressive sensing recovers a sparse signal using few measurements

(see, e.g., [16][18][15][23]). In the classic compressive sensing setting, the signal is

usually represented by a finite dimensional vector x 2 RN that has very few non-

zero elements. In particular, the vector x that has only k non-zero entries is called

k-sparse. For this sparse vector, obtaining M linear measurements of y is done by

Table 2.2: Required channel-state-information (CSI) by MUD detectors.

MUD detectors Required CSI
MLSE Complete CSI (amplitude and phase)

DF detector Complete CSI
Decorrelating detector (fading channel) Phase

Decorrelating detector (non-fading channel) No CSI
MMSE Complete CSI
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applying a matrix A 2 RM⇥N :

y = Ax. (2.18)

The matrix A is designed to reduce the number of measurements M as much as

possible while still being able to recover the sparse signal x from the measurement

y. Mathematically, (2.18) is an underdetermined system, and if the entries of x are

all non-zero, it cannot be uniquely identified from y. However, when x has only few

non-zero entries, i.e., when it is sparse, various algorithms in compressive sensing can

recover x from y.

In compressive sensing, one question that arises in how many measurements are

needed to guarantee that x can be reliably recovered. A fact that can be easily

verified is that, in the absence of noise, to recover the k-sparse x from y, we need at

least 2k measurements. If we have two di↵erent k-sparse vectors x
1

and x
2

such that

Ax
1

= Ax
2

, we should have x
1

= x
2

. Equivalently, this requires A(x
1

� x
2

) = 0.

Since x
1

�x
2

has at most 2k non-zero entries, to satisfy this requirement, the column

rank of A must be greater than 2k, or the number of rows of A should also be at

least 2k. Hence the number of measurements should be greater than 2k. When there

is noise in the measurements: y = Ax + n, the performance metric for recovery

algorithms considered in compressive sensing literature is usually the MSE, which is

defined as E{x̂� x}.

Several fundamental results in compressive sensing (see, e.g., [18][17]) state that

when the number of measurements is on the order of k log(N/k) then, in the absence

of noise, it is possible to recover the sparse vector exactly; in the presence of Gaussian

noise with zero mean and variance �2, the MSE of the recovery algorithms can be

on the order of k�2

/M · log(N) if the number of measurement M is on the order of
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k log(N).

Analog compressive sensing extends the notion of compressive sensing so that the

signals can be not only finite dimensional sparse vectors but also continuous signals

that have certain sparse representation (see, e.g.,[57][30][27][58][28][59] [36] and [24]

for review).

The recovery algorithm is the key to reducing the number of measurements. These

algorithms include l

1

relaxation methods, such as Danzig selector [15] and basis pur-

suit denoising (also known as LASSO) [23][18], and the greedy algorithms, such as

thresholding and orthogonal matching pursuit (OMP) [63][85]. The l

1

relaxation

method recovers the sparse vector by solving a quadratic optimization problem,

min
x

1

2
ky�Axk2

2

+ �kxk
1

, (2.19)

for some regularization parameter �. Here kxk
1

and kxk
2

are the l

1

and l

2

norms of

x, respectively.

Rather than solving optimization problems, the greedy algorithms recover the

sparse signal by first estimating the support set I of x, and then estimating the

values of the non-zero entries using a least-squares (LS) solution:

x̂ =

8

>

<

>

:

A†
Iy, on the support set I;

0, elsewhere.
(2.20)

Here AI denotes a submatrix A formed by columns of A on the support set I, and

A† denotes the Moore-Penrose pseudoinverse of matrix A.

Greedy algorithms di↵er in their ways of estimating I. The standard thresholding
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algorithm estimate I by computing the correlation of the measured signal y with each

column of A and defining I as the set of indices of K columns having the highest

correlations.

An iterative algorithm which improves on simple thresholding is known as the

orthogonal matching pursuit algorithm (OMP). The OMP initializes the estimate of

Î

0 to be an empty set, and then sets the residual vector r0 to be y. Subsequently,

at each iteration k = 1, · · · , K, OMP finds the index of a single column of A that

is most highly correlated with rk�1. This index nk is then added to the support set,

so that Ik = Ik�1 [ {nk}. The estimate x̂k at the kth iteration is then obtained via

the least-squares solution of (2.20) using the support set Ik, and the residual vector

is updated to rk = y�Ax̂k. A well-known property of the OMP algorithm is that it

never chooses the same column index twice [34]. After K iterations, the sparse vector

is defined as x̂K with sparsity K.



Chapter 3

Multi-Sensor Change-Point

Detection

In this chapter, we develop a mixture procedure for the multi-sensor change-point

detection problem with an unknown subset of a↵ected sensors and incompletely spec-

ified post-change distributions. The mixture procedure exploits the sparsity that the

fraction of sensors a↵ected by the change-point is typically small, and models the

sparsity by assuming that each sensor has a chance p

0

to be a↵ected. The value of

p

0

is a guess for p. Then we form a mixture log generalized likelihood ratio (GLR)

statistic for change-point detection. Equivalently, the mixture statistic uses a non-

linear weighting function, which is parameterized by p

0

, to combine the log GLR

statistic of each sensor. The nonlinear weighting function automatically emphasizes

the statistics of the a↵ected sensors, and suppresses those of the una↵ected sensors.

We characterize the performance of the mixture procedure by two metrics: the false

alarm rate, which we capture by its commonly used surrogate: the average run length

(ARL), and the expected detection delay. We also compare the performance of the

34
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mixture procedure with other existing procedures using numerical simulations.

The reminder of the chapter is organized as follows. In Section 3.1 we establish

notation for this chapter and present the system model and problem formulation. In

Section 3.3 we review several detection procedures and introduce the new mixture

procedure. In Section 3.4 we derive approximations to ARL and expected detection

delay of the mixture procedure, and demonstrate with numerical examples that these

approximations are reasonably accurate. In Section 3.5, we demonstrate that the

mixture procedure has good performance compared with other known procedures.

Finally Section 3.8 concludes the chapter with some discussion.

3.1 Model and Formulation

Consider a multi-sensor detection system, where N sensors make sequential observa-

tions to monitor the occurrence of a change-point. Define a set

N , {1, 2, · · · , N}, (3.1)

which contains indices of all sensors. The sensor observations are given by

yn,t, n = 1, · · · , N, t = 1, 2 · · · . (3.2)

Assume that observations from di↵erent sensors are mutually independent. The null

hypothesis is that the change-point never occurs. Denote by P1 the probability that

the change-point never occurs. Under the null hypothesis, the sensor observations are

independent and identically distributed (i.i.d.) with normal distribution that has zero
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mean and unit variance, and the pdf of all observations up to time t, yn,l, l = 1, · · · , t,

n = 1, · · · , N , equals
N
Y

n=1

t
Y

l=1

�(yn,l), (3.3)

where �(x) = (2⇡)�1/2 exp{�x

2

/2} is the pdf of the standard normal distribution.

Using (3.3), under the null hypothesis, the expectation E1 of a function of all the

observations up to time t is defined as

E1[g(y
1,1, · · · , yN,t)]

=

Z

· · ·
Z

g(u
1,1, · · · , uN,t)

N
Y

n=1

t
Y

l=1

�(yn,l)du1,1 · · · duN,t.

(3.4)

The alternative hypothesis is that there exists a change-point  � 0 and a subset

of sensorsNa ⇢ N , the distributions of whose observations are a↵ected by the change-

point. Denote by P the probability that the change-point occurs at time . Note

that this probability in the alternative case depends on Na and the values of µn > 0,

although this dependence is suppressed in the notation. The cardinality of the subset

Na is M . So in the alternative, the true fraction of a↵ected sensors is given by

p = M/N . For n 2 Na, the sensor observations after time , yn,t, t > , are i.i.d.

with normal distribution that has mean µn > 0 and unit variance. For n 2 N c
a , the

sensor observations are not a↵ected by the change-point and yn,t, n 2 N c
a , have the

same distribution as before the change, i.e. they are i.i.d. with normal distribution

that has zero mean and unit variance. Under the alternative hypothesis, the pdf of
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all observations up to time t, yn,l, l = 1, · · · , t, n = 1, · · · , N , equals

2

4

Y

n2N c
a

t
Y

l=1

�(yn,l)

3

5 ·
"

Y

n2Na


Y

l=1

�(yn,l)
t
Y

l=+1

�(yn,l � µn)

#

. (3.5)

Using (3.5), under the alternative hypothesis, the expectation E of a function of all

the observations up to time t is defined as

E[g(y
1,1, · · · , yN,t)]

=

Z

· · ·
Z

g(u
1,1, · · · , uN,t)

2

4

Y

n2N c
a

t
Y

l=1

�(yn,l)

3

5 ·
"

Y

n2Na


Y

l=1

�(yn,l)

t
Y

l=+1

�(yn,l � µn)

#

du

1,1 · · · duN,t.

(3.6)

Our goal is to find a sequential change-point detection procedure, or equivalently

to define a stopping rule T such that for a prescribed large constant c > 0, asymp-

totically as c ! 1, it satisfies a certain ARL constraint, E1[T ] � c, and has small

expected detection delay E[T � |T > ].

3.2 Mixture Procedure

To model the fact that the fraction of sensors a↵ected is an unknown quantity p, we

assume that each sensor is a↵ected by the change-point with probability p

0

. Here p

0

is a guess for the true fraction p. Such a mixture model has been used and derived

for a fixed sample change-point detection problem in prior work [105]. Based on this

model, we derive a mixture log generalized likelihood ratio (GLR) statistic, and use

the statistic to form a detection procedure.
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First we derive the mixture log GLR statistic. For sensors that are a↵ected by the

change-point, n 2 Na, t > , using (3.3) and (3.5), the log likelihood for observations

of sensor n up to time t is given by

`n(t,, µn) = log

(

Q
l=1

exp{�y

2

n,l/2}
Qt

l=+1

exp{�(yn,l � µn)2/2}
Qt

l=1

exp{�y

2

n,l/2}

)

=
t

X

l=+1

�

µnyn,l � µ

2

n/2
�

.

(3.7)

For sensors that are not a↵ected by the change-point, n 2 N c
a , the log likelihood for

the observations of sensor n up to time t is one. Since each sensor has a probability

p

0

to be a↵ected by the change-point, the mixture log GLR statistics is given by

N
X

n=1

log(1� p

0

+ p

0

exp[`n(t,, µn)]). (3.8)

When µn and the change-point time  are unknown, we form the log GLR statistic

by maximizing (3.8) with respect to these two parameters:

max
0k<t

max
µn>0

N
X

n=1

log(1� p

0

+ p

0

exp[`n(t,, µn)]). (3.9)

The µn that maximizes (3.9) equivalently maximizes (3.7). Hence we take derivative

of `n in (3.7) with respect to µn, set it to zero, and solve for the solution. We take

the positive part of the solution, since µn are assumed to be positive. This results

in the maximum likelihood estimate of the post-change mean µn as a function of the
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current observations up to time t and an assumed change-point occurs at time  = k:

µ̂n,k =

 

t
X

l=k+1

yn,l

!

+

/(t� k), (3.10)

where (x)+ = x if x � 0, and is equal to zero when x < 0. Substitution of (3.10) in

(3.7) gives:

`n(t, k, µ̂n) =

" 

t
X

l=k+1

yn,l

!

+

#

2

/[2(t� k)]. (3.11)

It will be convenient to define the following

Sn,t =
t

X

l=1

yn,l,

Un,k,t = (t� k)�1/2(Sn,t � Sn,k),

(3.12)

and write (3.11) as

`n(t, k, µ̂n) = (U+

n,k,t)
2

/2. (3.13)

Using (3.13), we can write the mixture log GLR statistic (3.9) as

max
0k<t

N
X

n=1

log(1� p

0

+ p

0

exp[(U+

n,k,t)
2

/2]). (3.14)

Define a function with the argument x and parameter p
0

,

g(x; p
0

) = log[1� p

0

+ p

0

e

(x+

)

2/2]. (3.15)
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Figure 3.1: Plot of g(x; p
0

) = log[1� p

0

+ p

0

e

(x+

)

2/2] for di↵erent p
0

.

We note that the mixture statistic (3.14) is equivalent to applying g(x; p
0

) as a non-

linear weighting function on the log GLR statistic of each sensor (3.11) before com-

bining them. The function (3.15) plays a role in automatically emphasizing the log

GLR statistic of the a↵ected sensors and suppressing noise from those of the un-

a↵ected sensors. To see this, when the nth sensor is a↵ected by the change-point

at , for this sensor, its observations yn,t, n 2 Na, t > , have positive means

µn. By definition (3.12), the process Un,k,t also has positive drift for t > k � .

Thus as t increases, exp[(U+

n,k,t)
2

/2] grows fast and dominates the other term, i.e.,

p

0

exp[(U+

n,k,t)
2

/2] � 1 � p

0

. In this case, applying g(x; p
0

) to the local log GLR of

an a↵ected sensor yields g(Un,k,t; p0) ⇡ � log p
0

+ (U+

n,k,t)
2

/2, n 2 Na. On the other

hand, for the una↵ected sensors n 2 N c
a , exp[(U

+

n,k,t)
2

/2] can be bounded with high

probability since it is due to noise only. Hence, g(Un,k,t; p0) can be bounded with high
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probability for n 2 N c
a . The function g(x; p

0

) for various values of p
0

is illustrated in

Fig. 3.1. A special case is when p

0

= 1, g(x; p
0

) = (x+)2/2, in which case the function

applies no weighting on the log GLR statistics of any sensor. This is consistent with

our definition, since p
0

= 1 means we believe all sensors observe the change-point and

hence we should use GLR statistics of all sensors when combining them.

Usually very small changes are not of interest, so we can modify the definition of

the mixture statistic (3.14) as follows. Instead of maximizing over possible change-

point time k for 0  k < t, we can maximize over the most recent m

1

possible

change-point time t�m

1

 k < t, where m

1

is a suitable window size. By applying

time-windowing, we only examine possible change-points in the most recent m

1

ob-

servations. This also simplifies the computations required to implement the detection

procedure. It is possible to require a minimum window size as well, say m

0

, if we are

concerned about possible outliers in the data and hence do not allow change-point

detection based on too few observations.

After time-windowing, the mixture procedure compares the log GLR statistic

(3.14) with a threshold b > 0 and stops whenever the statistic exceeds the threshold.

The associated stopping rule T

mix

for the mixture procedure is given by

T

mix

= inf

(

t � 1 : max
t�m

1

k<t

N
X

n=1

log
�

1� p

0

+ p

0

exp[(U+

n,k,t)
2

/2]
�

� b

)

. (3.16)
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3.3 Other Detection Procedures

3.3.1 Maximizing Over Subset of Sensors

In the mixture procedure, we model the fraction of sensors a↵ected by the change-

point directly by assuming a parameter p
0

. On the other hand, without introducing

the parameter p
0

, we can maximize the log likelihood ratio statistic over all unknown

parameters, including the unknown subset of a↵ected sensors. Using (3.5) and (3.3),

such a log likelihood ratio is given by:

max
Na⇢N

max
0k<t

max
µn>0

log

8

<

:

h

Q

n2N c
a

Qt
l=1

�(yn,l)
i

·
h

Q

n2Na

Qk
l=1

�(yn,l)
Qt

l=k+1

�(yn,l � µn)
i

QN
n=1

Qt
l=1

�(yn,l)

9

=

;

= max
Na⇢N

max
0k<t

max
µn>0

X

n2Na

t
X

l=k+1

(µnyn,l � µ

2

n/2) (3.17)

= max
Na⇢N

max
0k<t

X

n2Na

" 

t
X

l=k+1

yn,l

!

+

#

2

/[2(t� k)] (3.18)

= max
0k<t

N
X

n=1

" 

t
X

l=k+1

yn,l

!

+

#

2

/[2(t� k)], (3.19)

where from (3.17) to (3.18) we have used (3.10), and from (3.18) to (3.19) we have

used the fact that the terms inside the summation in (3.18) are all nonnegative so

maximizing over Na ⇢ N ends up taking Na = N .

Note that when we use a set of assumed values {µ̃n} as a surrogate for post-change
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means µn in forming the detection statistics:

max
Na⇢N

max
0k<t

log

8

<

:

h

Q

n2N c
a

Qt
l=1

�(yn,l)
i

·
h

Q

n2Na

Qk
l=1

�(yn,l)
Qt

l=k+1

�(yn,l � µ̃n)
i

QN
n=1

Qt
l=1

�(yn,l)

9

=

;

,

(3.20)

using the similar argument to the above, the procedure based on (3.20) is identical

to the modified TV procedure (3.28) that we will discuss in the following section.

3.3.2 Other Procedures

For the model in Section 3.1, there can be other procedures based on two extreme

assumptions about the subset of a↵ected sensors: either all sensors are a↵ected or

only a few sensor are a↵ected. Several other detection procedures have also been

considered in the literature, assuming a set of specific values of µn for the post-

change means. Assuming a specific set of values of µn may also be used to specify a

subset of sensors which we believe are a↵ected by the change-point. We will discuss

these procedures in the following.

First we derive two procedures using log GLR statistics based on two extreme

assumptions about the subset of a↵ected sensors. If we assume all the sensors are

a↵ected, we can derive the following procedure, which we refer to as the log GLR

procedure:

T

GLR

= inf

(

t � 1 : max
t�m

1

k<t

N
X

n=1

(U+

n,k,t)
2

/2 � b

)

, (3.21)

where m
1

is the window-length. When N = 1, the GLR procedure (3.21) corresponds

to the procedure studied in [78] for a single sensor case. The log GLR procedure also

corresponds to letting p
0

= 1 in the mixture procedure (3.16). The log GLR procedure
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is e�cient when the change-point a↵ects a large fraction of the sensors.

At the other extreme, if the set Na is very small such that only a few sensors are

a↵ected by the change-point, a reasonable procedure is to take the maximum over the

log GLR statistics (3.13) of each sensor. By using the maximum-likelihood estimates

for the post-change means (3.10), we obtain the following max procedure:

T

max

= inf

⇢

t � 1 : max
t�m

1

k<t
max

1nN
(U+

n,k,t)
2

/2 � b

�

, (3.22)

where m

1

is the window length.

The following two procedures have been considered in the literature. They both

use a set of assumed values {µ̃n} as a surrogate for post-change means µn in forming

the detection statistics. The set of {µ̃n} essentially establish a minimum size of change

of interest. The assume post-change means {µ̃n} can be di↵erent from {µn}. This

model mismatch may degrade performance of the detection procedures [56] [84].

Mei’s procedure [56] forms a one-sensor CUSUM statistic for each sensor as defined

in (2.12), and then sums these CUSUM statistics to form the detection statistic:

T

Mei

= inf

(

t � 1 :
N
X

n=1

max
0kt

[µ̃n(Sn,t � Sn,k)� µ̃

2

n(t� k)/2] � b

)

. (3.23)

For Mei’s procedure, there are convenient recursive computational algorithms for the

CUSUM statistics of each sensor (3.23). Define

Wn,t , µ̃n(Sn,t � Sn,k)� µ̃

2

n(t� k)/2. (3.24)

We can write the detection statistics (3.23) for Mei’s procedure as
PN

n=1

max
0k<t Wn,t.
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On the other hand, note that at time t

max
0kt

Wn,t

= max
0kt

[µ̃n(Sn,t � Sn,k)� µ̃

2

n(t� k)/2]

=max {0, µ̃n(yn,t � µ̃n/2), · · · , µ̃n(yn,t � µ̃n/2) + · · ·+ µ̃n(yn,1 � µ̃n/2)} .

(3.25)

Hence in the time step t+ 1, we have

max
0kt+1

Wn,t+1

=max {0, µ̃n(yn,t+1

� µ̃n/2), · · · , µ̃n(yn,t+1

� µ̃n/2) + · · ·+ µ̃n(yn,0 � µ̃n/2)}

=max {0, µ̃n(yn,t+1

� µ̃n/2) +Wn,t} .

(3.26)

So for Mei’s procedure, when we increase the time step from t to t + 1, we simply

add onto each Wn,t the quantity, µ̃n(yn,t+1

� µ̃n/2), take its positive part, and sum to

form the new detection statistic.

The TV procedure [84] also assumes a set values of the post-change means µ̃n. In

contrast to Mei’s procedure, the TV procedure sums the log likelihood ratio of each

sensor first, and then forms the CUSUM statistic (Mei’s procedure forms a CUSUM

statistic for each sensor). The TV procedure has a stopping rule defined as

T

TV

, inf

(

t � 1 : max
k<t

N
X

n=1

[µ̃n(Sn,t � Sn,k)� µ̃

2

n(t� k)/2] � b

)

. (3.27)

However, in the detection statistic of the TV procedure (3.28), when the change-

point occurs, the statistics of the sensors that are not a↵ected by the change-point

have negative drifts. These negative drifts cancel the positive drifts of the statistics
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formed by sensors that are a↵ected by the change-point. To address this limitation,

we suggest the following modification to the TV procedure, by taking the positive

part of the statistic formed by each sensor before summing them:

T

TV,modified

, inf

(

t � 1 : max
t�m

1

k<t

N
X

n=1

[µ̃n(Sn,t � Sn,k)� µ̃

2

n(t� k)/2]+ � b

)

,

(3.28)

where m
1

is the window length. Comparing (3.23) and (3.27), we note that the detec-

tion statistic of Mei’s procedure is greater than that of the modified TV procedure,

since interchanging the order of maximizing with that of summing increases the value.

The threshold b of each of the procedures (3.16) - (3.27) defined above are chosen to

meet the ARL requirement. In the following section, we will derive an approximation

to the ARL of the mixture procedure. This approximation is parameterized by the

threshold b. We can numerically solve for the threshold b to meet a given ARL value

by inverting the approximation with respect to b. For other procedures, the threshold

b is found by numerical Monte Carlo simulations.

3.4 Performance of Mixture Procedure

In this section we study the theoretical performance of the mixture procedure (3.16)

using two performance metrics: the average run length (ARL) when there is no

change, and the expected detection delay in the extreme case where a change occurs

immediately at  = 0. This provides an upper bound on the expected detection delay

when a change occurs later in the sequence  > 0.

We will need the following quantities to characterize the ARL and expected detec-

tion delay of the mixture procedure. Let z
1

, z

2

, · · · be i.i.d. with normal distribution
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that has mean �2

/2 and variance �2. Define a random walk

S̃t ,
t

X

l=1

zl. (3.29)

Also define a stopping time

⌧(c) = min{t � 1 : S̃t > c}, (3.30)

and a stopped process S̃⌧(c). The first quantity is

⌫(�) = lim
c!1

E[exp{�(S̃⌧(c) � c)}]. (3.31)

The exact expression for ⌫(x) is given by (see page 82 of [80])

⌫(x) = 2|x|�2 exp

(

�2
1
X

l=1

l

�1�
⇣

�|x|
p
l/2

⌘

)

. (3.32)

An approximation for ⌫(x) that is convenient for numerical computation is given by

[79]:

⌫(x) ⇡ (2/x)[�(x/2)� 0.5]

(x/2)�(x/2) + �(x/2)
.

where �(x) and �(x) are the pdf and cdf of the standard normal distribution, with

�(x) = 1p
2⇡
e

�x2/2, and �(x) =
R x

�1 �(z)dz.

The second quantity is

⇢(�) = lim
c!1

E[S̃⌧(c) � c] =
E
h

S̃

2

⌧(0)

i

2E
h

S̃⌧(0)

i

. (3.33)
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The exact computational expressions and useful approximations for (3.33) are avail-

able in [80]. From Lemma 2, one such expression for ⇢(�) is given by

⇢(�) =
E[z2

1

]

2E[z
1

]
�

1
X

l=1

l

�1E[S̃�
l ] =

�2

4
+ 1�

1
X

l=1

l

�1E[S̃�
l ], (3.34)

where the notation x

� denotes the negative part of a number x: x� = x if x < 0 and

x

� = 0 if x � 0.

The third quantity is E
h

mint�1

S̃t

i

. Using Lemma 3, we can evaluate this quantity

as

E


min
t�1

S̃t

�

= ⇢(�)� 1��2

/4. (3.35)

3.4.1 Average Run Length (ARL)

The average run length (ARL) is the average length of intervals between two false-

alarms when there is no change-point. It is a common performance metric for false-

alarm rate of a sequential detection procedure. To characterize the ARL of the

mixture procedure, we define the following:

 (✓) = logE[exp{✓g(U ; p
0

)}], (3.36)

where U has a standard normal distribution. Recall the definition (3.15) g(x; p
0

) =

log(1�p

0

+p

0

e

(x+

)

2/2). The first-order derivative of g(x; p
0

) with respect to x is given

by:

ġ(x; p
0

) = p(x+)e(x
+

)

2/2
/[1� p

0

+ p

0

e

(x+

)

2/2], (3.37)
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where the dot denotes first-order derivative of the function. Based on (3.37), we

define:

�(✓) =
1

2
✓

2E
�

[ġ(U ; p
0

)]2 exp[✓g(U ; p
0

)�  (✓)]
 

, (3.38)

and

f(N, ✓, p

0

) =
�(✓)N1/2

✓{2⇡ ̈(✓)}1/2
exp{�N [✓ ̇(✓)�  (✓)]}, (3.39)

where the double-dot denotes the second-order derivative of the function.

The following approximation, for which we provide a heuristic argument, is the

main result of this section:

Approximation 1. Assume N ! 1 and b ! 1, with b/N a fixed, positive constant.

Define ✓ by  ̇(✓) = b/N , with definition (3.15) for g(x; p
0

), notation (3.36), (3.38)

and (3.39). Then

E1[T
mix

] ⇠
"

f(N, ✓, p

0

)

Z

[2N�(✓)]1/2

[2N�(✓)/m
1

]

1/2

y⌫

2(y)dy

#�1

. (3.40)

Here the notation x ⇠ y means x/y ! 1 asymptotically.

Remark: The integrand y⌫

2(y) in (3.40) is integrable at both 0 and 1 by virtue of

the relations ⌫(y) ! 1 as y ! 0, and ⌫(y) ⇠ 2/y2 as y ! 1. Also note that Approx-

imation 1 applies to any general function g(x; p
0

) that is second-order di↵erentiable

in x.

The following heuristic calculations provide support for Approximation 1. Let

Zk,t =
N
X

n=1

log
�

1� p

0

+ p

0

exp[(U+

n,k,t)
2

/2]
�

. (3.41)
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In [105] it was shown that for large m,

P1{T
mix

 m}

=P1
⇢

max
tm,m

0

t�km
1

Zk,t � b

�

⇠N

2

e

�N [✓ ˙ (✓)� (✓)][2⇡N  ̈(✓)]�1/2|✓|�1

�

2(✓)

Z

m
1

m

m
0

m

⌫

2

�

[2N�(✓)/(mt)]1/2
�

(1� t)dt/t2,

(3.42)

where N and b diverge to 1 at the same rate, and m is also large, but small enough

that the right hand side of (3.42) converges to 0. We are primarily interested in the

case where m
0

= 1, and the maximum window size m
1

is small compared to m. Hence

1 � t ⇡ 1 in the integrand. Using change of variables u = mt, z = u/(2Nµ(✓)) and

then y = z

�1/2, and the definition of f (3.39), we can rewrite (3.42) as

P1{T
mix

 m}

⇠ mN

2

e

�N{✓ ˙ (✓)� (✓)}{2⇡N  ̈(✓)}�1/2|✓|�1

�

2(✓)

Z m
1

1

⌫

2

 

r

2N�(✓)

u

!

du

u

2

= mN

2

e

�N{✓ ˙ (✓)� (✓)}{2⇡N  ̈(✓)}�1/2|✓|�1

�

2(✓)
1

2N�(✓)

Z

m
1

2N�(✓)

1

2N�(✓)

⌫

2

 

r

1

z

!

1

z

2

dz

= mN

2

e

�N{✓ ˙ (✓)� (✓)}{2⇡N  ̈(✓)}�1/2|✓|�1

�

2(✓)
1

2N�(✓)

Z

[2N�(✓)]1/2

[2N�(✓)/m
1

]

1/2

⌫

2(y)y4 · 2y�3

dy

= mf(N, ✓, p

0

)

Z

[2N�(✓)]1/2

[2N�(✓)/m
1

]

1/2

y⌫

2(y)dy.

(3.43)

Let �b denote the factor multiplying m in the last line of (3.43). The only restriction

on m in (3.43) is that we should have m�b ! 0 when b and N go to infinity at the
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same rate.

To deal with larger m, it can be shown using arguments similar to those in [1]

and [81], and is verified numerically in Section 3.4.3, that T

mix

is asymptotically

exponentially distributed. More precisely, for any positive t,

P1{�bTmix

 t} ⇠ [1� exp(�t)]. (3.44)

Hence, �bE1[T
mix

] ! 1, or E1[T
mix

] ⇠ 1/�b as N and b go to infinity at the same

rate.

3.4.2 Expected Detection Delay

After a change-point occurs, we are interested in the expected number of additional

observations required for detection. The maximum expectation detection delay over

all possible change-point time  � 0 happens when the change-point occurs at the

first observation  = 0. Hence in the change-point detection literature, the expected

detection delay when a change-point occurs at the first observation is usually used as

the performance metric. In this section, we derive an approximation to the expected

detection delay of the mixture procedure.

We continue to use the notation of the proceeding section. In particular g(x; p
0

) =

log[1�p

0

+p

0

e

(x+

)

2/2], and U denotes a standard normal random variable. Recall that

Na denotes the set of sensors at which there is a change, M is the cardinality of this

set, and p = M/N is the fraction of sensors that are a↵ected by the change-point. For

each n 2 Na, the mean of the observations changes from 0 to µn > 0, and for n 2 Na

the distribution of the observations is the same before and after the change-point

occurs.
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To study the expected detection of the mixture procedure, we need the following

definitions. First, define a quantity

� =

 

X

n2Na

µ

2

n

!

1/2

, (3.45)

with �2 interpreted as the total energy of the change-point observed by the sensors.

Define the Kullback-Leibler (KL) divergence of the post-change distribution for a vec-

tor of sensor observations of all sensors with respect to their pre-change distribution

as:

I(µ
1

, · · · , µN) ,
Z

· · ·
Z

f

1

(u
1

) · · · f
1

(uN)

"

N
X

n=1

log(f
1

(un)/f0(un))

#

du

1

· · · duN ,

(3.46)

and in our case it is given by

I(µ
1

, · · · , µN) =

Z

· · ·
Z

�(u
1

� µ

1

) · · ·�(uN � µN)

"

N
X

n=1

(µnun � µ

2

n/2)

#

du

1

· · · duN

= �2

/2.

(3.47)

The K-L divergence determines the asymptotic rate of growth of the detection

statistic after the change-point . From the law of large numbers, we see that a

first order approximation of the expected detection delay is 2b/�2, provided that

the maximum window size m

1

is large compared to this quantity. In the following

derivation we assume m

1

� 2b/�2.

Our main result of this section is the following approximation, which refines this

first order result for the expected detection delay of the mixture procedure.
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Approximation 2. As b ! 1, with other parameters held fixed, the definition (3.15)

for g(x; p
0

), the definition (3.45) for �, (3.33) for ⇢(�), and (3.35) for E
h

mint�1

S̃t

i

,

we have that the expected detection delay when the change-point happens at  = 0 is

given by

E0[T
mix

] =

2��2

⇢

b�M log p
0

+ ⇢(�)�M/2 + E


min
t�1

S̃t

�

� (N �M)E[g(U ; p
0

)] + o(1)

�

,

(3.48)

where U is a normal random variable with zero mean and unit variance.

Remarks:

The first term on the right-hand-side of (3.48) is the first-order expected detection

delay. The other terms capture the over-shoot of the detection statistic process over

the threshold b, the e↵ect of the non-linear transform g(x; p
0

) on the log GLR statistic

of each sensor, and the second-order e↵ects of noise. In particular, the positive term

�M log p
0

can be interpreted as a penalty because we do not know the subset of

a↵ected sensors. The term ⇢(�) captures the expected overshoot of the detection

statistic process over the threshold b. The term E
h

mint�1

S̃t

i

is due to drift of the

detection statistic from the a↵ected sensors. For a residual process defined as the

di↵erence of the detection statistic process relative to its drift, the term �M/2 is due

to the variance of that residual process for the a↵ected sensors. The term E[g(U ; p
0

)]

is due to noise of the una↵ected sensors.

We can provide a heuristic argument to support Approximation 2 based on the

idea as follows. We decompose the detection statistic of the mixture procedure (3.16)

into two parts: one part due to the a↵ected sensors, and the other part due to the
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una↵ected sensors. The first part from the a↵ected sensors can further be decomposed

into two terms: one term captures the positive drift of the statistic which eventually

causes the statistic to exceed the threshold, and the other term that captures the

negative drift of the statistic due to our uncertainty about the change-point time

. Then we take expectation of the term, use Wald’s Identity for the positive drift

term, and bound the other terms. When applying Wald’s Identity, we also take into

account that the detection statistic process generally will not hit the threshold exactly

and will have an overshoot over the threshold, and this overshoot significantly a↵ects

the accuracy of the approximation to the expected detection delay. We capture this

overshoot using a technique from non-linear renewal theory [80].

The following heuristic argument provides a support to Approximation 2. For

derivation for a similar problem involving a single sequence where N = 1, see [65]

and [78]. In the following, for convenience, we write T = T

mix

. Let

k

0

= b

1/2
. (3.49)

Recall the notation of Zk,t introduced in (3.41). For k < T � k

0

, we can write the

detection statistic at the stopping time T as follows, up to a term that tends to zero
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exponentially fast in probability:

Zk,t =
N
X

n=1

g(Un,k,T ; p0)

=
X

n2Na

g(Un,k,T ); p0) +
X

n2N c
a

g(Un,k,T ; p0)

=
X

n2Na

log

✓

p

0

exp
�

(U+

n,k,T )
2

/2
 



1 +
1� p

0

p

0

exp
�

�(U+

n,k,T )
2

/2
 

�◆

+
X

n2N c
a

g(Un,k,T ; p0)

=
X

n2Na

⇥

log p
0

+ (U+

n,k,T )
2

/2
⇤

+
X

n2N c
a

g(Un,k,T ; p0)

+
X

n2Na

log

✓

1 +
1� p

0

p

0

exp
�

�(U+

n,k,T )
2

/2
 

◆

=M log p
0

+
X

n2Na

(U+

n,k,T )
2

/2 +
X

n2N c
a

g(Un,k,T ; p0) + o(1)

=M log p
0

+
X

n2Na

[(Sn,T � Sn,k)
+]2/2(T � k) +

X

n2N c
a

g(Un,k,T ; p0) + o(1).

(3.50)

The residual term
P

n2Na
log

�

1 + (1� p

0

) exp
�

�(U+

n,k,T )
2

/2
 

/p

0

�

tends to zero ex-

ponentially fast when b ! 1, because when b ! 1, T ! b/�, and n 2 Na, (U
+

n,k,T )
2

grows on the order of µ2

n(T � k) > µ

2

nk0 = µ

2

n

p
b.

We then use the following simple identity to decompose the second term in (3.50)

for the a↵ected sensors into two parts:

(S+

n,t)
2

/2t = S

2

n,t/2t� (S�
n,t)

2

/2t

= µn(Sn,t � µnt/2) + (Sn,t � µnt)
2

/2t� (S�
n,t)

2

/2t.
(3.51)

From the preceding discussion, we see that max
0k<T�k

0

Zk,T is on the order of b, while
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maxT�k
0

k<T Zk,T is on the order of k
0

= b

1/2. Hence with overwhelming probability

the max over all k is attained for k < T � k

0

, so from (3.51) and (3.50) we have

max
0k<T

Zk,t

= max
0k<T�k

0

N
X

n=1

g(Un,k,T ; p0) + o(1)

=M log p
0

+ max
0k<T�k

0

"

X

n2Na

µn[(Sn,T � Sn,k)� (T � k)µn/2]

+
X

n2Na

[(Sn,T � Sn,k)� (T � k)µn]
2

/[2(T � k)]

�[(Sn,T � Sn,k)
�]2/2(T � k) +

X

n2N c
a

g(Un,k,T ; p0)

3

5+ o(1)

=M log p
0

+
X

n2Na

µn (Sn,T � Tµn/2)+

max
0k<T�k

0

"

�
X

n2Na

µn (Sn,k � kµn/2) +
X

n2Na

[(Sn,T � Sn,k)� (T � k)µn]
2

/[2(T � k)]

�
X

n2Na

[(Sn,T � Sn,k)
�]2/[2(T � k)] +

X

n2N c
a

g (Un,k,T ; p0)

3

5+ o(1).

(3.52)

The following lemma forms the basis of the rest of the derivation (see Appendix

B.1 for details).
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Lemma 4. For k

0

= b

1/2, asymptotically as b ! 1

max
0k<T�k

0

"

�
X

n2Na

µn

✓

Sn,k �
kµn

2

◆

+
X

n2Na

[(Sn,T � Sn,k)� (T � k)µn]2

2(T � k)

�
X

n2Na

[(Sn,T � Sn,k)�]2

2(T � k)
+

X

n2N c
a

g(Un,k,T ; p0)

3

5

=
X

n2Na

(Sn,T � Tµn)
2

/2T +
X

n2N c
a

g(Un,1,T ; p0) + max
0k<k

0

"

�
X

n2Na

µn(Sn,k � kµn/2)

#

+ o(1).

Using the preceding discussion and (3.52), by taking expectations, letting b ! 1

and using Lemma 4, we have

E0

"

max
0k<T

N
X

n=1

g(Un,k,T ; p0)

#

=E0

2

4

M log p
0

+
X

n2Na

µn(Sn,T � Tµn/2) +
X

n2Na

(Sn,T � Tµn)2

2T
+

X

n2N c
a

g(Un,1,T ; p0)+

max
0k<k

0

(

�
X

n2Na

µn(Sn,k � kµn/2)

)#

+ o(1).

(3.53)

We will compute each term on the right hand side of (3.53) separately. We need the

following lemma due to Anscombe and Doeblin (see Theorem 2.40 in [80]), which

states that the randomly stopped average of random variables are asymptotically

normal distributed under general conditions.

Lemma 5 (Anscombe-Doeblin). Let y
1

, y

2

, · · · be i.i.d. with mean µ and variance

�

2 2 (0,1). Suppose Dc and c are positive integer valued random variables such that
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for some constants mc ! 1, Dc/mc converges to one in probability. Then as c ! 1

P
(

p

Dc

"

1

Dc

Dc
X

l=1

yl � µ

#

 x

)

! 1

�

�
⇣

x

�

⌘

, (3.54)

where � denotes the standard normal cdf.

We continue bounding the terms in (3.53):

(i) By Wald’s Identity [80]:

E0

"

X

n2Na

µn(Sn,T � Tµn/2)

#

= E0[T ]�2

/2. (3.55)

(ii) By the Anscombe-Doeblin Lemma, (Sn,T � Tµn)/T 1/2 is asymptotically nor-

mally distributed with zero mean and unit variance. Hence
P

n2Na
(Sn,T �

Tµn)2/T is asymptotically a sum of independent �2

1

random variables, so

E0

"

X

n2Na

(Sn,T � Tµn)
2

/2T

#

= M/2 + o(1). (3.56)

(iii) For the same reason as (ii):

E0

2

4

X

n2N c
a

g(Un,0,T ; p0)

3

5 ! (N �M)E0[g(U ; p
0

)]. (3.57)

(iv) The term�
P

n2Na
µn(Sn,k�µnk/2) is a random walk with index k with negative

drift ��2

/2 and variance �2. Hence E0

⇥

max
0k<k

0

�
P

n2Na
µn(Sn,k � kµn/2)

⇤

converges to the expected minimum of this random walk. By symmetry, this

random walk has the same distribution as the process mint�1

S̃t defined above.
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Having finished evaluating the right hand side of (3.53), we now consider the left-

hand side. The first order asymptotic behavior of the process
PN

n=1

g(Un,k,T ; p0) is

the same as that of
P

n2Na
µn(Sn,T � Tµn/2), which has drift �2

/2 and variance �2.

Equivalently, the process
PN

n=1

g(Un,k,T ; p0) has the same distribution as the process

S̃T in (3.29). By writing

E0

"

max
0k<T

N
X

n=1

g(Un,k,T ; p0)

#

= b+ E0

"

max
0k<T

N
X

n=1

g(Un,k,T ; p0)� b

#

, (3.58)

and using nonlinear renewal theory to evaluate the expected overshoot of the process

of (3.29) over the boundary ([80], Chapter IX), we obtain

E0

"

max
0k<T

N
X

n=1

g(Un,k,T ; p0)� b

#

! ⇢(�). (3.59)

3.4.3 Accuracy of Approximations for Mixture Procedure

We start with examining the accuracy of our approximations to the ARL in (3.40)

and the expected detection delay in (3.48) for the mixture procedure. For the fol-

lowing Monte Carlo simulations we use N = 100 sensors, m
1

= 200 and µn = 1 for

a↵ected sensors, and the results are obtained from 500 Monte Carlo trials. All sensor

observations are contaminated by independent normally distributed noise with zero

mean and unit variance.

First we verify our exponential distribution approximation for the stopping time

T

mix

under the null hypothesis. Consider a mixture procedure with p

0

= 0.1, m
1

=

200, and b = 19.5, which corresponds to the theoretical ARL approximation of 5000.

The cumulative distribution function (cdf) of T
mix

from theoretical approximation
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is obtained from (3.43), and the cdf from Monte Carlo simulation is obtained from

500 Monte Carlo trials. Fig. 3.2 demonstrates that our the cdf using theoretical

approximation based on the exponential distribution assumption fits well with the

numerically simulated cdf.
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Figure 3.2: Cumulative distribution function (cdf) of T
mix

from theoretical approx-
imation versus from numerical simulation. The mixture procedure has p

0

= 0.1,
m

1

= 200, and b = 19.5, which corresponds to the a theoretical approximation of
ARL that equals 5000. The Monte Carlo results are obtained from 500 Monte Carlo
trials.

Then we examine the accuracy of our approximation to ARL in Approximation 1.

The comparisons between the theoretical approximated and Monte Carlo simulated

ARLs for di↵erent values of p
0

are given in Table 3.1. Our numerical results in Table

3.1 demonstrate that the Approximation 1 is quite accurate.

Next we examine the accuracy of our approximation to the expected detection
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delay in Approximation 2 when the change-point occurs at the first observation  = 1.

We start assuming the parameter in the mixture procedure equals true parameter

value p

0

= p. The comparison of the theoretical approximated versus Monte Carlo

simulated expected detection delays (Fig. 3.3) demonstrates that Approximation 2 is

reasonably accurate in this case. Then we assume that the mixture procedure has no

knowledge of the true parameter value and uses p
0

= 0.1. Hence, in this case, there

is a mismatch between p and the true parameter value: p

0

6= p. The comparison of

the theoretical approximated versus Monte Carlo simulated expected detection delays

(Fig. 3.4) demonstrates that the Approximation 2 is also reasonably accurate with

the mismatch. Some values of the above comparisons are also listed in Table 3.2.

Table 3.1: Average run length (ARL) of the mixture procedure with m

1

= 200. The
Monte Carlo results are obtained from 500 trials.

p

0

b Approximation Monte Carlo
0.3 31.2 5002 5504
0.3 32.3 10002 10221
0.1 19.5 5000 4968
0.1 20.4 10001 10093
0.03 12.7 5001 4830
0.03 13.5 10001 9948
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Table 3.2: Expected detection delay of a mixture procedure with m

1

= 200 such that
the theoretical approximation of ARL is equal to 5000. The Monte Carlo results are
obtained from 500 trials.

p p

0

b Approximation Monte Carlo
0.3 0.3 31.2 3.5 3.2±0.7
0.3 0.1 19.5 5.2 5.0 ± 0.9
0.1 0.1 19.5 7.2 6.7 ±1.7
0.03 0.1 19.5 13.9 14.4 ±4.4
0.03 0.03 12.7 13.9 14.2±4.4
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Figure 3.3: Comparison of theoretical and simulated expected detection delay of a
mixture procedure. For simulation, we use 500 Monte Carlo trials, with p

0

= p,
m

1

= 200, and di↵erent b such that the theoretical approximation of ARL is equal to
5000.
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Figure 3.4: Comparison of theoretical and simulated expected detection delay of a
mixture procedure. For simulation, we use 500 Monte Carlo trials, with p

0

= p,
m

1

= 200 and b = 19.5 such that the theoretical approximation of ARL is equal to
5000.
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3.5 Numerical Examples

In this section, we will demonstrate the performance of the mixture procedure and

compare it with other detection procedures.

3.5.1 Robustness to Choice of p0

First we demonstrate that the expected detection delay of the mixture procedure

does not deviate much if the assumed p

0

is di↵erent from p. Again let N = 100 and

all µn = 1. We compare two mixture procedures. The first mixture procedure is

ignorant of the true p. It sets p
0

= 0.1 regardless of p and chooses b = 19.5 so that

the theoretical ARL approximation is equal 5000. The second mixture procedure

knows the true fraction of a↵ected sensors, sets p
0

= p and chooses threshold values

for each p such that the theoretical approximation of ARL is equal to 5000 for every

p values. Fig. 3.5 shows the expected detection delays from Approximation 2 for

these two mixture procedures when p varies from 0.01 to 0.3. Note that although the

first procedure is ignorant of p and does not perform as well as the second procedure,

which knows p, the first procedure does very well in a broad range of values where

0.03 < p < 0.2. We will return to this point in Section 3.6.
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Figure 3.5: Comparison of the expected detection delay from Approximation 2, when
there is no mismatch, p

0

= p, and when p

0

= 0.1 so that there is a mismatch between
p

0

and p. The thresholds are chosen such that the theoretical approximation of ARL
is equal to 5000.
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3.5.2 E↵ect of Window Size m1

When approximating the expected detection delay, we assume that the window size

m

1

is large enough such that when observations within the window are a↵ected by

a change-point, the mixture procedure of (3.16) can reach the threshold. In this

example, we study how large m

1

should be for this assumption to hold. Assume

N = 100, p
0

= p = 0.03, and consider two scenarios with µn = 1 and µn = 0.6,

respectively. We vary m

1

from 10 to 100, and find b using Approximation 1 such that

the theoretical approximation of ARL is equal to 5000. From the first order analysis,

m

1

should be greater than 2b/�2 for Approximation 2 to hold, which suggests that

m

1

should be greater than 12 for µn = 1, and be greater than 32 for µn = 0.6.

This is verified in Figure 3.6, which shows the expected detection delay from Monte

Carlo simulation as m

1

increases. In Figure 3.6, the expected detection delay from

simulation converges to that from Approximation 2 when m

1

> 20 for µn = 1, and

m

1

> 40 for µn = 0.6. Hence, in practice, if we use m
1

su�ciently larger than 4b, the

approximation in (3.48) is guaranteed to hold.
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Figure 3.6: Expected detection delay versus m
1

for the mixture procedure when the
theoretical approximation of ARL is equal to 5000. The expected detection delay is
obtained from Monte Carlo simulation. The Monte Carlo results are obtained from
500 trials.
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3.5.3 Comparing Procedures

We compare the expected detection delays for the mixture procedure and other pro-

cedures, when their ARLs are all approximately 5000. The ARL for the mixture

procedure is obtained from Approximation 1, and the ARLs for other procedures are

obtained from 500 Monte Carlo trials. The expected detection delay of all procedures

are obtained from 500 Monte Carlo trials. The thresholds for all procedures are listed

in Table 3.3. Assume that the number of sensors N = 100 and m

1

= 200 for all pro-

cedures, except for Mei’s procedure, which has a recursive implementation and hence

needs no windowing. The mixture procedure sets p

0

= 0.1 such that is assumes no

priori knowledge about the true fraction of a↵ected sensors p. Mei’s and the modified

TV procedures both use µ̃n = 1 such that they both have no priori knowledge about

the true post-change means. The expected detection delays are listed in Table 3.4.

For the first two columns in the table, we set of post-change means to be the same

across all a↵ected sensors. In particular, we set µn = 1, n 2 Na in the first column,

and set µn = 0.7, n 2 Na for the second column. For the third column, we choose

post-change means arbitrarily and uniformly from the interval [0.5, 1.5]. Once these

µn are chosen, they are fixed for all Monte Carlo trials. The expected detection delays

for these three cases are plotted in Fig. 3.7.

Note that the max procedure (3.22) has the smallest detection delay when p =

0.01, but it has the greatest delay for p greater than 0.1. The modified TV procedure

has a slight advantage in detection delay when p approaches 0.3 and larger values, but

much longer delay as p approaches to 0.01. This is expected, since when most sensors

are a↵ected, the modified TV procedure collects most energy of the change-point.

When only one sensor is a↵ected, the max procedure collects energy most e�ciently
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in that it excludes noise from the una↵ected sensors. The Mei’s procedure performs

well when p is approaches 0.3 and larger values, but it has longer delay than the

mixture procedure. The mixture procedure has the smallest detection delay when

p is greater than 0.05, and it is only slightly slower than the max procedure when

p = 0.01. In this respect, the mixture procedure performs best over a wide range of

p values.

Table 3.3: Thresholds for procedures with m

1

= 200 such that their ARLs equal 5000.
The Monte Carlo results are obtained from 500 trials.

Procedure b Monte Carlo ARL
Max 12.7 5041
GLR 53.4 4978

Mixture (p
0

= 0.1) 19.3 5000
Mei 88.5 4997

Modified TV 41.6 4993
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Table 3.4: Expected Detection Delays for various procedures with N = 100 and
m

1

= 200, obtained from 500 Monte Carlo trials. The mixture procedure has p
0

= 0.1.
Mei’s and the Modified TV procedures use µ̃n = 1. The thresholds of these procedures
with ARL 5000 are listed in Table 3.3. We set µn = 1 for n 2 Na in the first column,
and µn = 0.7 for n 2 Na for the second column. For the third column, we choose
post-change means independently and uniformly from the interval [0.5, 1.5].

p method DD, µn = 1 DD, µn = 0.7 DD, varying µn

0.01 max 26.2 49.0 �2 = 1.87 14.9
GLR 53.1 100.2 30.0

mixture 31.7 61.5 18.5
Mei 53.4 102.7 35.0

Modified TV 83.6 226.0 48.2
0.03 max 17.9 32.9 �2 = 3.33 13.7

GLR 19.1 36.8 17.1
mixture 14.4 27.2 12.5
Mei 22.6 40.5 22.2

Modified TV 26.8 67.8 25.6
0.05 max 15.2 28.0 �2 = 6.23 10.4

GLR 12.0 22.2 9.9
mixture 10.1 18.4 7.9
Mei 15.7 26.4 13.9

Modified TV 14.9 38.2 12.7
0.1 max 12.4 22.9 �2 = 14.22 8.8

GLR 6.6 11.8 5.1
mixture 6.6 11.6 5.0
Mei 9.5 15.0 8.1

Modified TV 7.0 16.1 5.3
0.3 max 9.4 16.5 �2 = 32.03 7.8

GLR 3.0 4.5 2.9
mixture 3.5 5.6 3.3
Mei 5.0 7.0 4.9

Modified TV 3.1 4.2 3.0
0.5 max 8.2 14.7 �2 = 51.69 7.1

GLR 2.2 3.1 2.2
mixture 2.7 4.0 2.7
Mei 3.9 5.0 3.8

Modified TV 2.3 3.1 2.3
1 max 7.2 12.2 �2 = 113.45 5.7

GLR 2.0 2.1 2.0
mixture 2.0 2.6 2.0
Mei 3.0 3.4 3.0

Modified TV 2.0 2.1 2.0
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Figure 3.7: Comparison of expected detection delays for various procedures with
window size m

1

= 200, and (a): µn = 1, n 2 Na, (b): µn = 0.7, n 2 Na, (c): µn,
n 2 Na, arbitrarily and uniformly chosen from an interval [0.5, 1.5]. The mixture
procedure uses p

0

= 0.1. Mei’s and the modified TV procedures use µ̃n = 1. Monte
Carlo results are obtained from 500 trials.
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3.6 Parallel Mixture Procedure

We have demonstrated via simulation in Section 3.5.1 that the mixture procedure is

not sensitive to the precision of p
0

. However, when N is large, a small di↵erence in p

will result in a large di↵erence in the number of sensors a↵ected by a change-point.

For instance, when N = 500, p = 0.1 corresponds on 50 sensors being a↵ected, while

p = 0.01 corresponds to 5 sensors being a↵ected. In this case, the mixture procedure

may be more sensitive to a mis-specification of p
0

. To achieve robustness over a wider

range of p, we consider a parallel mixture procedure that combines several mixture

procedures, each using a di↵erent parameter p
0

and monitoring a di↵erent range of p

values. The thresholds of these individual mixture procedures are chosen such that

they have the same ARL. For example, we can use two mixture procedures with a

small p
0

= p

1

and a large p

0

= p

2

, respectively, and then choose thresholds b
1

and b

2

such that their ARLs are the same. Denote by T

mix

(p, b) the mixture procedure with

parameter p and threshold b. Then the parallel procedure claims a detection once

any of the mixture procedures reach their thresholds:

T

parallel

, min{T
mix

(p
1

, b

1

), T
mix

(p
2

, b

2

)}. (3.60)

The ARL of the parallel mixture procedure is smaller than the ARL of each of the

individual single mixture procedure. As we will demonstrate in the following, the par-

allel procedure has a smaller expected detection delay than a single mixture procedure

over a wide range of p values.

To compare the performance of the parallel procedure with that of the single

mixture procedure, we consider a case with N = 500 and m

1

= 200. The parallel
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procedure uses two mixture procedures with p

1

= 0.2 and p

2

= 0.03 and threshold

values b

1

= 76.1 and b

2

= 26.9 such that their ARLs are approximately 7000. The

resulting ARL of the parallel mixture procedure is 6577. For the single mixture

procedure, we use p

0

= 0.1 and threshold b = 51.3 such that the ARL of the single

procedure is also 6577. Fig. 3.8 shows that the expected detection delay of the

parallel procedure is smaller than that of the single procedure, especially when p is

very small.
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Figure 3.8: Expected detection delay of the parallel mixture procedure with p

1

= 0.2
and p

2

= 0.03 versus that of a single mixture procedure with p

0

= 0.1. The ARLs
of the parallel procedure and the single procedure are both 6577. The Monte Carlo
results are obtained from 500 trials.
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3.7 Profile-Based Procedure

In discussions so far we have assumed that there is no spatial structure relating the

post-change means at di↵erence sensors, i.e., the post-change means of each sensor

are unrelated to each other. We refer to such problems as unstructured problems. In

the following we will consider an alternative scenario, where there is a parameterized

profile function that determines the post-change means of each sensor, and hence the

post-change means of each sensor are related to each other. We refer to such problems

as structured problems. If we have some knowledge about this profile function, we

can incorporate this knowledge into the definition of the likelihood ratio statistic

and derive a detection procedure, referred to as the profile-based procedure. The

profile-based procedure has been proposed and studied in[81]. Here we will review

the profile-based procedure and compare it with the mixture procedure.

Consider a multi-sensor system, with the location of the nth sensor given by

its coordinates in (for example) two-dimensional the Euclidean space (un, vn), n =

1, · · · , N . Suppose we are only interested in sources located in a region D ⇢ R2.

Assume there can be Q sources and these sources occur simultaneously. The post-

change mean of the nth sensor takes a specific form:

µn =
Q
X

m=1

rm↵zm(un, vn). (3.61)

The two-dimensional vector zm 2 D is the (unknown) spatial location of the signal

at the mth source, and rm is the (unknown) amplitude of the mth source. The profile

function is defined as

↵zm : R2 ! R+

, (3.62)
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and it describes how the amplitude of the mth source decays at the nth sensor. We

assume that some knowledge about this profile function is available. For example,

↵z(u, v) can be a decreasing function of the Euclidean distance between the source

location z and the sensor location (u, v). In principle, ↵z(u, v) may also depend on

finitely many parameters, such as the rate of decay of the function. See [68] or [75]

for examples in a fixed sample context.

If the change-point amplitudes rm are multiplied by a positive constant and the

profile ↵zm(un, vn) divided by the same constant, the values of the post-change means

µn do not change. To remove this ambiguity, it is mathematically convenient to

assume that the change-point profile has been standardized to have unit norm. Define

a vector ↵z = [↵z(u1

, v

1

), · · · ,↵z(uN , vN)]>. The normalization of the profile function

means that we require the norm of the profile function to be one:

↵>
z↵z = 1, (3.63)

for any z 2 D.

3.7.1 Likelihood Ratio Statistic

In this section, we will derive the log GLR statistic under the assumption that the

profile function (3.61) take a specific form. First, assume that the post-change mean

(3.61) is due to only one source:

µn = r↵z
0

(un, vn). (3.64)
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Using (3.64), we see that the log likelihood ratio for observations up to time t of all

sensors (3.7), with an assumed change-point occurs at time  = k, is given by the

following:

l(t, k, r, z) =
N
X

n=1

t
X

l=k+1

[r↵z(un, vn)yn,l � r

2

↵

2

z(un, vn)/2]

= r(t� k)1/2↵>
zU k,t � (t� k)r2/2,

(3.65)

where ys = [y1s , . . . , y
N
s ]> and U k,t = [U

1,k,t, . . . , UN,k,t]>. In (3.65), we have used the

property (3.63) that the profile function has unit norm for any source location z 2 D.

Then we solve for the maximum-likelihood estimate of r from (3.65), by taking

the derivative of the log likelihood function (3.65) with respect to r, setting it to zero:

(t� k)1/2↵>
zU k,t � (t� k)r = 0. (3.66)

and solving for an solution, assuming r > 0:

r̂k =



↵>
zU k,t

(t� k)1/2

�

+

. (3.67)

Substitution of the maximum likelihood estimate r̂k into (3.65) leads to

l(t, k, r̂k, z) =
1

2
[(↵>

zU k,t)
+]2. (3.68)

We further maximize the function (3.68) with respect to the change-point time k and

source location z to obtain the log GLR statistic. Using this log GLR statistic, the
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profile-based procedure is given by:

T

profile

= inf

⇢

t � 1 : max
t�m

1

k<t
max
z2D

1

2
[(↵>

zU k,t)
+]2 � b

�

. (3.69)

Note that (3.69) is a matched-filter type of statistic: the statistic U k,t is matched to

a profile function ↵z.

When the post-change means µn are due to multiple sources as described in (3.61),

the corresponding log GLR statistic is more complex and is derived in Appendix A.2.

We say that the sources are non-overlapping if ↵>
zm

↵zp = 0, for p 6= m, i.e., the

amplitudes of the sources decay fast enough such that no two sources have profiles

overlap with each other. In the later numerical examples in Section 3.7.3, we will

focus on the case with non-overlapping sources.

3.7.2 Theoretical ARL of Profile-Based Procedure

In this section, we derive a theoretical approximation to ARL of the profile-based

procedure using results presented in [81], when the profile function is given by a

Gaussian function:

↵z(u, v) = (
p

2⇡�)�1/2
e

�[(z
1

�u)2+(z
2

�v)2]/(4�)
, z = (z

1

, z

2

) 2 R2

, � > 0. (3.70)

In (3.70), a sensor is located at (u, v) and a source is located at z = (z
1

, z

2

), and

the parameter � > 0 controls of the decay rate of profile function. Define the inner

product of two functions in L

2

as

hf, gi =
Z Z

R2

f(u, v)g(u, v)dudv. (3.71)



CHAPTER 3. MULTI-SENSOR CHANGE-POINT DETECTION 79

For short-hand we also write ↵z for ↵z(u, v). It can be verified that h↵z,↵zi = 1, and

that the norm (3.63) of (3.70) is approximately one: ↵>
z ↵z ⇡ 1, for z 2 D ⇢ R2. So

this function ↵z approximately satisfies (3.63), provided � is su�ciently large, the

distance between points of the grid is su�ciently small, and hence the sum over all

sensor locations is well approximated by integration over the entire Euclidean space

[81].

In [81], the theoretical approximation for the ARL of a profile-based procedure

with a general profile function is given. We can adapt the result in [81] to find the

following result for a profile-based procedure with a Gaussian profile function (3.70):

P1{T
profile

 t} = 2 · te�b/2 (b/4⇡)3/2 ·
p
2

Z

p
b

p
b/m

1

x⌫

2(x)dx ·
Z

D

p

|h↵̇z, ↵̇
>
z i|dz.

(3.72)

To evaluate the last term in (3.72), which involves an integration corresponding to

the surface area of ↵z over D, we do the following computation. By (3.70), we have

↵̇z =



d↵z

dz

1

,

d↵z

dz

2

�>

= (2⇡�)�1/2
e

� 1

4� [(u�z
1

)

2

+(v�z
2

)]

2

[(u� z

1

)/(2�), (v � z

2

)/(2�)]>.

(3.73)

Hence

h↵̇z, ↵̇
>
z i =

2

6

4

↵

11

↵

12

↵

21

↵

22

3

7

5

, (3.74)
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where

↵

11

= 1/(4�2)

Z

1p
2⇡

e

� 1

2

(u�z
1

)

2

(u� z

1

)2du = 1/4�2

,

↵

12

= 1/(4�2)

Z Z

1

2⇡
e

� 1

2

(u�z
1

)

2� 1

2

(v�z
2

)

2

(u� z

1

)(v � z

2

)dudv = 0

↵

21

= 1/(4�2)

Z Z

1

2⇡
e

� 1

2

(u�z
1

)

2� 1

2

(v�z
2

)

2

(u� z

1

)(v � z

2

)dudv = 0

↵

22

= 1/(4�2)

Z

1p
2⇡

e

� 1

2

(v�z
2

)

2

(v � z

2

)2dv = 1/4�2

.

(3.75)

The determinant of (B.35) is given by |h↵̇z, ↵̇
>
z i| = 1/(16�4). Hence

Z

D

p

|h↵̇z, ↵̇
>
z i|dz = |D|/4�2

, (3.76)

with |D| denoting the area of D. Since T

profile

is asymptotically exponentially dis-

tributed when b is large, substituting (3.76) into (3.72) and using a similar argument

to the argument in Approximation 1, we have as b ! 1:

E1[T
profile

] ⇠ e

b/2 (b/4⇡)�3/2 ·
"

p
2

Z

p
b

p
b/m

1

x⌫

2(x)dx · D

2�2

#�1

. (3.77)

3.7.3 Numerical Examples

Two Methods to Simulate ARL

We can use two methods to simulate the ARL.

The first method has been used in Section 3.3 to verify the numerical accuracy of

our approximation to the ARL of the mixture procedure. The first method directly

simulates the detection statistic process. In particular, we generate N sequences

of i.i.d. zero-mean normal random variables starting from t = 1. We compute the
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detection statistic, for example, using (3.16) for the mixture procedure, let the process

continue until it hits the threshold, and record the time when it stops. We call such

realization a Monte Carlo trial. We repeat such trial for 500 times, compute the mean

of the stopping times, and use it as the average run length.

However, the first method, direct simulation of the stopping times to estimate

a large average run length is very time consuming, especially when the number of

sensors is large. As an alternative, we can also consider the following method to

indirectly simulate the average run length, which we refer to as the second method.

In the second method, for each Monte Carlo trial, we also generate N sequences of

i.i.d. zero-mean normal random variables starting from t = 1. But we only continue

process for a fixed short time, say t = 250. Then we record the value of the process

at that time. We repeat this trial for many times (typically 500 times), and compute

the frequency that the processes exceed a threshold at the end-point t = 250. This

frequency can be used to approximate ARL of a detection procedure for the following

reasons. We have shown in Section 3.4.3 that we can assume the stopping time of the

mixture procedure is asymptotically exponential distributed when the threshold b is

large. A similar assumption can be made for other detection procedures when their

thresholds are large. Under the exponential assumption, if E1[T ] = 1/�, we have

P1{T  t} ⇡ 1� e

�t� ⇡ t�, when t is small relative to ��1. Using this relationship,

we can estimate that E1[T ] ⇡ t/P1(T  t). For example, when 1/� = 5000, for

t = 250, the probability is given by P1{T  t} ⇡ t� = 250/5000 = 0.05. Hence

if we choose the threshold b such that P1{T  250} ⇡ 0.05, the resulted ARL is

approximately 5000.
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Small Example

Consider a structured problem where the profile function is the Gaussian function

(3.70) with parameter � = 1/4. There are N = 100 sensors uniformly distributed

on a 10 by 10 grid with locations on integer points (un, vn) with un = �4,�3, · · · , 5

and vn = �4,�3, · · · , 5. The sensor locations as well as the signal amplitude (which

determines the post-change means) contour when there are four sources are illustrated

in Fig. 3.9. There can be up to four non-overlapping sources with identical profile

function described by (3.70) with � = 1/4. In comparing the performance of the

mixture procedure and the profile-based procedure, we consider four scenarios. For

the one-source case, the source amplitude r

1

= 1 and the location is z
1

= (�1,�1).

For the two-source case, the source amplitudes r

1

= r

2

= 1/
p
2 and locations are

z

1

= (�1,�1) and z

2

= (3, 2). For the three-source case, the source amplitudes are

rp = 1/
p
3, p = 1, 2, 3 and locations are z

1

= (�1,�1), z
2

= (3, 2), and z

3

= (�2, 3).

For the four-source case, the source amplitudes are rp = 1/2, p = 1, · · · , 4 and the

source locations are z

1

= (�1,�1), z
2

= (3, 2), z
3

= (�2, 3) and z

4

= (5,�2). The

amplitudes rm of the sources in the multiple-signal cases are chosen such that the

total energy of the sources adds up to one.

We choose m
1

= 200 for both the mixture procedure and the profile-based proce-

dure. The profile-based procedure assumes a profile-function that is identical to the

true profile function when forming the detection statistic. When there is one source,

approximately 10% sensors are a↵ected by the change-point. Since the sources are

non-overlapping, when there are two, three and four sources occurring simultaneously,

the fractions of a↵ected sensors are 20%, 30% and 40% for these di↵erent cases, re-

spectively. In all the four cases, we set p
0

= 0.1 for the mixture procedure such that
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it assumes no priori knowledge of the number of sources.
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Figure 3.9: Four non-overlapping sources observed by sensors located on a 10 by 10
grid (N = 100). The sources have Gaussian profile function given in (3.70) with
� = 1/4. The outer circle for the contour for each source corresponds to 0.1 of the
peak value. The dots represent location of the sensors.
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Table 3.5: Expected detection delays for mixture procedure versus the profile-based
procedure for the small example. The mixture procedure uses p

0

= 0.1, and the
profile-based procedure assumes correct profile-function. They both use m

1

= 200.
The thresholds are obtained by Approximation 1 for the mixture procedure, and
by Monte Carlo simulation using the second method for the profile-based procedure,
respectively. The Monte Carlo results are obtained from 500 trials.

Profile-based, b = 16.5 Mixture, b = 19.3
One-source 13.5 36.8
Two-source 16.5 38.5
Three-source 18.2 43.8
Four-source 20.3 44.1

The thresholds (listed in Table 3.5) of the profile-based procedure and the mixture

procedure are chosen such that their ARLs are about 5000. The threshold of the

profile-based procedure is simulated from 500 Monte Carlo trials using the second

method. The threshold of the mixture procedure is obtained from Approximation 1.

Comparison of the expected detection delay of the profile-based procedure with

that of the mixture procedure (listed in Table 3.5) demonstrates that the mixture

procedure detects slower than the profile-based procedure. However, in this case, the

profile-based procedure assumes a correct profile function. When there is a mismatch

between the assumed profile function and the true one, the performance of the profile-

based procedure will degrade.

Large Example

Then we consider a structured problem where there are more number of sensors,

N = 625, distributed over a square grid. The profile function is the Gaussian func-

tion (3.70) with parameter � = 1, so the profile function also decays slower and
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has a wider spread than the previous example. The sensors are located on (un, vn)

with un = �12,�11, · · · , 12 and vn = �12,�11, · · · , 12. There can be up to three

non-overlapping signal sources occurring simultaneously, and for all scenarios we set

the amplitudes of the sources such that the total energy adds up to one. The sen-

sor locations as well as the signal amplitude contour when there are three sources

simultaneously are illustrated in Fig. 3.10.

We choose m
1

= 200 for both the mixture procedure and the profile-based proce-

dure. The profile-based procedure assumes a profile-function that is identical to the

true profile function when forming the detection statistic. When there is one source,

approximately p = 0.016 sensors are a↵ected. The mixture method assumes p
0

= 0.01

for all scenarios regardless of the number of sources.

The thresholds of these procedures are chosen such that their ARLs are approxi-

mately 5000. These thresholds are listed in Table 3.6. We also verify the threshold for

the profile-based procedure in this example using the theoretical approximation for

ARL in (3.77). The threshold obtained by approximation is b = 29.7, which is very

close to the threshold obtained by Monte Carlo simulation using the second method,

which is b = 28.7. The threshold of the mixture procedure is obtained from Theorem

1.

The comparison of the expected detection delay of the profile-based procedure

with that of the mixture procedure (listed in Table 3.6) demonstrates that for this

larger example with wider spread sources, it is even harder for the mixture procedure

to obtain a comparable performance to that the profile-based procedure.
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Table 3.6: Expected detection delays for mixture procedure versus the profile-based
procedure for the small example. The mixture procedure uses p

0

= 0.01, and the
profile-based procedure assumes correct profile-function. They both use m

1

= 200.
The thresholds are obtained by Approximation 1 for the mixture procedure, and
by Monte Carlo simulation using the second method for the profile-based procedure,
respectively. The Monte Carlo results are obtained from 500 trials.

Profile-based, b = 28.7 Mixture, b = 17.3
One-source 25.6 84.1
Two-source 39.3 62.5
Three-source 50.3 108.6
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Figure 3.10: Three non-overlapping sources observed by sensors located on a 25 by
25 grid (N = 625). The sources have Gaussian profile function given in (3.70) with
� = 1. The outer circle for the contour for each source corresponds to 0.1 of the peak
value. The dots represent location of the sensors.



CHAPTER 3. MULTI-SENSOR CHANGE-POINT DETECTION 88

3.8 Conclusions

In this chapter, we have presented a mixture procedure for the multi-sensor sequential

change-point detection problem. We assume that the pre-change and post-change

sensor observations are normally distributed and the change-point a↵ects the means of

the observations. The post-change means as well as the subset of a↵ected sensors are

both unknown. The fraction of sensors a↵ected by the change-point is given by a small

number p, which is a form of sparsity. The mixture procedure models this sparsity by

assuming that each sensor has probability p

0

to be a↵ected by the change-point, where

the value of p
0

is a guess for p. Based on this model, the mixture procedure forms

a mixture log generalized likelihood ratio (GLR) statistic for change-point detection.

The mixture statistic essentially applies a nonlinear weighting function on the log

GLR statistic of each sensor before combining them. The mixture statistic is then

compared with a threshold, and an alarm is raised whenever the statistic exceeds the

threshold. We derive theoretical approximations to two performance metrics of the

mixture procedure, the average run length (ARL), which is used to characterize the

false alarm rate, and the expected detection delay. These approximations are shown

to have good numerical accuracy. We demonstrated the performance of the mixture

procedure using numerical simulations, showing that the mixture procedure does not

require a precise knowledge of p. We also numerically compared the performance

of the mixture procedure with that of the other procedures. We demonstrated that

the mixture procedure has a lower expected detection delay than other procedures in

the unstructured problems, and higher expected detection delay than a profile-based

procedure in the structured problem, when the profile-based procedure assumes a

correct profile function.



Chapter 4

Reduced-Dimension Multi-User

Detection

We have introduced the notion of multiuser detection (MUD) in Chapter 1. Both

linear and nonlinear MUDs have su�ciently high complexity to preclude their wide

adoption in deployed systems. They both require the number of correlators at the

receiver front-end to be equal to the number of users in the system. The complexity-

per-bit of the nonlinear detectors is exponential in the number of users in system for

the MLSE detector, and less for the DF detector. The complexity-per-bit of the linear

detectors is linear in the number of users, which is much less than that of the nonlinear

methods. In a typical communication system, there may be thousands of users.

Hence, the complexity of the conventional methods has been a major obstacle for

implementing the MF-bank based conventional MUD detectors. Our methods reduce

the front-end complexity far below that of the nonlinear and linear techniques in large

systems, and their complexity-per-bit is comparable to those of the conventional

nonlinear and linear techniques. For example, when the random partial discrete

89
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Fourier transform (DFT) matrix is used to construct the correlating signals, the

number of correlators used by our methods is proportional to the logarithm of the

number of users and proportional to the square of the number of active users, and

the complexity-per-bit of our method is comparable to that of the corresponding

conventional MUD detectors.

In this section, we will develop a low complexity front-end for MUD along with

a set of appropriate detectors. We call this structure a reduced-dimension multiuser

detection (RD-MUD). The RD-MUD reduces the number of correlators while still

achieving performance similar to that of conventional detectors based on the MF-

bank front-end. We reduce complexity by exploiting an empirical observation that the

number of active users,K, is typically much smaller than the total number of users, N ,

at any given time. We call this observation user sparsity. In contrast to prior work on

MUD with user sparsity, we use techniques from analog compressed sensing, which

exploits sparsity in analog signals. The RD-MUD front-end projects the received

signal into a lower dimensional detection subspace, and we will develop two detectors

to detect active users and recover their data from the detection subspace. The two

detectors are the linear reduced-dimensional decorrelating (RDD) detector and the

nonlinear reduced-dimensional decision-feedback (RDDF) detector. The performance

of RD-MUD depends on the coe�cient matrix A we use to form the correlating

signals. We will present theoretical performance guarantees for the performance of

RD-MUD in terms of the coherence property of A. The theoretical results are also

validated by numerical results.

The rest of the chapter is organized as follows. Section 4.1 discusses the system

model and reviews MF-bank based detectors. Section 4.2 presents the RD-MUD
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front-end and detectors. Section 4.3 contains the theoretical performance guarantee

of two RD-MUD detectors: RDD and RDDF. Section 4.4 demonstrates performance

of these techniques through numerical examples, and finally Section 4.5 concludes the

paper.

4.1 System Model

Consider a multiuser system with N users. Each user is assigned a unique signature

waveform from a set S = {sn(·) : [0, T ] ! R, 1  n  N}. The signature waveforms

are assumed given and known, and possess certain properties discussed in more detail

below. Each user modulates its data signal by its signature waveform to transmit its

data symbols. The symbols carry information and are chosen from a constellation

depending on the specific modulation scheme. The duration of the data symbol T is

referred to as the symbol time, which is also equal to the inverse of the data rate for

binary modulation.

Define the inner product (or crosscorrelation) between two real analog signals x(t)

and y(t) in L

2

as

hx(t), y(t)i = 1

T

Z T

0

x(t)y(t)dt (4.1)

over the symbol time T . We also define the L

2

norm of a real analog signal x(t) as

kx(t)k = hx(t), x(t)i1/2. (4.2)

Two signals are orthogonal if their crosscorrelation is zero. We assume that the

signature waveforms are linearly independent. That is, any linear combination of

di↵erent signature waveforms cannot be another signature waveform (or its multiple)
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in order to avoid cancellation of each other’s transmission. The crosscorrelations of

the signature waveforms are characterized by the Gram matrix G, defined as

[G]nl , hsn(t), sl(t)i, 1  n  N, 1  l  N. (4.3)

For convenience, we assume that sn(t) has unit energy: ksn(t)k = 1 for all n so that

[G]nn = 1. Due to our assumption of linear independence of the signature waveforms,

G is invertible. The signature waveforms typically have low crosscorrelations, so we

also assume that the magnitudes of the o↵-diagonal elements of G are much smaller

than 1.

We consider a synchronous MUD model with Binary Phase Shift Keying (BPSK)

modulation [96]. There are K active users out of N possible users transmitting

to the receiver. The set I contains indices of all active users, and its complement

set Ic contains indices of all non-active users. The active users modulate their sig-

nature waveforms using BPSK modulation with the symbol of user n denoted by

bn 2 {1,�1}, for n 2 I. The nth user transmits its modulated signal at power Pn

through a wireless channel with channel amplitude gn. We assume that the channel

amplitude gn can be estimated and is known to the receiver (CSIR). Define the gain

rn ,
p
Pngn where we assume rn is also known at the receiver. For simplicity, we

assume that gn is real and, hence, rn is real and can be negative. The nonactive user

can be viewed as transmitting with power Pn = 0, or equivalently transmitting zeros:

bn = 0, for n 2 Ic.

The received signal y(t) is a superposition of the transmitted signals from the
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active users, plus white Gaussian noise w(t) with zero-mean and variance �2:

y(t) =
N
X

n=1

rnbnsn(t) + w(t), t 2 [0, T ], (4.4)

with bn 2 {1,�1}, n 2 I, and bn = 0, n 2 Ic. In the presence of delays of the

asynchronous channel model, the ideas can be combined with the methods developed

in [36] for time-delay recovery from low-rate samples.

The goal of multiuser detection (MUD) is to detect the set of active users, i.e. users

with indices in I, and their transmitted symbols {bn : n 2 I}. In practice the number

of active users K is typically much smaller than the total number of users N , which

is a form of user sparsity. As we will show, this user sparsity enables us to reduce

the number of correlators at the front-end and still be able to achieve performance

similar to that of a conventional MUD using a bank of MFs. To simplify the detection

algorithm, we assume that K is known. To consider joint estimation of K as well as

the active users and their symbols greatly complicates analysis for the probability-of-

error, since in that case the error will come from three sources: estimating the wrong

number of active users, estimating the wrong set of active users, and estimating the

wrong symbols. By assuming K is known, we will consider the latter two sources of

errors in our analysis. The problem of estimating K can be treated using techniques

such as these in [102] and [10].

In the following subsection, we present the structure of conventional MUD de-

tectors using the MF-bank front-end. In Section 4.2 we introduce the new reduced-

dimension MUD (RD-MUD) front-end and detectors.
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Figure 4.1: Problem set up of MUD.

4.1.1 Conventional MUD

A conventional MUD detector has a front-end consisting of a bank of matched filters

followed by a digital detector. In the following we review the MF-bank front-end and

various digital detectors.

MF-bank front-end

For single-user systems, the matched filter (MF) passes the signal s(t) through a

filter with impulse response s

⇤(T � t) or, equivalently, multiplies the received signal

s(t) with itself and integrates over a symbol time: this maximizes the output SNR

of the decision statistic among the class of all linear detectors [96]. The MF-bank

is an extension of the MF for multiple users, and it has N MFs in parallel: the nth

branch correlates the received signal with the corresponding signature waveform sn(t),
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Figure 4.2: Front-end of conventional MUD using MF-bank.

as illustrated in Fig. 4.2. As stated earlier, the output of the MF-bank is a set of

su�cient statistics for MUD when the gains rn are known [96]. Hence, no information

is left in the MF-bank front end of the MUD receiver.

Using the model for the received signal (4.4), the output of the nth correlator of

the MF-bank can be written as

zn = hy(t), sn(t)i = rnbn +
X

l 6=n

[G]nlrlbl + un, 1  n  N. (4.5)

The output noise un = hw(t), sn(t)i is a Gaussian random variable with zero mean

and covariance E{un(t)um(t)} = �

2[G]nm (for derivation see Section 2.9 in [96]). Let

z = [z
1

, · · · , zN ]>, R 2 RN⇥N be a diagonal matrix with [R]nn = rn, b = [b
1

, · · · , bN ]>

and u = [u
1

, · · · , uN ]>. We can express the output of the MF-bank (4.5) in a vector
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Figure 4.3: Front-end of RD-MUD.
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Figure 4.4: The diagram of a linear detector.

form as:

z = GRb+ u, (4.6)

where u is a Gaussian random vector with zero mean and covariance E{uuH} = �

2G.

MF-bank detection

Conventional MUD detectors based on using the MF-bank output can be classified

into two categories: linear and nonlinear detectors. The diagrams of these two de-

tectors are illustrated in Fig. 4.4 and Fig. 4.5. In the literature, typically the basic
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Figure 4.5: The diagram of a non-linear detector.

synchronous MUD model assumes all users are active, i.e. bn 2 {1,�1}, and hence

the goal of the MUD detectors is to detect all user symbols.

The linear detector applies a linear transform to the MF-bank output (illustrated

in Fig. 4.4):

Tz = TGRb+Tu, (4.7)

and detects symbol for each user separately using a sign detector:

b̂n = sgn(rn[Tz]n), 1  n  N. (4.8)

Several commonly used linear detectors are the single-user detector, the decorre-

lating detector and the minimum-mean-square-error (MMSE) detector. The single-

user detector [54] is equivalent to having T = I in (4.7), and detecting symbols as

b̂n = sgn(rnzn). The decorrelating detector [54] is motivated by the fact that when the

signature waveforms are nonorthogonal, even in the absence of noise, the single-user

detector (4.8) will not lead to good detection, when there is non-negligible interference

between users (captured mathematically in (4.9) by the second term in parenthesis),

since generally

b̂n = sgn(rnzn) = sgn

 

r

2

nbn +
N
X

l 6=n,l=1

[G]nlrnrlbl

!

6= sgn(r2nbn) = bn. (4.9)



CHAPTER 4. REDUCED-DIMENSION MULTI-USER DETECTION 98

The decorrelating detector addresses this problem by applying a linear transform

T = G�1 in (4.7). The decorrelating detector can recover symbols perfectly in the

absence of noise; however, it also amplifies noise when G 6= I and requires G to

be invertible. The minimum mean square error (MMSE) detector is based on the

criterion to minimize the mean square error (MSE) between the linear transform of

the MF-bank output and symbols. Based on this principle, MMSE uses a linear

transform T = (G+ �

2R�2)�1 in (4.7) [96].

The nonlinear detectors, on the other hand, detect symbols jointly or iteratively,

as illustrated in Fig. 4.5. The nonlinear detectors include the maximum likelihood se-

quence estimator (MLSE) and the successive interference cancellation (SIC) detector

[96]. The MLSE achieves the minimum probability-of-error by solving the following

optimization problem to detect symbols jointly:

max
bn2{1,�1}

2yHRb� bHRGRb. (4.10)

If the signature waveforms are orthogonal, G is a diagonal matrix and the optimiza-

tion problem of (4.10) decouples into N single user problems, and the optimal solution

is the sign detector (4.8) (with T = I). However, when the signature waveforms are

nonorthogonal this optimization problem (4.10) is exponentially complex in the num-

ber of users [95]. It can be solved by exhaustive search which is computationally very

expensive. The SIC detector first finds the active user with the largest gain, detects

its symbol, subtracts its e↵ect from the received signal, and iterates the above process

using the residual signal. After K iterations, the SIC detector determines all active

users. As we will show later, the ideas of SIC and the orthogonal matching pursuit

(OMP) in compressed sensing are similar.
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4.2 Reduced-Dimension MUD (RD-MUD)

The RD-MUD front-end, illustrated in Fig. 4.3, correlates the received signal y(t)

with a set of correlating signals hm(t), m = 1, · · ·M , where M is typically much

smaller than N . This is in contrast to the conventional matched filter (MF) bank,

which correlates the received signal with the full set of N signature waveforms [96].

The front-end output is processed by either a linear or nonlinear detector to detect

active users and their symbols, as shown in Fig. 4.4 and 4.5 for both linear and

nonlinear detectors.

4.2.1 RD-MUD: Front-End

The design of the correlating signals hm(t) is the key for RD-MUD to reduce the

number of correlators. To construct these signals, we rely on biorthogonal waveforms.

The related notion of the biorthogonal function has been used in analog compressed

sensing to construct multichannel filters to sample the analog signal [27]. Define a

delta function �n,m, which is equal to one when n = m, and is equal to zero otherwise.

The biorthogonal signals with respect to {sn(t)} are defined as a linear combination

of all signature waveforms using a weighting coe�cient matrix G�1:

ŝn(t) =
N
X

l=1

[G�1]nlsl(t), 1  n  N, (4.11)
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and have the property that hsn(t), ŝm(t)i = �nm, for all n, m, i.e. the set of signals

{ŝm(t)} are biorthogonal to the signature waveforms {sn(t)}. This is because

hsn(t), ŝm(t)i =
*

sn(t),
N
X

l=1

[G�1]mlsl(t)

+

=
N
X

l=1

[G�1]mlhsn(t), sl(t)i =
N
X

l=1

[G�1]ml[G]ln = �nm.

(4.12)

Since we assume that the signature waveforms are linearly independent in Section

4.1, G is invertible. Note that when {sn(t)} are orthogonal, G = I and ŝn(t) = sn(t).

The RD-MUD front-end uses as its correlating signals {hm(t)} which are linear

combinations of the biorthogonal waveforms. The linear combination uses (possibly

complex) weighting coe�cients amn that we choose:

hm(t) =
N
X

n=1

amnŝn(t), 1  m  M. (4.13)

The performance of RD-MUD depends on these coe�cients {amn}. Define a coe�cient

matrix A 2 RM⇥N with [A]mn , amn and denote the nth column of A as an ,

[a
1n, · · · , aMn]>, n = 1, · · · , N . We normalize the columns of A so that kank = 1.

The design of the correlating signals is equivalent to the design of the coe�cient

matrix A for a given {sn(t)}. We will use coherence as a measure of the quality of

A, which is defined as [13][9]:

µ , max
n 6=l

�

�aH
n al

�

�

. (4.14)

As we will show later, it is desirable that the columns of A have small correlation such

that µ is small. This requirement for small µ also reflects a tradeo↵ in choosing how

many correlators M to use in the RD-MUD front-end. We will show later that with
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more correlators, the coherence of A can be lower and the performance of RD-MUD

can be better.

We now derive the output of the RD-MUD front-end. From the choice of the

correlating signals (4.13) and the receive signal model (4.4), the output of the mth

correlator is given by:

ym = hhm(t), y(t)i (4.15)

=

*

N
X

n=1

amnŝn(t),
N
X

l=1

rlblsl(t)

+

+

*

N
X

n=1

amnŝn(t), w(t)

+

(4.16)

=
N
X

l=1

rlbl

N
X

n=1

amnhŝn(t), sl(t)i+ wm (4.17)

=
N
X

l=1

amlrlbl + wm, (4.18)

where we have defined wm ,
D

PN
n=1

amnŝn(t), w(t)
E

, and used the property that

hsn(t), ŝm(t)i = �nm. We define the output noise

wm =
N
X

n=1

amnhŝn(t), w(t)i, 1  m  M. (4.19)

This is a Gaussian random variable with zero-mean, variance �2

m , �

2[AG�1AH ]mm,

and covariance ⇢nm , E{wnwm} = �

2[AG�1AH ]nm (for derivation see Appendix

B.1). Denoting y = [y
1

, · · · , yM ]> and w = [w
1

, · · · , wM ]>, we can express the RD-

MUD output (4.18) in vector form as

y = ARb+w, (4.20)
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where w is a Gaussian random vector with zero mean and covariance �2AG�1AH .

The vector y can be viewed as a linear projection of the MF-bank front-end output

onto a lower dimensional subspace which we call the detection subspace. Since there

are at most K active users, b has at most K non-zero entries. The idea of RD-MUD

is that when the original signal vector b is sparse, with proper choice of the matrix

A, the detection performance for b based on y of (4.20) in the detection subspace can

be similar to the performance based on z (4.6), the output of the MF-bank front-end.

4.2.2 RD-MUD: Detectors

We now discuss how to recover b from the RD-MUD front-end output y of (4.20)

using digital detectors. The model for the output (4.20) of the RD-MUD front-end has

a similar form to the observation model in the compressed sensing literature [31][9],

except that the noise in the RD-MUD front-end output is colored due to matched

filtering at the front-end. Hence, to recover b, we can adopt the ideas developed in

the context of compressed sensing, and combine them with techniques in MF-bank

detection.

The linear detector for RD-MUD first estimates active users Î using support

recovery techniques from compressed sensing [70][31][83]. These support recovery

techniques include thresholding [11], which we will describe in more detail later and

use for active user detection in the RDD detector and other linear detectors, and

orthogonal matching pursuit (OMP) [63][85], which we extend to decision-feedback

OMP and use for joint active user and symbol detection in the RDDF detector.

Once the active users are estimated, their symbols b
ˆI can be detected. Based on

the estimated index set of active users Î (which may be di↵erent from I), we can
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write the RD-MUD front-end output model (4.20) as

y = A
ˆIRˆIbˆI +w. (4.21)

The symbols b
ˆI can be detected from (4.21) by applying a linear transform to the

front-end output and detecting symbols separately. The nonlinear detector for RD-

MUD detects active users and their symbols jointly (and/or iteratively).

We will focus on recovery based on two algorithms: (1) the reduced-dimension

decorrelating (RDD) detector, a linear detector that uses subspace projection along

with thresholding [11] to determine active users and sign detection for data recovery;

(2) the reduced-dimension decision feedback (RDDF) detector, a nonlinear detector

that combines decision-feedback orthogonal matching pursuit (DF-OMP) for active

user detection and sign detection for data recovery. DF-OMP di↵ers from conven-

tional OMP [63][85] in that in each iteration, the binary-valued detected symbols,

rather than the real-valued estimates, are subtracted from the received signal to form

the residual used by the next iteration. The residual consists of the remaining un-

detected active users. By subtracting interference from the strongest active user we

make it easier to detect the remaining active users. DF-OMP can also be viewed as a

successive interference cancellation (SIC) detector [100][25] in the detection subspace:

DF-OMP detects each user by computing the inner product of the received signal vec-

tor and the signature waveform vector in the projection subspace and subtracts the

e↵ect of each user using the data model (4.20), whereas the SIC detector does this

using a di↵erence data model (4.6). These two algorithms are summarized in Table

4.1.
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Reduced-dimension decorrelating (RDD) detector

The RDD detector works as follows. As per (4.20), the front-end of the RD-MUD

projects the received signal y(t) onto the detection subspace as a vector y. By con-

sidering the RD-MUD front-end output when the input signal is sn(t), we can show

that the column an of A corresponds to the nth signature waveform vector in the

detection subspace:

hhm(t), sn(t)i =
N
X

l=1

amlhŝl(t), sn(t)i = amn, 1  m  M. (4.22)

Considering the detection method of the conventional MUD, a natural strategy for

RD-MUD is to match the received signal vector y and the nth signature waveform

vector in the detection subspace by computing their inner product, which is given

by aHy, n = 1, · · · , N . To detect active users, we can rank the magnitudes of these

inner products and detect the index of the K largest as active users:

Î = {n : if |<[aH
n y]| is among the K largest of |<[aH

n y]|, n = 1, · · · , N}. (4.23)

This method (4.23) has also been used for sparsity pattern recovery in the compressed

sensing literature (e.g. [31]). To detect their symbols, we use sign detection:

b̂n =

8

>

<

>

:

sgn
�

rn<[aH
n y]

�

, n 2 Î;

0, n /2 Î.
(4.24)

In detecting active users (4.23) and their symbols (4.24), we take the real parts

of the inner products because the imaginary part of aH
n y contains only noise and



CHAPTER 4. REDUCED-DIMENSION MULTI-USER DETECTION 105

interference. To see this, expand

aH
n y = rnbn +

X

l 6=n,l2I

rlbl(a
H
n al) + aH

n w, n 2 I, (4.25)

aH
n y =

X

l2I

rlbl(a
H
n al) + aH

n w, n /2 I. (4.26)

Recall that symbols bn and gains rn are real and only A can be complex. Hence the

term rnbn in (4.25), which contains the transmitted symbol, is real, and the rest of

the terms in (4.25) and (4.26), which contain noise and interference, are complex. For

real A, (4.23) and (4.24) are equivalent to decisions based on the magnitudes of the

inner products.

The RDD detector computes the inner products of the received signal vector and

the signature waveform vector aH
n y, n = 1, · · · , N , which is equivalent to computing

AHy. This requires MN floating point operations when A is real (or 2MN oper-

ations when A is complex) for detection of N log
2

3 bits (since equivalently we are

detecting bn 2 {�1, 0, 1}). Hence the complexity-per-bit of the RDD detector is pro-

portional to M . For other RD-MUD linear detectors, following the inner product

computation, linear processing can be done by multiplying an N ⇥ N matrix that

incurs N2 operations. Hence the complexity-per-bit of other RD-MUD linear detec-

tors is proportional to M + N . Since M  N in RD-MUD, the complexity for data

detection of the RDD detector and other RD-MUD linear detectors is on the same

order as that of the conventional linear MUD detector. But the RDD detector and

other linear RD-MUD detectors require much lower decorrelation complexity in the

analog front-end than the conventional linear detector.
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Table 4.1: RD-MUD Detection

RDD detector
Detect active users:

find Î that contains indices of theK largest
|<[aH

n y]|.
Detect symbols:

b̂n = sgn(rn<[aH
n y]) for n 2 Î, and

b̂n = 0 for n /2 Î.

RDDF detector

Initialize: Î is empty, b(0) = 0, v(0) = y.
Iterate K times: k = 1, · · · , K.
Detect active user:

nk = argmaxn |<[aH
n v

(k�1)]|
Detect symbol:

b̂

(k)
n = sgn(rnk

<[aH
nk
v(k�1)]), for n = nk, and

b̂

(k)
n = b̂

(k�1)

n for n 6= nk.
Update:

Î(k) = Î(k�1)[{nk}, and v(k) = y�ARb(k).
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Reduced-dimension decision-feedback (RDDF) detector

The RDDF detector determines active users and their corresponding symbols itera-

tively. It starts with an empty set as the initial estimate for the set of active user

Î0, zeros as the estimated symbol vector b(0) = 0, and the front-end output as the

residual vector v(0) = y. Subsequently, in each iteration k = 1, · · · , K, the algorithm

selects the column an that is most highly correlated with the residual v(k�1) as the

detected active user in the kth iteration, with the active user index:

nk = argmax
n

�

�<[aH
n v

(k�1)]
�

�

. (4.27)

This index is then added to the active user set Î(k) = Î(k�1) [ {nk}. The symbol for

user nk is detected with other detected symbols staying the same:

b

(k)
n =

8

>

<

>

:

sgn(<[rnk
aH
nk
v(k�1)]), n = nk;

b

(k�1)

n , n 6= nk.

(4.28)

Then the residual vector is updated through

v(k) = y�ARb(k)
. (4.29)

The residual vector represents the part of b that has yet to be detected by the

algorithm along with noise. The iteration repeats K times (as we will show, with

high probability DF-OMP never detects the same active user twice), and finally the

active user set is given by Î = Î(K) with the symbol vector b̂n = b

(K)

n , n = 1, · · · , N .
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The RDDF detector computes the inner product between the received signal vec-

tor and the signature waveform vector aH
n v

(k), n = 1, · · · , N , for k = 1, · · · , K. This

requires KMN floating point operations when A is real (2KMN operations when

A is complex) for detection of N log
2

3 bits. Hence the complexity-per-bit is propor-

tional to KM . Since M  N , this implies that the complexity for data detection

of the RDDF detector is on the same order as that of the conventional DF detector

(the complexity-per-bit of the DF detector is proportional to KN). But the RDDF

detector requires much lower decorrelation complexity in the analog front-end than

the conventional DF detector.

Noise whitening transform

The noise in the RD-MUD output (4.20) is in general colored due to the matched

filtering at the front-end. We can whiten the noise at the front-end output by ap-

plying a linear transform before detecting active users and symbols, as illustrated in

Fig. 4.6. The linear transform to whiten noise in the RD-MUD output is given by

(AG�1AH)�1/2, and the whitened output is given by:

yw , (AG�1AH)�1/2y = (AG�1AH)�1/2ARb+w
0

, (4.30)

where w
0

is a Gaussian random vector with zero mean and covariance matrix �2I. If

we define a new measurement matrix

Aw , (AG�1AH)�1/2A, (4.31)
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then the RDD and RDDF detectors work with the whitened output (4.30) if we replace

A with Aw and y with yw in (4.23), (4.24), (4.27) and (4.28). While whitening the

noise in the RD-MUD front-end output, the noise whitening transform also distorts

the signal component. As we will demonstrate via numerical examples in Section

4.4.2, the benefits of noise whitening exceed the impact of the corresponding signal

detection only when the signature waveforms {sn(t)} are highly correlated. Since this

is typically not the case in multiuser systems due to the interference between users

that coexists [96], our analysis will focus on detectors without noise whitening, and

the benefits of omitting the noise whitening demonstrated in our numerical results.

RD#MUD&
Front&End&

� 

y(t) Noise&
Whitening&

Linear&or&
Nonlinear&
Detector&

Figure 4.6: The diagram MUD detector with prewhitening.

Other RD-MUD linear detectors

Various linear detectors have been developed for the MF-bank front-end output in the

conventional MUD setting. In this section we explore some alternate linear detectors

other than the decorrelating detector in the reduced-dimension setting. In particu-

lar, we will examine the reduced-dimension MMSE (RD-MMSE) and the reduced-

dimension least-squares (RD-LS) detectors.

Reduced-dimension MMSE (RD-MMSE) detector:

Similar to the MMSE detector of the conventional MUD, a linear detector based
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on the MMSE criterion can be derived for (4.21) based on the active user set es-

timate Î given by (4.23). In other words, we want to find a linear transform M

that minimizes E{kb
ˆI �Myk2}, where the expectation is with respect to the vector

of transmitted symbols b
ˆI and the noise vector w. Following the approach for de-

riving the conventional MMSE detector [96], we assume that b
ˆI has a distribution

that is uncorrelated with the noise w and E{b
ˆIb

H
ˆI } = I. Adapting the techniques

for deriving the conventional MMSE detector [96] and taking into account the noise

covariance matrix AG�1AH of the reduced-dimension model (4.21), we obtain the

linear transform for the reduced-dimension MMSE (RD-MMSE) detector as:

M = R
ˆIA

H
ˆI (AˆIR

2

ˆIA
H
ˆI + �

2AG�1AH)�1

. (4.32)

The derivations are given Appendix B.2. Accordingly, the RD-MMSE detector de-

termines symbols as:

b̂n =

8

>

<

>

:

sgn([R
ˆIA

H
ˆI (AˆIR

2

ˆIA
H
ˆI + �

2AG�1AH)�1y]n), n 2 Î;

0, n /2 Î.
(4.33)

In summary, the RD-MMSE detector determines active users first through the support

recovery method of (4.23) and then uses (4.33) to detect symbols.

Reduced-dimension least squares (RD-LS) detector:

In the reduced-dimension model (4.21), based on the active user set estimate Î

given by (4.23), the matrix A
ˆIRˆI introduces interference when we detect b̂

ˆI . From

the view of the system of linear equations, (4.21) is an over-determined system with

more equations than unknowns since in general we require the number of branches to
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be greater than the number of active users M > K. Hence we cannot directly invert

the matrix A
ˆIRˆI to remove interference, mimicking the idea of the decorrelating

detector of conventional MUD. Alternately, we can alleviate the e↵ect of interference

using the method of least-squares (LS) to find an estimate of b̂
ˆI : b̂ˆI = argmin

x

ky�

A
ˆIRˆIxk2, and detecting symbols as the signs of the estimated vector. The solution

is given by b̂
ˆI = R�1

ˆI (AH
ˆI AˆI)

�1AH
ˆI y. This corresponds to the maximum likelihood

estimate of b̂
ˆI if (a) we ignore the covariance of the noise w in (4.21) and assume it

is white; (b) we know the active users, i.e. Î = I, and (c) the gains rn are known.

We call this the reduced-dimension least squares (RD-LS) detector. In summary, the

RD-LS detector first detects active users by the support recovery method of (4.23).

Since sgn([b̂
ˆI ]n) = sgn([R2

ˆIb̂ˆI ]n), the RD-LS detects symbols by:

b̂n =

8

>

<

>

:

sgn
�

rn<
⇥

(AH
ˆI AˆI)

�1AH
ˆI y

⇤

n

�

, n 2 Î;

0, n /2 Î.
(4.34)

We can show that the RD-LS detector (4.34) and the RDD detector (4.24) give

quite similar results in low noise and with low coherence of A. To see this, write

AH
ˆI AˆI = I + E, where the symmetric matrix E has zeros on the diagonal and the

o↵-diagonals are bounded by the coherence µ of A. As discussed in more detail in

Section 4.2.3, for the RDD detector to work well, we choose A with small µ. When

(K � 1)µ < 1, by Gershgorin’s Theorem, we have that the spectral norm of the

symmetric matrix E is bounded by ⇢(E)  (K � 1)µ < 1. Hence, using Lemma 4 in

[29], we can write (AH
ˆI AˆI)

�1 = I+
P1

n=1

(�E)n, and bound the spectral norm of the
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series by a small number: ⇢ (
P1

n=1

(�E)n)  (K � 1)µ/[1� (K � 1)µ]. This means

�

�(AH
ˆI AˆI)

�1AH
ˆI y�AH

ˆI y
�

� =

�

�

�

�

�

" 1
X

n=1

(�E)n
#

AH
ˆI y

�

�

�

�

�

 (K�1)µ/[1�(K�1)µ]
�

�AH
ˆI y

�

�

.

(4.35)

When the coherence µ of A is su�ciently small relative to K and
�

�AH
ˆI y

�

�, (4.35)

says that the di↵erence between the two vectors (AH
ˆI AˆI)

�1AH
ˆI y and AH

ˆI y is small.

Then when µ is small and with su�ciently small noise, detecting symbols using

(AH
ˆI AˆI)

�1AH
ˆI y in (4.34) is similar to detecting symbols using AH

ˆI y in (4.24). As

numerically shown in Section 4.4.2, the conditional probability of detecting wrong

symbols given the correct support of active users, i.e. P (b̂ 6= b|Î = I), for (4.34) is

similar to that for (4.24).

Maximum likelihood detector

The optimal detector that minimizes the probability-of-error for the RD-MUD output

is the nonlinear maximum likelihood detector. The maximum likelihood detector finds

the active users and symbols by minimizing the likelihood function, or, equivalently,

minimizing the quadratic function k(AG�1AH)�1/2(y�ARb)k2. This is equivalent

to solving the following integer optimization problem

max
bn2{�1,0,1}

2yH(AG�1AH)�1ARb� bHRAH(AG�1AH)�1ARb, (4.36)

where bn = 0 corresponds to the nth user being inactive and this creates an augmented

state space with one more state of possible transmitted symbols corresponding to a

null symbol “0”. Hence (4.36) is more complex than the conventional maximum

likelihood detector for MUD with BPSK modulation (4.10) since we add the “0”
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symbol. Similar to the conventional maximum likelihood detector of the conventional

MF-bank, the maximization in (4.36) is a combinatorial optimization problem, which

can be solved by exhaustive search with complexity-per-bit exponential in the number

of users.

4.2.3 Choice of A

In Section 4.2.1 we have shown that the coe�cient matrix A is our design parameter.

In Section 4.2.2 and Section 4.2.2 we have shown that both the RDD and RDDF

detectors are based on the inner products between the projected received signal vector

and the columns of A, which correspond to the signature waveform vectors in the

detection subspace. Hence, intuitively, for the RDD and RDDF detectors to work

well, the inner products between columns of A, or its coherence defined in (4.14),

should be small, since each column of A represents a signature waveform vector

in the detection subspace. Several commonly used random matrices in compressed

sensing that have small coherence with high probability are:

(1) Gaussian random matrices: entries anm are independent and identically dis-

tributed (i.i.d.) with a zero mean and unit variance Gaussian distribution, with

columns normalized to have unit norm;

(2) Randomly sampled rows of a unitary matrix that satisfies XXH = XHX =

I. For instance, the random partial discrete Fourier transform (DFT) matrix,

which is formed by randomly selecting rows of a DFT matrix F: [F]nm = e

i 2⇡N nm

and normalizing the columns of the sub-matrix, where i =
p
�1.

We will focus on the random partial DFT matrix for the following reason. If we

choose the number of correlators equal to the number of users, i.e. M = N , there
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is no dimension reduction, and the performance of RD-MUD should equal that of

the MF-bank. When M = N , the random partial DFT matrix becomes the DFT

matrix with the property that AHA = I, i.e, aH
n am = �nm. Consequently, in this

case, {aH
n y}, which is a set of statistics that the RDD and RDDF detectors are

based on, has the same distribution as the MF-bank output. To see this, write

aH
n y = aH

n

⇣

PN
m=1

amrmbm

⌘

+aH
n w = rnbn+aH

n w, where aH
n w is a Gaussian random

variable with zero mean and covariance �2aH
n AG�1AHam = [G�1]nm. However, the

Gaussian random matrix does not have this property: when M = N , aH
n am 6= 0 for

n 6= m, and so the performance of RD-MUD using the Gaussian random matrix A

is worse than that using the random partial DFT matrix. This has been validated in

our numerical results in Section 4.4.1 where we will show that when M is relatively

large, the Gaussian random matrix performs worse than the random partial DFT

matrix.

4.3 Performance of RD-MUD

In the following, we study the performance of RD-MUD with the RDD and RDDF

detectors. We begin by considering the scenario of a single active user without noise,

and then move on to analyze the more general scenario with multiple active users and

noise.

4.3.1 Single Active User

The following discussion shows that, when there is only one active user in the absence

of noise, the RDD detector can detect the correct active user and symbol by using
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only two correlators, if every two columns of A are linearly independent. Later we

will also show this is a corollary (Corollary 2) of a more general theorem, Theorem 1

below.

Assume there is no noise and only one user with index n

0

is active. In this case

y(t) = rn
0

bn
0

sn
0

(t), and by assumption we know only one user is active, i.e. we know

K = 1. In the conventional MUD, the single-user detector based on the MF-bank

detects the active user by finding n̂

0

= argmaxn |hy(t), sn(t)i| and the symbol by

b̂n̂
0

= sgn(rn̂
0

hy(t), sn̂
0

(t)i). From the Cauchy-Schwarz inequality, for any n,

|hy(t), sn(t)i| = |hrn
0

bn
0

sn
0

(t), sn(t)i|  |rn
0

|ksn
0

(t)kksn(t)k = |rn
0

|, (4.37)

with equality if and only if sn(t) = csn
0

(t) for some constant c, and thus n̂

0

= n

0

.

The symbol can also be recovered perfectly, since

b̂n
0

= sgn(rn
0

hy(t), sn
0

(t)i) = sgn(r2n
0

bn
0

hsn
0

(t), sn
0

(t)i) = bn
0

. (4.38)

In RD-MUD, with two correlators, the RDD detector determines the active user by

finding

n̂

0

= arg max
n=1,··· ,N

|a
1nhh1

(t), y(t)i+ a

2nhh2

(t), y(t)i|. (4.39)

From the Cauchy-Schwarz inequality,

|a
1nhh1

(t), y(t)i+ a

2nhh2

(t), y(t)i|2  (a2
1n + a

2

2n)
⇥

hh
1

(t), y(t)i2 + hh
2

(t), y(t)i2
⇤

,

(4.40)

with equality if and only if amn = chhm(t), y(t)i = camn
0

rn
0

bn
0

= c(n
0

)amn
0

for

both m = 1, 2 with some constant c(n
0

). If every two columns of A are linearly
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independent, we cannot have two indices n such that amn = c(n
0

)amn
0

for m = 1, 2.

Also recall that the columns of A are normalized, a2
1n + a

2

2n = kank2 = 1. Therefore,

the maximum is achieved only for n = n

0

and c(n
0

) = 1, which detects the correct

active user. The detected symbol is also correct, since

b̂n
0

= sgn(rn
0

[a
1n

0

hy(t), h
1

(t)i+ a

2n
0

hy(t), h
2

(t)i]) = sgn(r2n
0

bn
0

[a2
1n

0

+ a

2

2n
0

]) = bn
0

.

(4.41)

In the presence of noise, detectors in RD-MUD as well as those based on the

conventional MF-bank will make detection errors. However, RD-MUD can have a

performance similar to the detectors based on the MF-bank, as we now explain using

geometric intuition and later prove formally in Section 4.3.3. Consider a scenario

with three users having orthogonal signature waveforms, where only the first user is

active. Suppose that b
1

= 1 and r

1

= 1, as illustrated in Fig. 4.7. By correlating with

signature waveforms, the MF-bank (Figure 4.7) obtains inner products (4.5) of the

received signal y(t) with each of the signature waveforms {sn(t)} and detects based

on these inner products. Because of noise, in Fig. 4.7 the received signal y(t) does

not coincide with s

1

(t). However, when the noise is su�ciently small, as shown in

Fig. 4.7, the inner product of the received signal with the first signature waveform

is the largest and positive, and hence in this scenario the single-user detector based

on the conventional MF-bank detects the correct active user and its symbol. On the

other hand, for the same setting, the RDD detector with two correlators (Fig. 4.8)

projects the received signal onto the detection subspace via (4.18), and then obtains

the decision statistics by computing the inner product between y, the mapping of the

received signal onto the subspace, and an, the projection of each signature waveform

onto the subspace. Because of noise, in Fig. 4.8 the projected signal vector y does
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not coincide with the first signature waveform vector a
1

. However, when the noise

is su�ciently small, as shown in Fig. 4.8, the inner product with the first signature

vector is still the largest and positive, and hence in this scenario the RDD detector

also detects the correct active user and symbol. From the above discussion we see

that the RDD detector works well when the columns of A are nearly orthogonal

and the noise is su�ciently small. The former requirement is equivalent to requiring

the coherence of A to be as small as possible. The above discussion applies to the

RDDF detector as well since its detection is also based on the inner products in the

projection space.

s1(t)

s2(t)s3(t)

y t( ) = s1 t( ) + w t( )

Figure 4.7: A MUD problem with N = 3, M = 2, K = 1 and the received signal is
due to the first user. Illustration of the detection by (a) the single-user detection of
the MF-bank, and (b) the RD-MUD. The projection of the signature waveform onto
the projection subspace results in signature waveform vectors {ŝn}.

4.3.2 Noise Amplification of Subspace Projection

The RDD and RDDF detectors use the set of statistics {aH
n y} to detect active users

and their symbols, which has noise components {aH
n w}. We will show that the



CHAPTER 4. REDUCED-DIMENSION MULTI-USER DETECTION 118

€ 

s1(t)

€ 

s2(t)
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s3(t)

h1(t) h2 (t)

ŝ3

y

ŝ2

� 

s1(t)

� 

s2(t)

� 

s3(t)

ŝ1

ŝn = an

y t( ) = s1 t( ) + w t( )
y t( ) = s1 t( ) + w t( )

Detec%on((
Subspace(

Figure 4.8: A MUD problem with N = 3, M = 2, K = 1, and the received signal is
due to the first user. Illustration of the detection by the RD-MUD. The mapping of
the signature waveform is denoted by ŝn.

projection onto the detection subspace amplifies noise. To see this, first consider

a special case with orthogonal signature waveforms, i.e. G = I, and hence the

noise amplification is not caused by correlated signature waveforms. Assume the

random partial DFT matrix is used as the coe�cient matrix A. Using (4.20), the

noise variance of the detection statistic for the nth user is given by �2aH
n AAHan =

�

2(N/M) by the definition of the random partial DFT matrix in Section 4.2.3. Hence

in this special case the noise variance for each user is amplified by a factor N/M � 1

due to subspace projection.

In general, from (4.20) the detection statistic for the nth user has a noise variance

�

2aH
n AG�1AHan. We will show this noise variance can be greater than �2. First we
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bound the output noise variance of the RD-MUD for each user as

�

2

�

min

(G�1)kAHank2  �

2aH
n AG�1AHan  �

2

�

max

(G�1)kAHank2. (4.42)

We now show that the upper bound in (4.42) is greater than �2. The factor �
max

(G�1)

captures the largest possible noise amplification due to correlated signature wave-

forms. We have �
max

(G�1) � 1 for the following. The sum of all the eigenvalues
PN

k=1

�k(G) = tr(G) = N since all the diagonal entries of G are one. Since all

eigenvalues of G are nonnegative (a property of G is that it is positive semi-definite),

if �
min

(G) > 1, the sum of the eigenvalues will exceed N , and hence �
min

(G)  1.

Since the eigenvalues of G�1 are the inverse of the eigenvalues of G, �
max

(G�1) � 1.

On the other hand, the factor kAHank2 captures the noise amplification due to sub-

space projection. It is lower-bounded by 1: kAHank2 = 1 +
PN

l=1,l 6=n(a
H
l an)2 �

1 +minl 6=n |aH
l an|2. When M < N , the inner product minl 6=n |aH

l an| is non-zero, and

hence the factor kAHank2 will be strictly greater than one. As a result, the upper

bound on the noise variance in (4.42) is greater than �2.

In the following section, we will capture this noise amplification more precisely by

relating the noise variance of the decision statistic to the performance of the RD-MUD

detectors.

4.3.3 Coherence Based Performance Guarantee

In this section, we present conditions under which the RDD and RDDF detectors

can successfully recover active users and their symbols. The conditions depend on A

through its coherence and are parameterized by the crosscorrelations of the signature

waveform through the properties of the matrix G. Our performance measure is the
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probability-of-error, which is defined as the chance of the event that the set of active

users is detected incorrectly, or any of their symbols are detected incorrectly:

Pe = P{Î 6= I}+ P{{Î = I} \ {b̂ 6= b}}. (4.43)

We will show in the later section that the second term of (4.43) is dominated by the

first term when (4.23) and (4.27) are used for active user detection. The noise plays

two roles in the Pe of (4.43). First, the noise can be su�ciently large relative to the

weakest signal such that a nonactive user is determined as active; second, the noise

can be su�ciently large such that the transmitted symbol plus noise is detected in

an incorrect decision region and hence decoded in error.

The first error term in (4.43) is related to the probability-of-error for support

recovery (see, e.g. [32] in noise, and the first steps of the greedy algorithms to recover

support [9]). There are two major di↵erences in our results on this aspect of RD-MUD

performance relative to those previous works. First, although noise in the analog

signal model (4.4) is white, matched filtering at the RD-MUD front-end introduces

colored noise in (4.20). Second, we take into account the second term in (4.43), which

has not been considered in previous work. We find the conditions such that the second

term of (4.43) is dominated by the first term of (4.43).

Define the largest and smallest channel gains as

|r
max

| , N
max
n=1

|rn|, |r
min

| ,
N

min
n=1

|rn|. (4.44)

Our main result is the following theorem:

Theorem 1. Let b 2 RN⇥1 be an unknown deterministic symbol, bn 2 {�1, 1}, n 2 I,
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and bn = 0, n 2 Ic, n = 1, · · · , N . Assume that the number of active users K is

known. Given the RD-MUD front-end output y = ARb + w, where A 2 CM⇥N

and G 2 RN⇥N are known, and w is a Gaussian random vector with zero mean and

covariance �2AG�1AH , if every two columns of A are linearly independent and the

coherence of A (4.14) satisfies the following condition:

|r
min

|� (2K � 1)µ|r
max

| � 2�
p

2(1 + ↵) logN ·
q

�

max

(G�1) ·
q

max
n

�

aH
n AAHan

�

,

(4.45)

for some constant ↵ > 0, and N

�(1+↵)[⇡(1 + ↵) logN ]�1/2  1, then the probability-

of-error (4.43) for the RDD detector is upper bounded as:

Pe  N

�↵[⇡(1 + ↵) logN ]�1/2
. (4.46)

If every two columns of A are linearly independent and the coherence of A (4.14)

satisfies a weaker condition:

|r
min

|� (2K � 1)µ|r
min

| � 2�
p

2(1 + ↵) logN ·
q

�

max

(G�1) ·
q

max
n

�

aH
n AAHan

�

,

(4.47)

for some constant ↵ > 0, and N

�(1+↵)[⇡(1 + ↵) logN ]�1/2  1, then the probability-

of-error (4.43) for the RDDF detector is upper bounded by the right hand side of

(4.46).

Proof. See Appendix B.3.

Note in Theorem 1 that the condition of having a small probability-of-error for

the RDDF detector is weaker than for the RDD detector. Intuitively, the iterative
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approach of decision feedback removes the e↵ect of the largest element in Rb itera-

tively, which helps the detection of weaker users. This is an extension of the ideas

in SIC for standard MUD, except that now the presence as well as the data of the

strongest user is detected, then removed in the detection subspace, which makes it

easier to detect the presence and data of the next strongest user, after which the

process repeats.

The main idea of the proof is the following. Consider 1�Pe = P{{Î = I}\ {b̂ =

b}}. First we define an event G = {maxn |aH
n w| < ⌧} for a quantity ⌧ proportional

to the right hand side in (4.45), and prove that G occurs with high probability. This

bounds the probability that the noise projected onto the detection subspace exceeds ⌧ ,

i.e. it bounds the tail probability of the projected noise. Then we show that under the

condition (4.45), whenever G occurs, the active users can be correctly detected, which

means G ⇢ {Î = I}. On the other hand, we show that under a condition weaker

than (4.45), whenever G occurs, the user data symbols can be correctly detected,

which means G ⇢ {b̂n = bn, n 2 I}. In other words, condition (4.45) ensures that

whenever G occurs, both the correct set of active users are detected and that their

data are correctly decoded. This means that under condition (4.45) for the RDD

detector, G ⇢ {Î = I} \ {b̂ = b}, and thus P (G)  P{{Î = I} \ {b̂ = b}},

which concludes the proof. A similar but inductive approach is used to prove the

performance guarantee for the RDDF detector.

A special case for Theorem 1 is whenAAH = (N/M)I, maxn(aH
n AAHan) = N/M

and G = I, �
max

(G�1) = 1. This is true when A is the random partial DFT matrix

and the signature waveforms are orthogonal, and hence the noise in (4.20) is white.

If we scale �2 by M/N , the right hand sides of (4.45) and (4.47) are then identical
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to the corresponding quantities in Theorem 4 of [9]. Hence, for the random partial

DFT matrix for A, Theorem 1 has the same conditions as those of Theorem 4 in

[9]. However, Theorem 4 in [9] guarantees detecting the correct sparsity pattern

of b (equivalently, the correct active users), whereas Theorem 1 guarantees correct

detection of not only the active users but their symbols as well. That is because,

as mentioned above, correct detection of these transmitted symbols comes “for free”

when the conditions to correctly detect the active users are met.

Remarks:

The term maxn(aH
n AAHan) on the right hand side of (4.45) and (4.47) is bounded

by

1  max
n

(aH
n AAHan)  1 + (N � 1)µ2

. (4.48)

Equation (4.48) follows because maxn
�

aH
n AAHan

�

= maxn
PN

l=1

(aH
n al)2, and

1 = (aH
n an)

2  max
n

N
X

l=1

(aH
n al)

2 = 1 +max
n

X

l 6=n

(aH
n al)

2  1 + (N � 1)µ2

. (4.49)

On the other hand, there is a noise phase-transition e↵ect, in the following sense.

Conditions (4.45) and (4.47) suggest that for the RDD and RDDF detectors to have

Pe as small as (4.46), we need to have

|r
min

|2/�2

> 8 logN�
max

(G�1), (4.50)

because ↵ > 0 and (4.48) holds. If the minimum SNR, i.e. the SNR associated

with the minimum gain r

min

is not su�ciently high, these algorithms cannot attain

small probability-of-error. We illustrate this e↵ect via numerical examples in Section
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4.4.2 (a similar e↵ect can be observed in standard MUD detectors using linear or DF

detection).

4.3.4 Bounding Probability-of-Error of RDD and RDDF

Theorem 1 provides a condition on how small µ has to be to achieve a small probability-

of-error. The condition and the achievable small probability-of-error are related by

the constant ↵. We can eliminate this constant and write Theorem 1 in an equivalent

form that gives error bounds for the RDD and RDDF detectors explicitly. Define the

minimum signal-to-noise ratio (SNR) in the projection subspace as

SNR
min

=
|r

min

|2

�

2

�

max

(G�1)
, (4.51)

where the factor �
max

(G�1) captures the noise amplification e↵ect in the projection

due to nonorthogonal signature waveforms. Also define two factors �
1

and �
2

as

�

1

, [1� (2K � 1)µ|r
max

|/|r
min

|]2

maxn(aH
n AAHan)

, �

2

, [1� (2K � 1)µ]2

maxn(aH
n AAHan)

. (4.52)

For the RDD detector, we have already implicitly assumed that 1�(2K�1)µ|r
max

|/|r
min

| �

0, since the right hand side of (4.45) in Theorem 1 is non-negative. For the same rea-

son, for the RDDF detector, we have assumed that 1� (2K� 1)µ > 0. By (4.48) and

(4.52), �
1

 1 and �
2

 1. We have the following corollary from Theorem 1:

Corollary 1. Under the setting of Theorem 1, with the definitions (4.51) and (4.52),

the probability-of-error for the RDD detector is upper-bounded by

Pe,RDD

 2Np
⇡



SNR
min

2
· �

1

��1/2

e

� 1

4

SNR

min

2

·�
1

, (4.53)
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with 1�(2K�1)µ|r
max

|/|r
min

| � 0, and the probability-of-error for the RDDF detector

is upper bounded by

Pe,RDDF

 2Np
⇡



SNR
min

2
· �

2

��1/2

· e� 1

4

SNR

min

2

�
2

, (4.54)

with 1� (2K � 1)µ > 0.

Proof. We begin by bounding the probability-of-error of the RDD detector from The-

orem 1. Under condition (4.45), by (4.46) the probability-of-error of the RDD de-

tector is bounded by N

�↵[⇡ log(N1+↵)]�1/2 for some constant ↵ > 0. To make the

bound tight, we choose ↵ as large as possible such that it still satisfies (4.45). With

definitions (4.51) and (4.52), for the RDD detector, we can rewrite (4.45) as

[logN (1+↵)]1/2  1

2
·


SNR
min

2
· �

1

�

1/2

, (4.55)

or equivalently

N

↵  N

�1

e

1

4

SNR

min

2

·�
1

. (4.56)

The right hand sides of (4.55) and (4.56) are the largest values for [logN (1+↵)]1/2 and

N

↵ we can obtain under (4.45), for given SNR
min

, A, K and N . Combining (4.55)

and (4.56) in (4.46), we have (4.53). Similarly, by choosing the largest possible ↵

satisfying (4.47), we derive the bound (4.54) on the probability-of-error of the RDDF

detector.

Remarks:

For bounds (4.53) and (4.54) to be meaningful, they have to be less than one,

and hence SNR
min

should be on the order of logN . Also note that the error bounds
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(4.53) and (4.54) for the RD-MUD detectors are larger when the signature waveforms

are correlated, since these error bounds increase in SNR
min

, and SNR
min

decreases

in �

max

(G�1). This implies that the performance of the RD-MUD detectors tends

to degrade when signature waveforms are nonorthogonal (the same e↵ect can also be

observed for the conventional MUD detectors based on the MF-bank).

By letting the noise variance �2 go to zero in (4.53) and (4.54) for the RDD and

RDDF detectors, we can derive the following corollary from Theorem 1 (another proof

for the RDD detector in this case has been given in Section 4.3.1).

Corollary 2. Under the setting of Theorem 1, in the absence of noise, the RDD detec-

tor can correctly detect the active users and their symbols if µ < |r
min

|/[|r
max

|(2K�1)],

and the RDDF detector can correctly detect the active users and their symbols if

µ < 1/(2K � 1). In particular, if K = 1, with M = 2 correlators, Pe = 0 for the

RDDF detector, and if furthermore |r
max

| = |r
min

|, Pe = 0 for the RDD detector

(which has also been shown in Section 4.3.1).

Proof. In Theorem 1, if we let �2 go to zero, then SNR
min

goes to infinity, and the

right hand sides of both (4.53) and (4.54) go to zero, i.e. Pe = 0, as long as �
1

> 0

and �

2

> 0, or equivalently, 1 � (2K � 1)|r
max

|/|r
min

| > 0 and 1 � (2K � 1)µ > 0.

When K = 1, the bound on µ for the RDDF detector becomes 1/(2K � 1) = 1,

which is satisfied for any µ as long as M � 2 (since Theorem 1 also requires linear

independence of the columns of A and this rules out the possibility of M = 1).

4.3.5 Comparison with Existing Bounds

In this section we compare the bound on the probability-of-error in the literature for

the decorrelating detector of the conventional MUD with our bound for the RDD
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and RDDF detectors derived from Theorem 1. The decorrelating detector is the

counterpart of the RDD detector in the conventional MUD setting. To see this,

note that for the RD-MUD front-end, when M = N , we can choose the coe�cient

matrix A = I such that the output data model (4.20) is equivalent to the MF-bank

decorrelating detector (4.7) (with T = G�1).

For the decorrelating detector of the conventional MUD, a commonly used per-

formance measure is the probability of error of each user [53][54], which is given by

[53] [96]:

P{b̂n 6= bn} = Q

 

|rn|
�

p

[G�1]nn

!

, (4.57)

where Q(x) =
R1
x
(1/

p
2⇡)e�z2/2

dz is the Gaussian tail probability. To compare (4.57)

with the Pe bound defined by (4.43), which consists of both active user detection error

and symbol error, we consider the case when all uses are active, i.e. K = N , and

then Pe is only due to symbol error. In this setting, we have, using the union bound

and (4.57):

Pe = P{b̂ 6= b} 
N
X

n=1

P{b̂n 6= bn}  NQ

⇣

p

SNR
min

⌘

 N

2
p
⇡



SNR
min

2

��1/2

e

�SNR

min

2

,

(4.58)

where we have also used the fact that |rn|/
h

�

p

[G�1]nn
i

�
p
SNR

min

and Q(x) is

decreasing in x, as well as the bound on Q(x) [96] on Q(x) given by

Q(x)  1

x

p
2⇡

e

�x2/2
. (4.59)

The bounds on Pe of the RDD and RDDF detectors when 1  K  N are given in

(4.53) and (4.54), respectively. Since �
1

 1 and �
2

 1, the error bounds (4.53) for
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the RDD detector and (4.54) for the RDDF detector are larger than the bound (4.58)

for conventional MUD. This is because the RDD and RDDF detectors have one extra

source of error from detecting the wrong set of active users, and also because the

noise can be amplified by the projection onto the detection subspace, as discussed

in Section 4.3.2. The enlargement of the error bound due to subspace projection is

captured by factors �
1

and �
2

for the RDD and RDDF detectors, respectively. These

factors reduce the e↵ect of SNR
min

in the bounds. Note that �
1

and �

2

increase in

µ, and hence we want small µ, which leads to a small error bound for RD-MUD

detectors.

A special case is when K = N , A = I. Then µ = 0, maxn(anAAHan) = 1, and

by definition (4.52), �
1

= �

2

= 1. At the beginning of this section, we have shown

that this corresponds to the decorrelating detector of the conventional MUD. In this

case the bounds (4.54) and (4.58) become the same expression:

Pe 
2Np
⇡



SNR
min

2

��1/2

e

� 1

4

SNR

min

2

. (4.60)

Compared with the bound (4.58) for Pe of the conventional decorrelating detector,

the bound (4.60) obtained from our result is larger. This can be explained since

(4.60) is obtained as a special case of RD-MUD which must also detect active users.

As we have shown in the proof for Theorem 1, the error from detecting active users

dominates the error from detecting symbols.

4.3.6 Lower Bound on Number of Correlators

Theorem 1 is stated for any matrix A. If we substitute the expression for coherence

of a given A in terms of its dimensions M and N into Theorem 1, we can obtain
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a lower bound on the smallest number of correlators M needed to achieve a certain

probability-of-error.

There is a general lower bound on the coherence of any M ⇥ N matrix A given

by [33]:

µ �


N �M

M(N � 1)

�

1/2

= M

�1/2

✓

N

N � 1

◆

1/2

· (1�M/N)1/2 ⇠ M

�1/2
, (4.61)

whenN is large relative toM andN is much larger than 1. In the absence of noise, the

upper bound on the coherence in Corollary 2 together with the bound (4.61) imply

that, for the RDDF detector to have perfect detection, the number of correlators

M should be on the order of (2K � 1)2. In the compressed sensing literature, it is

known that the bounds obtained using the coherence of the matrix A may not be

as sharp as those obtained using the restricted isometry properties of A [33]. For

example, in compressed sensing, to estimate a sparse vector with  non-zero entries,

the lower bound on the number of measurements required based on the coherence

of A is proportional to 2, while that based on the restricted isometry properties

is proportional to . This e↵ect is referred to as the “quadratic bottleneck” in the

compressed sensing literature [33]. Nevertheless, the coherence properties are easy to

evaluate, while evaluating the restricted isometry property of a given matrix A is in

general NP-hard [9]. Also as we demonstrate in the proof of Theorem 1, the coherence

is a convenient measure of the user interference level in the detection subspace. For

this reason, our result is based on the coherence of matrix A.

In the compressed sensing literature, the matrix A is often chosen to be random,

in which case its coherence can be bounded in probability. Consider for example a

random partial DFT matrix. We have the following result (which can be proven easily
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by the complex Hoe↵ding’s inequality [45]):

Lemma 6. Let A 2 CM⇥N be a random partial DFT matrix. Then the coherence of

A is bounded by

µ < [4(2 logN + c)/M ]1/2 , (4.62)

with probability exceeding 1� 2e�c, for some constant c > 0.

Using Lemma 6, we have the following corollary to Theorem 1:

Corollary 3. Consider the setting of Theorem 1, where A is a random partial DFT

matrix. Suppose the number of correlators satisfies the following lower bound for the

RDD detector

M � 4



(2K � 1)|r
max

|
|r

min

|� 2⌧

�

2

(2 logN + c), (4.63)

or satisfies the following smaller lower bound for the RDDF detector

M � 4



(2K � 1)|r
min

|
|r

min

|� 2⌧

�

2

(2 logN + c), (4.64)

for some constants c > 0 and ↵ > 0, and |r
min

| > 2⌧ , for ⌧ defined in (B.8). Then

the probability-of-error Pe of the RDD detector or the RDDF detector is bounded by

1� (1�N

�↵[⇡(1 + ↵) logN ]�1/2)(1� 2e�c), (4.65)

for some constant ↵ > 0.

This corollary says that to attain a small probability-of-error, the number of cor-

relators needed by the RDD and RDDF detectors is on the order of logN , which is

much smaller than that required by the conventional MUD using a MF-bank, which

is on the order of N .
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4.4 Numerical Examples

As an illustration of the performance of RD-MUD, we present some numerical exam-

ples mainly of both the RDD and RDDF detectors. The results are obtained from

105 Monte Carlo trials. For each trial, we generate a Gaussian random noise vector

as well as a random partial DFT matrix for A, and form the signal vector accord-

ing to (4.20). To simplify, we assume that the gains for all the users are the same:

|r
min

| = |r
max

| , r = 1. First we consider noise-free scenarios with an increasing

number of users N for a fixed number of active users K, and then with increasing

K for a fixed N . Next we consider two noisy scenarios with orthogonal waveforms

G = I and nonorthogonal waveforms G 6= I.

4.4.1 Noise-Free Scenario

In the absence of noise, from (4.7) of the MF-bank, the conventional decorrelating

detector has output z = Rb. The conventional decorrelating detector determines the

active users by choosing the K largest of |zn|, which is equivalent to choosing the K

largest of {|rnbn|} in the absence of noise. Recall that the inactive users have rn = 0,

which means the conventional decorrelating detector can correctly detect the active

users. It then detects symbols by b̂n = sgn(r2nbn) = bn. For the above reasons, the

conventional decorrelating detector has Pe = 0 in the absence of noise.

Pe vs. M , as N increases

Fig. 4.9 shows the Pe of the RDD detector as a function of M , for fixed K = 2, and

di↵erent values ofN . The data points marked on the curves correspond toM = logN ,

2 logN , and 4 logN . When M = 8 logN , Pe = 0 for the RDD detector for all values
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of N . This example clearly demonstrates the logN scaling factor in Corollary 3.

Pe vs. M , as N increases

Fig. 4.9 shows the Pe of the RDD detector as a function of M , for fixed K = 2, and

di↵erent values ofN . The data points marked on the curves correspond toM = logN ,

2 logN , and 4 logN . When M = 8 logN , Pe = 0 for the RDD detector for all values

of N . This example clearly demonstrates the logN scaling factor for the required

number of correlators in Corollary 3.
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M = log(N), 2log(N), 4log(N), K = 2

M: # of Correlators
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e
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N = 100
N = 150
N = 200

Figure 4.9: Performance of Algorithm-I, in the absence of noise, for K = 2, di↵erent
N , Pe versus M , with marked points equal to: logN , 2 logN , 4 logN , and 8 logN .
When M = 8 logN , Pe = 0.
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Pe vs M , as K increases

Fig. 4.10 demonstrates the Pe of the RDD detector as a function of M , for a fixed

N = 100, and di↵erent values of K. The points marked on the curves correspond to

M = (K logN)/2, K logN , 1.5K logN , 2K logN and min{N, 3K logN}. Clearly,

the number of correlators needed to obtain Pe < 10�4 increases as K increases. When

K = 10, the RDD detector needs about 80 correlators to obtain Pe < 10�4. The

number of correlators needed to achieve a small probability-of-error can be improved

by using the RDDF detector. As shown in Fig. 4.11, when K = 10, the RDDF

detector uses only 60 correlators to obtain Pe < 10�4.

Fig. 4.10 also demonstrates how Corollary 2 can be used to estimate the number

of correlators needed to achieve a small probability-of-error. Corollary 2 says that we

need µ < 1/(2K � 1) in the absence of noise to have perfect detection. When K = 2,

this requires µ < 1/3. We then obtain an estimate for coherence of the random partial

DFT matrix with N = 100 and various M , by averaging over 105 trials, and find that

when M is about 30 the coherence is less than 1/3. This is consistent with Fig. 4.10,

which shows that when M = 28, Pe is on the order of 10�4.

Random partial DFT vs. Gaussian random matrices

We compare the performance of the RDD detector using the random partial DFT

matrix versus using the Gaussian random matrix for A (defined in Section 4.2.3). In

Fig. 4.12, the probability-of-error of the Gaussian random matrix converges to a value

much higher than zero, whereas that of the random partial DFT matrix converges

to zero (the value achieved by the conventional decorrelating detector), when M

increases to N .
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Figure 4.10: In the absence of noise, Pe versus M , for N = 100, using Algorithm-I
for di↵erent K.

4.4.2 Noisy Scenario

Next, we consider noisy scenarios. For comparison, we also consider the conventional

decorrelating detector, which corresponds to the RDD detector with M = N as we

explained in Section 4.3.5.

Pe vs. M , as SNR increases, G = I

We study Pe versus M for the RDD detector as SNR increases when the signature

waveforms are orthogonal and G = I and hence the noise in (4.20) is white. In this

case SNR
min

= |r
min

|2/�2 = r

2

/�

2, which is denoted as SNR in Fig. 4.13. Assume

N = 100 and K = 2. In Fig. 4.13, when SNR increases, the curves converge to

the noise-free curve for K = 2 shown in Fig. 4.10, and to the noise-free curve for
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Figure 4.11: In the absence of noise, Pe versus M , for N = 100, using Algorithm-II
compared with Algorithm-I when K = 10.

N = 100 shown in Fig. 4.9. Note that there is a noise phase-transition e↵ect in

Fig. 4.10, which is discussed in the Remarks of Section 4.3.3. The analysis in (4.50)

implies that for N = 100 and G = I, we need SNR to be at least 15.7dB to obtain a

small Pe, which is consistent with Fig. 4.10.

Pe vs. M , performance of noise prewhitening transform, G 6= I

Next we consider a scenario when the signature waveforms are nonorthogonal G 6= I.

We generate an arbitrary symmetric G with ones on the diagonal and fix it in the

Monte Carlo trials. In the first case we consider highly correlated signature wave-

forms with �
max

(G�1) = 493.9595. In the second case we consider nearly orthogonal

signature waveforms with �
max

(G�1) = 4.0771. Then we compare the Pe of the RDD
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Figure 4.12: In the absence of noise, Pe versus M of the RDD detector using the
random partial DFT versus using the Gaussian random matrices for N = 100 and
K = 6.

detector in these two cases without and with the noise whitening transform in Section

4.2.2. Assume N = 100, K = 2, r = 1 and � = 0.1. In Fig. 4.14, when the signature

waveforms are highly correlated, the noise whitening transform significantly reduces

Pe for large M . In this case, the conventional decorrelating detector without the noise

whitening transform has a non-negligible probability-of-error, and that with the noise

whitening transform has a probability-of-error less than 10�4. In Fig. 4.15, when the

signature waveforms are nearly orthogonal, the noise whitening transform does not

reduce Pe much. In this case, the conventional decorrelating detector without and

with the noise whitening transform both have probability-of-error less than 10�4. We

also verified that using the noise whitening transform cannot achieve the probability-

of-error that is obtained with orthogonal signature waveforms G = I. This is because
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Figure 4.13: Performance of Algorithm-I, Pe versus M for di↵erent SNRs, when the
signature waveforms are orthogonal, i.e., G = I. When SNR is greater than 15 dB,
the probability-of-error of the MF-bank is less than 10�4.

the noise whitening transform distorts the signal component.

Pe vs. M , RD-MUD linear detectors

In this example, we compare the performance of RD-MUD linear detectors when

G 6= I. In Theorem 1 we have proven that the error is dominated by that from active

user detection. So we compare the performance of these RD-MUD linear detectors

using their conditional probability of symbol error given the correct detection of active

users P{b̂ 6= b|Î = I}. Assume N = 100, K = 2, r = 1, � = 0.1, and let G take

the same form as those used in the previous example. In Fig. 4.16 and Fig. 4.17,

the performance of the RDD detector is similar to that of the RD-LS detector (the

explanation is given in Section 4.2.2). In comparison, the RD-MMSE detector has
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Figure 4.14: Comparison of Pe versus M , without and with the noise whitening
transform, when N = 100, K = 2, and for two di↵erent cases of G. The conventional
decorrelating detector with the noise whitening transform in Fig. 4.14, and the con-
ventional decorrelating detectors with and without the noise whitening transform in
Fig. 4.15 have probability-of-error less than 10�4.

smaller conditional probability of error, especially in Fig. 4.16 with highly correlated

signatures. This improvement is because the linear transform (4.33) of the RD-

MMSE detector alleviates the e↵ect of correlated signature waveforms by including

an inversion of G in the linear transform. The conditional probability-of-error of the

conventional decorrelating detector is less than 10�4.

4.5 Conclusions

We have developed a reduced dimension multiuser detection (RD-MUD) structure,

which decreases the number of correlators at the front-end of a MUD receiver by
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Figure 4.15: Comparison of Pe versusM , with and without using pre-whitening, when
N = 100, K = 2, when �

max

(G�1) is small. The MF-bank decorrelators with and
without whitening have probability-of-error less than 10�4 and hence are not shown
in the pictures.

exploiting the fact that the number of active users is typically much smaller than the

total number of users in the system. Motivated by the idea of analog compressed

sensing, the RD-MUD front-end projects the received signal onto a lower dimensional

detection subspace by correlating the received signal with a set of correlating signals.

The correlating signals are constructed as linear combinations of the signature wave-

forms using a coe�cient matrix A, which determines the performance of RD-MUD

and is our key design parameter. Based on the front-end output, RD-MUD detectors

recover active users and their symbols in the detection subspace. We have studied

in detail two such detectors. The reduced-dimension decorrelating (RDD) detector,

which is a linear detector that combines subspace projection along with thresholding

for active user detection and sign detection for data recovery. The reduced-dimension
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Figure 4.16: Comparison of the conditional probability of error P{b̂ 6= b|Î = I},
for RD-MUD linear detectors, when �

max

(G�1) is large. The conditional probability
of error for MF-bank decorrelator is less than 10�4 and hence is not shown in the
pictures.

decision feedback (RDDF) detector is a nonlinear detector that combines decision-

feedback orthogonal matching pursuit (DF-OMP) for active user detection with sign

detection for data recovery. We have shown that to achieve a desired probability-of-

error, the number of correlators used by the RD-MUD can be much smaller than that

used by the conventional MUD, and the complexity-per-bit of the RD-MUD detectors

is not higher than their counterpart in the conventional MUD setting. In particular,

when the random partial DFT matrix is used for the coe�cient matrix A and the

RDD and RDDF detectors are used for detection, the RD-MUD front-end requires

the number of correlators proportional to the log of the number of users, whereas

the conventional MF-bank front-end requires the number of correlators equal to the

number of users in the system. We have obtained theoretical performance guarantees
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Figure 4.17: Comparison of the conditional probability of error P{b̂ 6= b|Î = I}, for
RD-MUD linear detectors: RDD, RD-LS, and RD-MMSE. The RD-MMSE detector
has the smallest conditional probability of symbol error.

for the RDD and RDDF detectors in terms of the coherence of A, which are validated

via numerical examples.



Chapter 5

Summary and Future Work

5.1 Summary

We have shown that sparsity can be exploited in statistical detection problems with

two specific cases: the multi-sensor change-point detection problem and the multi-user

detection problem.

In multi-sensor change-point detection, we assume that there are multiple sensors

that make sequences of observations in parallel. An abrupt emergence of a change-

point alters the distribution of the observations for a subset of sensors simultaneously.

Our goal is to detect the change-point as soon as possible after it occurs, and to

minimize the rate of making false alarms. The sparsity in this problem takes the form

that the fraction of sensors a↵ected by the change-point, p, is relatively small, which

can be viewed as the sparsity of a↵ected sensors. We model this sparsity by assuming

that each sensor is a↵ected with a small probability p

0

, where p
0

is a guess for p. We

then derived a mixture log generalized likelihood ratio (GLR) statistic for change-

point detection. Our model leads to a nonlinear weighting function, which weights

142



CHAPTER 5. SUMMARY AND FUTURE WORK 143

the log GLR statistic of each sensor before combining them. The nonlinear weighting

function automatically emphasizes the statistic formed by sensors that are a↵ected

by the change-point, and suppresses those formed by sensors that are not a↵ected.

We derived approximations to two performance metrics of the mixture procedure, the

false alarm rate - the average run length (ARL), as well as the expected detection

delay. We also demonstrated that the performance of the mixture procedure compared

with other existing procedures using numerical examples. In summary, the mixture

procedure uses a parameter p

0

to model and exploit the sparsity in multi-sensor

change-point detection problems.

In multi-user detection (MUD), multiple users transmit information messages us-

ing their signature waveforms with a common receiver. The receiver receives a su-

perposition of the transmitted signals and has to decode messages simultaneously.

In this problem, the sparsity takes the form of user sparsity : the number of active

users is small relative to the total number of users in the system. We exploited the

user sparsity to reduce complexity of the detector at the receiver, in particular, to re-

duce the number of correlators at the front-end of the receiver. We proposed a lower

complexity detection method, reduced dimension multi-user detection (RD-MUD),

that uses a much fewer number of correlators than the conventional method and still

achieves a similar performance. In particular, we showed that by proper choice of

the design parameter of RD-MUD, which is the coe�cient matrix for the correlating

signals, we can achieve a similar performance to that of the classic detection method

based on the matched-filter (MF) bank. We showed that when the random partial

discrete Fourier transform (DFT) matrix is used as the coe�cient matrix, the num-

ber of correlators needed by RD-MUD to obtain a small probability-of-error is on the
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order of logarithm of the number of users.

5.2 Future Work

There are many extensions to the work we presented. For the multi-sensor change-

point detection problem, we can consider a closely related procedures. We have

shown in Section 3.2 that the mixture procedure is equivalent to applying a non-

linear weighting function on the log GLR statistic of each sensor. As an alternative,

we can consider the following non-linear weighting function:

g̃(Un,,t; p0) , [log p
0

+ (U+

n,,t)
2

/2]+. (5.1)

The choice of the function (5.1) is motivated by the following argument. We can

write the mixture statistic (3.14) as

g(Un,,t; p0) = log(1� p

0

+ p

0

exp[(U+

n,,t)
2

/2]) = log(1� p

0

+exp[log p
0

+(U+

n,,t)
2

/2]).

(5.2)

When exp[log p
0

+ (U+

n,,t)
2

/2]) � 1� p

0

, which is true when log p
0

+ (U+

n,,t)
2

/2 � 0

and is relatively large, we can approximate (5.2) as log p
0

+ (U+

n,,t)
2

/2; otherwise the

value of (5.2) is very close to zero. Hence, we can view g̃(Un,,t; p0) in (5.1) as an

approximation for g(Un,,t; p0). The non-linear weighting function g̃(x; p
0

) is numer-

ically more stable than g(x; p
0

), since it avoids calculating an exponential function

with large argument as required by g(x; p
0

), although it can have a slightly longer

detection delay. Also, g̃(x; p
0

) is of interest, because all the quantities starting with

 (✓) for the ARL approximation, Approximation 1, can be evaluated analytically in
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closed form without numerical integrations.

For reduced-dimensional multiuser detection, our results are based on binary mod-

ulation and can be extended to higher order modulation with symbols taking more

possible values. With higher order modulation, however, the conditions to guarantee

correct symbol detection may be stronger than the conditions to guarantee correct

active user detection.

Another aspect of RD-MUD that we could extend further is the digital detectors

for RD-MUD front-end. We have derived two digital detectors, the reduced-dimension

decorrelator (RDD) and the reduced-dimension decision-feedback (RDDF). These two

detectors both borrow ideas from the greedy algorithms for sparsity pattern recovery.

As an alternative, we can also consider l

1

relaxation methods (as we reviewed in

Section 2.3, and also in [9]) to estimate active users and their symbols. From the

RD-MUD output model (4.20), the l

1

relaxation method solves the following convex

optimization problem to estimate b

minimize
b

ky�ARbk2
2

+ �kbk
1

, (5.3)

where the kxk
1

=
PN

n=1

|xn| is the l1 norm of an N -dimensional vector x, and � > 0 is

a regularization parameter. The above optimization problem can be solved e�ciently

by various numerical optimization solvers (see e.g., [9]). Then we can take the support

of the solution to (5.3) as the active users, and the signs of the corresponding entries

as symbols for active users. The condition on A such that (5.3) can obtain small

probability-of-error is subject to further investigation.

We have obtained some performance guarantees for RD-MUD, such as the con-

ditions on the coherence of the coe�cient matrix for RD-MUD detectors to obtain
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a small probability-of-error. However, we have not addressed the issue of finding an

optimal coe�cient matrix to achieve the minimum probability-of-error. For exam-

ple, we could formulate an optimization problem, to minimize the upper-bounds on

the probability-of-error of the RDD and RDDF detectors, which we have derived in

(4.54), with respect to matrix A. However, in general, finding the optimal determin-

istic coe�cient matrix is an open problem in the compressive sensing literature (see

[7] and some discussion therein).

Lastly, the reduced-dimension multi-user detection leads to the notion of approxi-

mate su�cient statistics. It is well-known that the MF-bank front-end obtains a set of

su�cient statistics for multi-user detection (MUD). On the other hand, the front-end

of RD-MUD uses fewer correlators and maps the original su�cient statistic into a

lower dimension subspace. With proper design, RD-MUD can obtain a performance

approximate to that based on the su�cient statistics. In this sense, the RD-MUD

front-end obtains a set of approximate su�cient statistics for MUD. It is an interest-

ing theoretical direction to generalize this notion of approximate su�cient statistics

to other problems.
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A.1 Proof of Lemma 4

Proof. We use the following identity:

max
0k<T�k

0

hk = max

⇢

max
0k<k

0

hk, max
k
0

k<T�k
0

hk

�

, (A.1)

which holds for any sequence hk. In particular,

hk = �
X

n2Na

µn(Sn,k � kµn/2) +
X

n2Na

[(Sn,T � Sn,k)� (T � k)µn]
2

/[2(T � k)]

�
X

n2Na

[(Sn,T � Sn,k)
�]2/2(T � k) +

X

n2N c
a

g(Un,k,T ; p0).
(A.2)

First we evaluate the term max
0k<k

0

hk in (A.1). Since when b ! 1, T ⇠ b/�.

For 0  k < k

0

, k/T < k

0

/T =
p
b/T = �/

p
b ! 0. Also, Sn,k/Sn,T ! k�/(T�) !

0 by the law of large number and the previous argument. Hence we have

X

n2Na

[(Sn,T � Sn,k)� (T � k)µn]
2

/[2(T � k)]

=
X

n2Na

[Sn,T (1� Sn,k/Sn,T )� T (1� k/T )µn]2

2T (1� k/T )

!
X

n2Na

(Sn,T � Tµn)
2

/(2T ).

(A.3)

Again, for 0  k < k

0

, k/T < k

0

/T =
p
b/T = �/

p
b ! 0. Also, Sn,k/Sn,T !

k�/(T�) ! 0 by the law of large number. So by rewriting the term in the following

way, we have

[(Sn,T � Sn,k)�]2

2(T � k)
=

[(Sn,T (1� Sn,k/Sn,T ))�]2

2T (1� k/T )
! [(Sn,T )�]2

2T
. (A.4)
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Then we write the term (A.4) as

[(Sn,T )�]2

2T
=

" 

Sn,T � Tµnp
2T

+

p
Tµnp
2

!�#2

. (A.5)

By the Anscombe-Doeblin Lemma [80], (Sn,T �Tµn)/T 1/2 is asymptotically normally

distributed with zero mean and unit variance. As b ! 1, T ⇠ b/�. Since µn > 0 for

n 2 Na, when b ! 1, T ! 1, and hence
⇣

Sn,T�Tµnp
2T

+
p
Tµnp
2

⌘�
! 0. As a result, as

b ! 1, the left-hand side of (A.5) tend to 0. Consequently, [(Sn,T � Sn,k)�]2/[2(T �

k)] ! 0.

Since g(x; p
0

) = log[1� p

0

+ p

0

exp((x+)2/2)] as a function of p
0

is monotonically

increasing in p, we have

g(x; p
0

)  (x+)2/2. (A.6)

Hence the last term in (A.2) is upper-bounded by:

g(Un,k,T ; p0) = log(1� p

0

+ p

0

exp[(U+

n,k,T )
2

/2])  [(Sn,T � Sn,k)
+]2/[2(T � k)]. (A.7)

Using a similar argument to (A.3), when b ! 1, for k  k

0

, we have

[(Sn,T � Sn,k)
+]2/[2(T � k)] ! [(Sn,T )

+]2/(2T ). (A.8)

By the bounded convergence theorem,

X

n2N c
a

g(Un,k,T ; p0) !
X

n2N c
a

log
�

1� p

0

+ p

0

exp[(S+

n,T )
2

/(2T )]
 

=
X

n2N c
a

g(Un,0,T ; p0).

(A.9)
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Hence when b ! 1,

max
0k<k

0

h ! max
0k<k

0

(

�
X

n2Na

µn(Sn,k � kµn/2)

)

+
X

n2Na

(Sn,T�T )2/(2T )+
X

n2N c
a

g(Un,0,T ; p0).

(A.10)

Next we evaluate maxk
0

k<T�k
0

hk in (A.1). Note that when b ! 1,

�
X

n2Na

µn(Sn,k � kµn/2) ! ��k  ��(T � k

0

)

⇠ ��(b/��
p
b) = �b(1��b

�1/2) ! �1,

(A.11)

and the other three terms are bounded with high probability. By Markov inequality

and (A.3), we have that for a constant c > 0,

P0

(

X

n2Na

[(Sn,T � Sn,k)� (T � k)µn]
2

/[2(T � k)] � c

)

 E0

"

X

n2Na

[(Sn,T � Sn,k)� (T � k)µn]
2

/[2(T � k)]

#,

c = M/c,

(A.12)

and

P0

(

X

n2Na

[(Sn,T � Sn,k)
�]2/[2(T � k)] � c

)

 E0

"

X

n2Na

[(Sn,T � Sn,k)
�]2/[2(T � k)]

#,

c

 E0

"

X

n2Na

[(Sn,T � Sn,k)]
2

/[2(T � k)]

#,

c  M/c.

(A.13)
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By monotonicity (A.6) and Markov inequality,

P0

8

<

:

X

n2N c
a

g(Un,k,T ; p0) � c

9

=

;

 P0

8

<

:

X

n2N c
a

(Sn,T � Sn,k)
2

/[2(T � k)] � c

9

=

;

 (N�M)/c.

(A.14)

Hence maxk
0

k<T�k
0

hk ! �1 as b ! 1. Substitute this result and (A.10) into

(A.1), we have

max
0k<T�k

0

h = max

⇢

max
0k<k

0

hk, max
k
0

k<T�k
0

hk

�

! max
0k<k

0

hk, (A.15)

which concludes the proof for Lemma 4.

A.2 Multiple Overlapping Sources

When there are Q sources, the profile is given by

µn =
Q
X

m=1

rm↵zm(un, vn), (A.16)

with rm specifying the amplitude and zm specifying the location of the source. The

loglikelihood function is given by (3.65) with µn replaced by the new expression in
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(A.16):

l(t, k, {rm}, z) =
N
X

n=1

t
X

l=k+1

"

yn,l

Q
X

m=1

rm↵zm(un, vn)

#

� 1

2

 

Q
X

m=1

rm↵zm(un, vn)

!

2

=

"

Q
X

m=1

rm(t� k)1/2↵>
zm

U k,t

#

� t� k

2

"

Q
X

m=1

r

2

m

#

� t� k

2

"

X

m 6=p

rmrp↵
>
zm

↵zp

#

.

(A.17)

Setting the derivative of the log-likelihood function (A.17) with respect to each rm to

zero gives us a set of linear equations:

rm +
1

2

X

p 6=m

rp↵
>
zm

↵zp = (t� k)�1/2↵>
zm

U k,t, m = 1, · · · , Q. (A.18)

We can write (A.18) as:

Ar = bk,t, (A.19)

with M equations and M unknowns. The vector r = [r
1

, · · · , rQ]>. The matrix A

has ones on the diagonal, and the entry on the mth row and the nth column is given

by 1

2

↵>
zm

↵zn . The mth element of the vector bk,t is given by (t � k)�1/2↵>
zm

U k,t.

If A is invertible (otherwise the sources cannot be uniquely identified), from (A.19)

we can solve an estimate for the vector of source amplitudes r̂ = A�1bk,t, for a

given set of source locations. By plugging the estimate r̂ into the likelihood function

(3.65), and maximizing the resulted statistic with respect to k and all possible source

locations (z
1

, · · · , zQ) in the set D, we obtain the GLR statistics when we have

multiple overlapping sources.
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If we assume the sources are non-overlapping, then ↵>
zm

↵zp = 0, for p 6= m. Then

we have

r̂m =



↵>
zm

U k,t

(t� k)1/2

�

+

, (A.20)

for a candidate source location zm. If we plugging this amplitude estimate into (A.17),

we have the following log GLR statistic:

Q
X

m=1

1

2

 



↵>
zm

U k,t

(t� k)1/2

�

+

!

2

, (A.21)

and the corresponding profile-based procedure is given by

T

profile

= inf

8

<

:

t � 1 : max
t�m

1

k<t
max

z
1

,··· ,zQ2D

Q
X

m=1

1

2

 



↵>
zm

U k,t

(t� k)1/2

�

+

!

2

� b

9

=

;

. (A.22)
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B.1 Covariance of RD-MUD Output Noise

Consider the covariance of the output noise at the nth and the mth branches in the

RD-MUD front-end:

⇢nm = E{wnwm} = E
(

N
X

k=1

N
X

l=1

ankamlhŝk(t), w(t)ihŝl(t), w(t)i
)

=
N
X

k=1

N
X

l=1

ankamlE{hŝk(t), w(t)ihŝl(t), w(t)i}
(B.1)

We want to show that ⇢nm = �

2[AG�1AH ]nm. We have

E{hŝk(t), w(t)ihŝl(t), w(t)i}

= T

�2

Z T

0

Z T

0

ŝk(t)ŝl(u)E{w(t)w(u)}dtdu

= T

�2

Z T

0

Z T

0

ŝk(t)ŝl(u)�
2

�(t� u)dtdu

= �

2

T

�1

Z T

0

ŝk(t)ŝl(t)dt

= �

2

*

X

n

[G�1]nksn(t),
X

m

[G�1]mlsm(t)

+

= �

2

X

n

X

m

[G�1]nk[G
�1]mlhsn(t), sm(t)i

= �

2

X

n

X

m

[G�1]nk[G
�1]ml[G]nm = �

2[G�1]lk

(B.2)

Substituting this back into (B.1), we have

⇢nm = E{wnwm} = �

2

N
X

k=1

N
X

l=1

ankaml[G
�1]lk = �

2[AG�1AH ]nm. (B.3)
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Setting n = m, we have

�m = E{w2

m} = �

2[AG�1AH ]mm. (B.4)

This completes the proof.

B.2 Derivation of RD-MUD MMSE

Proof. Given the active user index set Î obtained from (4.23), we define W =

A
ˆIR

2

ˆIA
H
ˆI + �

2AG�1AH , and M̄ = R
ˆIA

H
ˆI W

�1. We want to show that M̄ =

argmin
M

E{kb
ˆI � Myk2}. Using the same method for deriving the conventional

MMSE detector of the MF-bank [96], we assume that b
ˆI has a distribution that is

uncorrelated with the noise w and that E{b
ˆIb

H
ˆI } = I. Based on Î, we refer to the

model (4.21). Since kxk2 = tr(xxH), we can write the MSE as E{kb
ˆI � Myk2} =

tr(E{(b
ˆI �My)(b

ˆI �My)H}). Now we expand

E{(b
ˆI �My)(b

ˆI �My)H}

= E{b
ˆIb

H
ˆI }� E{b

ˆIy
H}MH �ME{ybH

ˆI }+ME{yyH}MH

= I+M(A
ˆIR

2

ˆIA
H
ˆI + �

2AG�1AH)MH �R
ˆIA

H
ˆI M

H �MA
ˆIRˆI .

(B.5)
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It can be verified that MA
ˆIRˆI = MWM̄

H
. Hence from (B.5), we have

E{(b
ˆI �My)(b

ˆI �My)H}

= I+MWMH � M̄WMH �MWM̄
H

= I� M̄WM̄
H
+ (M� M̄)W(M� M̄)H

= I�R
ˆIA

H
ˆI W

�1A
ˆIRˆI + (M� M̄)W(M� M̄)H .

(B.6)

Since W is a positive semidefinite matrix, the trace of the second term in (B.6)

is always nonnegative. So we conclude that the matrix M that minimizes the MSE

tr(E{(b
ˆI�My)(b

ˆI�My)H}) is M̄, or equivalently, E{kb
ˆI�Myk2}, as required.

B.3 Proof of Theorem 1

The proof of Theorem 1 for both the RDD and RDDF detectors are closely related.

To exploit this similarity, we first prove several lemmas that are useful for both results.

First, we will demonstrate that the random event

G ,
⇢

max
1nN

|aH
n w| < ⌧

�

(B.7)

occurs with high probability, where

⌧ , �

p

2(1 + ↵) logN ·
q

�

max

(G�1) ·
q

max
n

(aH
n AAHan), (B.8)

and ↵ > 0. Then we show that when G occurs, both algorithms can detect the active

users and their symbols. The proofs follow the arguments in [9] with modifications

to account for the fact that w is colored noise, and the error can also be caused by
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incorrect symbol detection. However, as we will show, the error probability of active

user detection dominates the latter case.

Sidak’s lemma [77] states the following:

Lemma 7 (Sidak’s lemma). Let [X
1

, · · · , Xn]> be a vector of random variables having

the n-dimensional normal distribution with zero means, arbitrary variances �2

1

, · · · , �2

n,

and an arbitrary correlation matrix [P]mk = ⇢mk. Then, for any positive numbers

c

1

, · · · , cn,

P{|X
1

|  c

1

, |X
2

|  c

2

, · · · , |Xn|  cn} � P{|X
1

|  c

1

} · P{|X
2

|  c

2

, · · · , |Xn|  cn}.

(B.9)

Lemma 8. Suppose that w is a Gaussian random vector with zero mean and covari-

ance �2AG�1AH . If N�(1+↵)[⇡(1 +↵) logN ]�1/2  1 for some ↵ > 0, then the event

G of (B.7) occurs with probability at least one minus (4.46).

Proof. The random variables {aH
n w}Nn=1

are jointly Gaussian, with means equal to

zero, variances �2

n equal to �2aH
n AG�1AHan, and covariances ⇢nm between the nth

and mth random variables equal to �2aH
n AG�1AHam. Define

⌧̂ , �[2(1 + ↵) logN ]1/2 ·
h

max
n

(aH
n AG�1AHan)

i

1/2

, (B.10)

and an event

Ĝ ,
⇢

max
1nN

|aH
n w| < ⌧̂

�

. (B.11)
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Using Sidak’s lemma, we have

P
n

Ĝ
o

= P
�

|aH
1

w| < ⌧̂ , · · · , |aH
Nw| < ⌧̂

 

�
N
Y

n=1

P{|aH
n w| < ⌧̂}. (B.12)

Since aH
n w is a Gaussian random variable with zero mean and variance �2

n, the tail

probability of the colored noise can be written as

P{|aH
n w| < ⌧̂} = 1� 2Q

✓

⌧̂

�n

◆

. (B.13)

By the bound (4.59) on Q(x), (B.13) can be bounded as

P{|aH
n w| < ⌧̂} � 1� ⌘n, (B.14)

where ⌘n ,
q

2

⇡
· �n
⌧̂
e

�⌧̂2/(2�2

n). Define

�

max

, max
n

�n = �

h

max
n

(aH
n AG�1AHan)

i

1/2

,

⌘

max

,
r

2

⇡

�

max

⌧̂

e

�⌧̂2/(2�2

max

)

.

(B.15)

Since �
max

/⌧̂ = [2(1 + ↵) logN ]�1/2 by the definition of ⌧̂ , we have ⌘
max

=
q

2

⇡
[2(1 +

↵) logN ]�1/2
e

�(1+↵) logN . It is easy to show that ⌘n increases as �n increases. Hence

⌘n  ⌘

max

. When ⌘
max

 1, we can use the inequality (1� x)N � 1�Nx when x � 0

and substitute the value of ⌘
max

to write (B.12) as

P{Ĝ} �
N
Y

n=1

(1�⌘n) � (1�⌘
max

)N � 1�N⌘

max

= 1�N

�↵[⇡(1+↵) logN ]�1/2
, (B.16)
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which holds for any ⌘
max

 1 and N � 1.

Next we show that ⌧̂  ⌧ . Note that

aH
n AG�1AHan  kAHank2�max

(G�1)  [max
n

�

aH
n AAHan

�

]�
max

(G�1). (B.17)

From inequality (B.17) and definitions (B.8) for ⌧ and (B.10) for ⌧̂ , we obtain ⌧̂  ⌧ .

Hence

P{G} = P{max
n

|aH
n w| < ⌧} � P{max

n
|aH

n w| < ⌧̂} = P{Ĝ}. (B.18)

Combining (B.16) and (B.18), we conclude that P{G} is greater than one minus the

expression (4.46), as required.

The next lemma shows that, under appropriate conditions, ranking the inner

products between an and y is an e↵ective method of detecting the set of active users.

The proof of this lemma is adapted from Lemma 3 in [9] to account for the fact

that the signal vector y here can be complex as A can be complex. Since only the

real part contains all the useful information, to prove this lemma, we basically follow

the proof for Lemma 3 in [9] while using the following inequality whenever needed:

|<[aH
n am]|  |aH

n am|  µ for n 6= m, and |<[aH
n w]|  |aH

n w|.

Lemma 9. Let b be a vector with support I which consists of K active users, and

let y = ARb + w for a Gaussian noise vector w with zero mean and covariance

AG�1AH . Define |r
max

| and |r
min

| as in (4.44), and suppose that

|r
min

|� (2K � 1)µ|r
max

| � 2⌧. (B.19)
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Then, if the event G of (B.7) occurs, we have

min
n2I

|<[aH
n y]| > max

n/2I
|<[aH

n y]|. (B.20)

If, rather than (B.19), a weaker condition holds:

|r
max

|� (2K � 1)µ|r
max

| � 2⌧. (B.21)

Then, if the event G of (B.7) occurs, we have

max
n2I

|<[aH
n y]| > max

n/2I
|<[aH

n y]|. (B.22)

Proof. We begin by deriving a lower-bound for minn2I |<[aH
n y]| under the event G:

min
n2I

|<[aH
n y]| = min

n2I

�

�

�

�

�

bnrn +
X

m 6=n

bmrm<[aH
n am] + <[aH

n w]

�

�

�

�

�

� min
n2I

 

|bn||rn|�

�

�

�

�

�

X

m 6=n

bmrm<[aH
n am]

�

�

�

�

�

� |<[aH
n w]|

!

� |r
min

|�max
n2I

X

m 6=n

|bm||rm||aH
n am|�max

n2I
|aH

n w|

> |r
min

|� (K � 1)µ|r
max

|� ⌧,

(B.23)

where we have used the triangle inequality, the fact that |bn| = 1, |r
min

|  |rn| 

|r
max

|, |<[aH
n am]|  |aH

n am|  µ for n 6= m, and |<[aH
n w]|  |aH

n w|. On the other

hand, we can similarly expand and upper-bound maxn/2I |R[aH
n y]|, under the event
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G, as

max
n/2I

|<[aH
n y]| =max

n/2I

�

�

�

�

�

X

m2I

bmrm<[aH
n am] + <[aH

n w]

�

�

�

�

�

max
n/2I

X

m2I

|bm||rm||<[aH
n am]|+max

n/2I
|<[aH

n w]|

<Kµ|r
max

|+ ⌧.

(B.24)

Combining (B.23) and (B.24), we have that under the event G,

min
n2I

|<[aH
n y]| > |r

min

|� (2K � 1)µ|r
max

|� 2⌧ +max
n/2I

|<[aH
n y]|. (B.25)

So when G occurs, under the condition (B.19), we obtain (B.20).

Similarly, when G occurs, we expand and lower-bound maxn2I |<[aH
n y]|. Assume

that n
0

is the index achieving the largest absolute gain: |rn
0

| = |r
max

|. Then under

event G:

max
n2I

|<[aH
n y]| � |<[aH

n
0

y]| =

�

�

�

�

�

bn
0

rn
0

+
X

m 6=n
0

bmrm<[aH
n
0

am] + <[aH
n
0

w]

�

�

�

�

�

� |r
max

|�
X

m 6=n
0

|bm||rm||<[aH
n
0

am]|� |<[aH
n
0

w]|

> |r
max

|� (K � 1)µ|r
max

|� ⌧.

(B.26)

Combining (B.26) and (B.24), we have that under the event G,

max
n2I

|<[aH
n y]| > |r

max

|� (2K � 1)µ|r
max

|� 2⌧ +max
n/2I

|<[aH
n y]|. (B.27)

So when G occurs, under the condition (B.21), we obtain (B.22), as required.
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The following lemma demonstrates that the sign detector can e↵ectively detect

transmitted symbols for the RDD and RDDF detectors.

Lemma 10. Let b be a vector with bn 2 {1,�1}, for n 2 I and bn = 0 otherwise,

and let y = ARb+w for a Gaussian noise vector w with zero mean and covariance

�

2AG�1AH . Suppose that

|r
min

|� (K � 1)µ|r
max

| � ⌧. (B.28)

Then, if the event G occurs, we have

sgn(rn<[aH
n y]) = bn, n 2 I. (B.29)

If, instead of (B.28), a weaker condition

|r
max

|+ |r
min

|� 2(K � 1)µ|r
max

| � 2⌧ (B.30)

holds, then under the event G, we have

sgn(rn
1

<[aH
n
1

y]) = bn
1

, (B.31)

for

n

1

= argmax
n

|<[aH
n y]|. (B.32)

Proof. To detect correctly, for bn = 1, <[rnaH
n y] has to be positive, and for bn = �1,

<[rnaH
n y] has to be negative. First assume bn = 1. We expand <[rnaH

n y], find the

lower-bound and the condition such that the lower bound is positive. Substituting in
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the expression for y, using the inequality that x + y + z � x � |y| � |z|, under the

event G, we obtain

<[rnaH
n y] = |rn|2 +

X

m 6=n

bmrnrm<
⇥

aH
n am

⇤

+ rn<
⇥

aH
n w

⇤

� |rn||rmin

|�
X

m 6=n

|rn||rm||<
⇥

aH
n am

⇤

|� |rn||<
⇥

aH
n w

⇤

|

> |rn| [|rmin

|� (K � 1)µ|r
max

|� ⌧ ] .

(B.33)

From (B.33), <[rnaH
n y] > 0 for n 2 I if (B.28) holds and bn = 1. Similarly, we can

show for bn = �1, under event G, if (B.28) holds, <[rnaH
n y] < 0. Hence if (B.28)

holds we obtain (B.29).

Recall that n
0

is the index of the largest gain: |rn
0

| = |r
max

|. Due to (B.32), we

have

|<[aH
n
1

y]| � |<[aH
n
0

y]|. (B.34)

We will show that under the event G, once (B.30) holds, then sgn(rn
1

<[aH
n
1

y]) 6= bn
1

leads to a contradiction to (B.34). First assume bn
1

= 1. If b̂n
1

= sgn(rn
1

<[aH
n
1

y]) 6=

bn
1

, then

b̂n
1

= sgn

 

r

2

n
1

+
X

m 6=n
1

bmrn
1

rm<
⇥

aH
n
1

am

⇤

+ rn
1

<
⇥

aH
n
1

w
⇤

!

= �1. (B.35)

So the expression inside the sgn operator of (B.35) must be negative. Since r

2

n
1

> 0,

we must have
X

m 6=n
1

bmrn
1

rm<
⇥

aH
n
1

am

⇤

+ rn
1

<
⇥

aH
n
1

w
⇤

< 0. (B.36)

Multiplying the left-hand-side of (B.34) by |rn
1

|, and using the equality |x| · |y| = |xy|,
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we obtain

|rn
1

||<[aH
n
1

y]| = |rn
1

|

�

�

�

�

�

rn
1

+
X

m 6=n
1

bmrm<[aH
n
1

am] + <[aH
n
1

w]

�

�

�

�

�

=

�

�

�

�

�

r

2

n
1

+
X

m 6=n
1

bmrn
1

rm<[aH
n
1

am] + rn
1

<[aH
n
1

w]

�

�

�

�

�

.

(B.37)

Due to (B.35), the last line of (B.37) inside the | · | operator is negative. Using the

fact that r

2

n
1

> 0 and (B.36), and the identity |x + y| = �(x + y) = |y| � x when

x+ y < 0 and y < 0, under the event G, we obtain that

|rn
1

||<[aH
n
1

y]| =

�

�

�

�

�

X

m 6=n
1

bmrn
1

rm<
⇥

aH
n
1

am

⇤

+ rn
1

<
⇥

aH
n
1

w
⇤

�

�

�

�

�

� r

2

n
1

< |rn
1

|(K � 1)µ|r
max

|+ |rn
1

|⌧ � |rn
1

||r
min

|

= |rn
1

|[(K � 1)µ|r
max

|+ ⌧ � |r
min

|].

(B.38)

On the other hand, multiply the right-hand-side of (B.34) by |rn
1

|. Similarly, using

the equality |x| · |y| = |xy| and triangle inequality, under the event G, we obtain

|rn
1

||<[aH
n
0

y]| =

�

�

�

�

�

rn
1

rn
0

bn
0

+
X

m 6=n
0

bmrn
1

rm<
⇥

aH
n
0

am

⇤

+ rn
1

<
⇥

aH
n
0

w
⇤

�

�

�

�

�

> |rn
1

|[|r
max

|� (K � 1)µ|r
max

|� ⌧ ].

(B.39)

Combining (B.38) and (B.39), we have that once (B.30) holds, if bn
1

= 1, then

sgn(rn
1

<[aH
n
1

y]) = �1 leads to |<[aH
n
1

y]| < |<[aH
n
0

y]|, which contradicts (B.34), and

hence sgn(rn
1

<[aH
n
1

y]) = 1. A similar argument can be made for bn
1

= �1, which

completes the proof.
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We are now ready to prove Theorem 1. The proof for the RDD detector is obtained

by combining Lemmas 8, 9 and 10. Lemma 8 ensures that the event G occurs with

probability at least as high as one minus (4.46). Whenever G occurs, Lemma 9

guarantees by using (4.23), that the RDD detector can correctly detect active users

under the condition (4.45), i.e. G ⇢ {Î = I}. Finally, whenever G occurs, Lemma

10 guarantees that, based on the correct support of active users, their transmitted

symbols can be detected correctly under the condition (B.28), i.e. G ⇢ {b̂n = bn, n 2

I}. Clearly condition (B.28) is weaker than (4.45), since (4.45) can be written as

|r
min

| � (K � 1)µ|r
max

| � ⌧ + (⌧ + Kµ|r
max

|) > ⌧ , and hence if (4.45) holds then

(B.28) also holds. In summary, under condition (4.45), G ⇢ {Î = I} \ {b̂ = b}, and

1 � Pe = P{{Î = I} \ {b̂ = b}} � P{G}, which is greater than one minus (4.46),

which concludes the proof for the RDD detector.

We now prove the performance guarantee for the RDDF detector adopting the

technique used in proving Theorem 4 in [9]. First we show that whenever G occurs,

the RDDF detector correctly detects an active user in the first iteration, which follows

from Lemmas 8 and 9. Note that (4.47) implies (B.21), and therefore, by Lemma 9, we

have that by choosing the largest |<[aH
n y]|, the RDDF detector can detect a correct

user in the set I. Second, we show that whenever G occurs, the RDDF detector

correctly detects the transmitted symbol of this active user. Note that (4.47) also

implies (B.30), since (4.47) can be written as |r
min

| � 2⌧/[1 � (2K � 1)µ], which

implies |r
max

| � 2⌧/[1 � (2K � 1)µ], and hence |r
max

| + |r
min

| � 2(K � 1)µ|r
max

| �

2⌧ [1�2(K�1)µ]/[1�(2K�1)µ]+|r
min

| > 2⌧ , since [1�2(K�1)µ]/[1�(2K�1)µ] � 1.

Therefore, by Lemma 10, using a sign detector, we can detect the symbol correctly.

Consequently, the first step of the RDDF detector correctly detect the active user
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and its symbol, i.e. G ⇢ {Î(1) ⇢ I, b(1)n
1

= bn
1

}.

The proof now continues by induction. Suppose we are currently in the kth

iteration of the RDDF detector, 1  k  K, and assume that correct users and their

symbols have been detected in all the k� 1 previous steps. The kth step is to detect

the user with the largest |<[aH
n v

(k)]|. Using the same notations as those in Section

4.2.2 and by definition of v(k), we have

v(k) = AR(b� b(k�1)) +w = ARx(k�1) +w, (B.40)

where x(k�1) , b�b(k�1). This vector has support I/I(k�1) and has at most K�k+1

non-zero elements, since b(k�1) contains correct symbols at the correct locations for

(k� 1) active users, i.e. b(k�1)

n = bn, for n 2 I(k�1). This v(k) is a noisy measurement

of the vector ARx(k�1). The data model in (B.40) for the kth iteration is identical to

the data model in the first iteration with b replaced by x(k�1) (with a smaller sparsity

K � k + 1 rather than K), I replaced by I/I(k�1), and y replaced by v(k). Since

|r(k)
max

| , max
n2I/I(k�1)

|rn| � |r
min

|, (B.41)

we have that under condition (4.47) this model (B.40) also satisfies the requirement

(B.21). Consequently, by Lemma 9, we have that under the event G,

max
n2I/I(k�1)

|<[aH
n v

(k�1)]| > max
n2(I/I(k�1)

)

c
|<[aH

n v
(k�1)]|. (B.42)

Therefore, in the kth iteration, the RDDF detector can detect an active user correctly,

i.e. G ⇢ {Î(k) ⇢ I}, and no index of active users that has been detected before
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will be chosen again. On the other hand, since (4.47) can be written as |r
min

| �

2⌧/[1� (2K � 1)µ], from (B.41) this implies |r(k)
max

| � 2⌧/[1� (2K � 1)µ], and hence

|r(k)
max

|�(2K�1)µ|r(k)
max

| � 2⌧ , and consequently |r(k)
max

|�(2K�2)µ|r(k)
max

|+ |r
min

| � 2⌧ .

Consequently, condition (B.30) is true for (B.40). Then by Lemma 10, we have that

under the event G,

sgn(<[rnk
aH
nk
v(k�1)]) = bnk

, (B.43)

i.e. G ⇢ {b(k)nk = bnk
}. By induction, since no active users will be detected twice, it

follows that the first K steps of the RDDF detector can detect all active users and

their symbols, i.e.

G ⇢ [K
k=1

{Î(k) ⇢ I, b(k)nk
= bnk

} = {Î(K) = I, b(K)

n = bn, n 2 I(K)}. (B.44)

Note that condition (B.21) is weaker than (4.47), since (4.47) can be written as

|r
min

|[1 � (2K � 1)µ] � 2⌧ , which implies |r
max

|[1 � (2K � 1)µ] � 2⌧ . This further

implies |r
max

|[1� 2(K � 1)µ] + |r
min

| � 2⌧ , since 1� 2(K � 1)µ � 1� (2K � 1)µ and

|r
min

| � 0. Consequently, under condition (4.47), from (B.44), G ⇢ {Î = I} \ {b̂ =

b}, and 1 � Pe = P{{Î = I} \ {b̂ = b}} � P{G} which is greater than one minus

(4.46), which concludes the proof for the RDDF detector. This completes the proof

of Theorem 1.

B.4 Proof of Lemma 6

Proof of Lemma 6 requires the following theorem in probability, which bounds the

tail probability of a sum of bounded independent random variables:
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Theorem 2 (Compex Hoe↵ding’s Inequality). [45] Let x

1

, x

2

, · · · , xN be complex-

valued independent random variables satisfying |xn|  cn, n = 1, · · · , N , for some

constant cn � 0 almost surely. Define SN =
PN

n=1

xn, then for any t > 0,

P {|SN � E(SN)| � t}  4 exp

 

� t

2

4
PN

n=1

a

2

n

!

. (B.45)

The lth column of the partial DFT matrix A 2 CM⇥N is given by: [al]m =

e

i 2⇡kml
N

/

p
M , with km, m = 1, · · · ,M , are mutually di↵erent and randomly selected

over {1, · · · , N}. Now the inner product of the lth and pth columns of A is given by

aH
l ap =

M
X

m=1

e

i 2⇡N km(p�l)
/M, (B.46)

which is sum of independent bounded random variables ei
2⇡
N km(p�l)

/M whose absolute

values are less than 1/M . The mean of the sum is zero, E{aH
l ap} = 0, since km is

uniformly distributed over {1, · · · , N}.

Hence we can apply the complex Hoe↵ding’s inequality for some ⌫ > 0:

P
�

|aH
l ap| � ⌫

 

 4 exp

✓

� ⌫

2

4M/M

2

◆

= 4 exp

✓

�⌫
2

M

4

◆

. (B.47)

Now we consider all such inner products and use the union bound:

P
⇢

max
l<p

|aH
l ap| � ⌫

�

 N(N � 1)

2
4 exp

✓

�⌫
2

M

4

◆

< 2N2 exp

✓

�⌫
2

M

4

◆

.

(B.48)

Now let e�c = N

2 exp
⇣

�⌫2M
4

⌘

for some constant c > 0, we have ⌫ =
q

4

M
(2 logN + c).
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Hence with probability exceeding 1� 2e�c, we have

µ , max
l<p

|a0
lap|  ⌫ =

r

4

M

(2 logN + c), (B.49)

which proves Lemma B.4.
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