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ABSTRACT
This paper describes a Multiscale Online Union of Sub-

Spaces Estimation (MOUSSE) algorithm for online tracking of
a time-varying manifold. MOUSSE uses linear subsets of low-
dimensional hyperplanes to approximate a manifold embedded in
a high-dimensional space. Each subset corresponds to the leaf
node in a binary tree which encapsulates the multiresolution anal-
ysis underlying the proposed algorithm. The tree structure and
parameters of the subsets are estimated and sequentially updated
using a stream of noisy samples. For each update, MOUSSE re-
quires only simple linear computations. The update of each hy-
perplane in the estimate is computed via gradient descent on the
Grassmannian manifold. Numerical simulations demonstrate the
strong performance of MOUSSE in tracking a time-varying mani-
fold.

Index Terms— Multiscale analysis, online tracking, manifold
learning, tree structure, low-dimensional approximation

1. INTRODUCTION

Many high-dimensional dynamical systems can be well approxi-
mated using low-dimensional structures. Applications where such
low-dimensional structure can be used include computer network
traffic [1], environmental monitoring [2], and video recognition
and tracking [3]. In these applications, it is desirable to find a
low-dimensional approximation to the data as well as a method to
update the approximation and track the manifold dynamics.

A recent online algorithm called “Grassmannian Rank-One
Update Subspace Estimation” (GROUSE) effectively tracks a sin-
gle subspace using incomplete data vectors[2]. However, when
the data are sampled from a manifold with non-negligible cur-
vature, one linear subspace may not provide a good approxima-
tion. Recent work demonstrates that using a collection of sev-
eral linear subspaces can improve approximation in the fixed sam-
ple setting. The Geometric Multi-Resolution Analysis (GMRA)
wavelet decomposition was developed for analyzing intrinsically
low-dimensional point clouds in high-dimensional spaces and suc-
cessfully applied to a variety of real-world applications [4]. A re-
lated work[5] models data using Gaussian mixture model with low
dimensional structure. However, these approaches are “batch” al-
gorithms which relies on having all observations in memory when
computing a low-dimensional approximation.

In contrast, this paper is focused on online estimation, which
is important in a variety of settings. For instance, the volume of
available data may be so large that batch methods which use all
samples simultaneously are computationally infeasible. Alterna-
tively, we may receive sequential samples from a dynamic en-
vironment and need to track the changing manifold structure in
real-time. This paper describes the Multiscale Online Union of
SubSpaces Estimation (MOUSSE) algorithm, which approximates
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and tracks a manifold using subsets lying on low-dimensional hy-
perplanes. There are four key challenges addressed by this work:
(1) the update of each subspace must depend non-linearly on the
location of the most recent observation relative to the current man-
ifold estimate; (2) the number of subspaces needed for an accu-
rate estimate which is robust to noise is unknown and may vary
with time; (3) to operate efficiently online, the method must use
as little memory and as few computational resources as possible;
(4) when we refine our multiscale approximation of the manifold,
we need accurate initialization of the newly formed subspaces to
allow for fast adaptation to the manifold’s dynamics. These chal-
lenges make the proposed approach a highly nontrivial extension
of previous work.

In MOUSSE, the approximation is multiscale, and the multi-
scale structure is represented through a binary tree. The leaves of
the tree are the subsets that are currently used for the approxima-
tion. Other nodes of the tree represent the subsets that can be used
for different scales of approximation. The tree structure enables
us to quickly adapt the manifold approximation both spatially (as
a function of the manifold’s local curvature) and temporally (as
the manifold evolves). The parameters of the subsets are updated
linearly, and the basis of each subset is updated using a variant
of GROUSE. We show using a numerical example that MOUSSE
can successfully track a one-dimensional curve embedded in a
two-dimensional space as it changes over time. Our method is re-
lated to a probabilistic online manifold learning algorithm [3] [5],
but uses simple non-parametric modeling and easy online updates
that involve only linear computations. Furthermore, there are only
modest memory requirements associated with our method, even as
the number of samples grows.

2. MODEL

Suppose we are given a sequence of data x

1

,x
2

, · · · ,xt, t =

1, 2, · · · , xt 2 RD , with D denoting the ambient dimension. The
data are noisy measurements of a manifold

xt = vt +wt, (1)

where vt 2 Mt, Mt ⇢ RD , and the noise wt is a zero mean
white Gaussian random vector with covariance matrix �2

ID⇥D .
Our goal is to design an online algorithm that approximates the
manifold using the samples received up to time t and updates
the approximation with each new sample to track a slowly time-
varying manifold.

We use a union of subsets to approximate the manifold Mt:
cMt =

S
n2Nt

Sn,t, where Nt contains indices of subsets that
are used for approximation at time t, and Kt , |Nt| is the total
number of subspaces for approximation at time t. Each of these
subset lies on a low-dimensional hyperplane with dimension d and
is parameterized as:

Sn,t = {v 2 RD
:v = Un,t� + cn,t,

�

>⇤�1

n,t�  1, � 2 Rd},
(2)
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Fig. 1. Tracking of a time-varying manifold using multiscale low-
dimensional subsets. The black curve is the underlying manifold,
the dots are noisy samples from the manifold, and the red line
segments are subset approximations.

where Un,t 2 RD⇥d is a basis for the subspace and cn,t 2 RD is
the offset of the hyperplane from the origin. The notation U

> de-
notes transpose of a matrix U . The diagonal matrix ⇤n,t 2 Rd⇥d

specifies the shape of a d-dimensional ellipsoid which reflects the
local manifold curvature. The parameters above will be estimated
online using streaming data. We assume d ⌧ D. Fig. 1 shows
an example where D = 2 and d = 1, i.e., we use line segments
to approximate and track a parabola with time-varying curvature.
The black curve is the manifold, the black dots are the samples,
and the red line segments are the subsets for approximation.

3. APPROXIMATE MAHALANOBIS DISTANCE

To update the subsets, whenever a new sample xt+1

becomes
available, we have to determine the affinity of xt+1

to each sub-
set. For this purpose, one candidate is the Euclidean distance of
xt+1

to the hyperplane of each subset. However, this distance is
problematic, because in our approximation the hyperplanes have
boundaries defined by ellipsoids on these hyperplanes – a point
can be close to a hyperplane but far away from the center of the
subset. An alternative is the Mahalanobis distance, which takes
into account the spread of the samples in the subset: (xt+1

�
cn,t)

>��1

n,t(xt+1

� cn,t), where �n,t is the sample covariance
matrix of the previous data used to estimate the n-th subset. How-
ever, this distance does not reflect the notion of low-dimensional
subspaces since it does not depend on Un,t and requires the stor-
age of the D ⇥D matrix �n,t.

To address this challenge we introduce the following approxi-
mate Mahalanobis distance, which is a hybrid of the Mahalanobis
distance and Euclidean distance. Define the projection of xt+1

onto the n-th hyperplane as

� , U

>
n,t(xt+1

� cn,t), (3)

and the residual as

�? , (I �Un,tU
>
n,t)(xt+1

� cn,t). (4)

The approximate Mahalanobis distance is given by

d(xt+1

,Sn,t) , �

>⇤�1

n,t� + ��1

n,tk�?k
2, (5)

where �n,t is a parameter that estimates the magnitude of the fitting
error per dimension along the D� d dimensions orthogonal to the
subspace, and kxk denotes the `

2

-norm of a vector x.
The distance (5) is an approximation to the Mahalanobis dis-

tance in a low-dimension space. Indeed, if a data cluster has mean
c and covariance matrix �, the Mahalanobis distance of new data

xt+1

to the cluster is given by (xt+1

� c)

>��1

(xt+1

� c). If
we perform an eigendecomposition of � and denote the largest d
eigenvectors and eigenvalues as U and ⇤, respectively, and the re-
maining D � d eigenvalues and eigenvectors as U? and ⇤?, we
can write the Mahalanobis distance as (xt+1

� c)

>��1

(xt+1

�
c) = (xt+1

�ct)
>
[U⇤�1

U

>
+U?⇤

�1

? U

>
?](xt+1

�ct). Com-
paring this equation with (5), we see that the approximate Maha-
lanobis distance is equivalent to equating the minor eigenvalues to
be a small constant ⇤? ⇡ �k,tI , and ⇤k,t = ⇤ contains the d
largest eigenvalues of the covariance matrix.

4. MULTISCALE ONLINE UNION OF SUBSPACES
ESTIMATION (MOUSSE)

In the following we describe Multiscale Online Union of Sub-
Spaces Estimation (MOUSSE), which includes an initialization
from training data and rank-one update using new data. MOUSSE
uses a tree structure, which maintains the statistics necessary to
enable subsequent multiscale updates. After initialization, when
a new sample xt+1

is available, we update the approximation by
first updating the parameters of all subsets (with updates weighted
according to their distances to the new sample) and then updating
the tree structure if necessary.
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Fig. 2. Tree structure for subsets. The subsets for approximation
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4.1. Tree Structure and Initialization

To initialize MOUSSE, we assume a small initial training set of
samples, and perform a nested bi-partition of the training data set
to form a tree structure, as shown in Fig. 2. The root of the tree
represents the entire data set, the children of each node represent
a bipartition of the data in the parent node. The bipartition of the
data can be performed by the k-means algorithm. For each of these
subsets, we compute the parameters for each node via Algorithm
1. The initialization is recursive: given a specified error tolerance
✏ = c� for some constant c, typically with c 2 (1, 3), the bipar-
tition continues until all leaf nodes have fitting error less than ✏.
Following this process, we perform one additional bi-partitioning
of the data in the leaf nodes to form virtual nodes, which are sub-
sets that are one-scale finer than the leaf nodes. The virtual nodes
keep information we would use for a finer scale approximation.
The parameters of the virtual nodes are initialized the same way
as Step 2 to Step 5 in Algorithm 1. Finally the leaf nodes, i.e.,
the subsets Sn,0 with indices n 2 N

0

are used as initial approx-
imation to the manifold. The total number of nodes in the tree
(including virtual nodes) is T

0

, and the total number of subsets for



approximation (leaf nodes) is K
0

. This tree construction is similar
to that used in [4] except that here we introduce virtual nodes.

Algorithm 1 Initialize node n

1: Input: node index n, data {y
1

, · · · ,ym0
} for n-th subset, tol-

erance ✏
2: cn,0 := m�1

0

Pm0
m=1

ym

3: Form covariance matrix:
� := m�1

0

Pn0
m=1

(ym � cn,0)(ym � cn,0)
>

4: Form eigendecomposition:
� = [U U?][⇤ ⇤?][U U?]

>, U 2 RD⇥d

5: Un,0 := U , ⇤n,0 := ⇤, �n,0 := tr(⇤?)/(D � d)
6: if �n,0 > ✏ then
7: Bi-partition data
8: Set two partitions as children, with index nl and nr

9: Initialize node nl and nr

10: end if

4.2. Subset Update

We use the following method to update the subsets with new data.
First we compute distance d(xt+1

,Sn,t), for all nodes in the tree
n 2 Tt, where Tt contains indices for all nodes at time t. Then we
linearly update the parameters of all the subsets using Algorithm 3.
The step-size of update for each subset is inversely proportional to
their distance to the new sample. In particular, we find the closest
subset, denoted n⇤, that has the minimum distance to the sample,
denote this minimum distance as d⇤, and denote its parent as np.
Also find its virtual node child with smaller distance as nv . Since
all the ancestors of n⇤ are nested, they are the best approximations
for the new sample at different scales. Hence we assign the same
step-size ↵

0

> 0 to n⇤, nv , and np and all the ancestor nodes. The
step-size for other nodes are chosen to be exponentially decaying
in distance. The step-size for the n-th subset is chosen to be

↵n,t = ↵
0

exp{�[d(xt+1

,Sn,t)� d⇤]
2/(�d2⇤)}, (6)

where the constant � > 0 controls the decay rate. We up-
date the basis Un,t for each node on the Grassmannian man-
ifold using a modified version of GROUSE [2] for a hyper-
plane (instead for a subspace). The step-size ⌘ is chosen to be
⌘ = ⌘

0

↵n,t/(kxt+1

k↵
0

), for a constant ⌘
0

> 0.

4.3. Tree Structure Update

When the curvature of the manifold changes and cannot be ac-
curately and parsimonisouly characterized by the current subset
approximations, we update the tree structure by growing the tree
or pruning the tree, which we refer to as “splitting” and “merg-
ing”, respectively. Splitting increases resolution for approximation
at the cost of higher complexity. Merging reduces resolution but
lowers complexity. When making decision on splitting or merg-
ing, we have to take into considerations the approximation errors
as well as the model complexity (the number of subsets Kt used in
the approximation). This is related to the complexity-regularized
tree estimation methods [6] and the notion of minimum descrip-
tion length (MDL) in compression theory. In particular, we use
the sum of the fitting error plus a penalty on the number of sub-
sets used for approximation as the cost function when deciding to
split or merge. The regularization parameter µ > 0 controls the
tradeoff between the data fit and the estimator complexity. The
complete steps of MOUSSE are summarized in Algorithm 2.

By splitting, we replace a leaf node with its two virtual nodes
for approximation. For each of the new leaf node, we create two

Algorithm 2 MOUSSE
1: Input parameters: ✏, µ
2: Initialize tree structure
3: for t = 0, 1, · · · do
4: Given new data xt+1

5: for n 2 Nt do
6: � = U

>
n,t(xt+1

� cn,t)

�? = (I �Un,tU
>
n,t)(xt+1

� cn,t)

7: d(xt,Sn,t) = �

>⇤�1

n,t� + ��1

n,tk�?k2
8: end for
9: Calculate n⇤ = argminn2Nt d(xt+1

,Sn,t)

10: Calculate step-sizes, update all nodes n 2 Tt

11: if �n⇤,t > ✏ and
�nv,t + µ log(Kt + 1) < �n⇤,t + µ log(Kt) then

12: Split n⇤
13: end if
14: if �n⇤,t < ✏ and

�np,t + µ log(Kt � 1) < �n⇤,t + µ log(Kt) then
15: Merge n⇤ and its sibling
16: end if
17: Update Nt and Tt

18: end for

Algorithm 3 Update node n

1: Input: node index n, ↵n,t, ⌘, and subset parameters
2: Update: cn,t+1

= (1� ↵n,t)cn,t + ↵n,txt+1

.
3: Update: �(m)

n,t+1

= (1�↵n,t)�
(m)

n,t +↵n,t�
2

m, m = 1, · · · , d.

4: Update: �n,t+1

= (1� ↵n,t)�n,t + k�?k2/(D � d)
5: Update basis Un,t using modified GROUSE
6: r = xt+1

� cn,t �Un,t�

7: ✓ = krkkUn,t�k
8: Un,t = Un,t +

cos(✓⌘)�1

k�k2 Un,t��
>
+ sin(✓⌘) r

krk
�>

k�k .

new virtual nodes. Denote the index of a new leaf as n
0

, and the
pair of new virtual nodes as nl and nr . We initialize the parameter
of nl and nr as

cnl,t = cn,t +

q
�(1)

n,t/2u1

,

cnr,t = cn,t �
q

�(1)

n,t/2u1

,

(7)

where u

1

is the first column in Un0,t. By doing so we split the
subset of the parent node into two along the longest axis of the
ellipsoid. The basis of nl and nr are Unl,t = Unr,t = Un0,t,
and the ellipsoid parameters of nl and nr are �(1)

nl,t
= �(1)

nr,t =

�(1)

n0,t
/2, and �(m)

nl,t
= �(m)

nr,t = �(m)

n0,t
, m = 2, · · · , d, respectively.

For merging, we replace two leaf nodes n
1

and n
2

with their
parent node np, turn nodes n

1

and n
2

into virtual nodes, and delete
the four virtual nodes of n

1

and n
2

.

5. NUMERICAL EXAMPLE

We consider a time varying manifold in R2, with D = 2, d = 1.
Points on the manifold vt , [vt,1, vt,2]

> obey vt,2 = a(t)v2t,1.
The curvature a(t) = at, for t = 1, · · · , 600, and a(t) =

a(1200 � t), for t = 601, · · · , 1200. The rate of change is
a = 10

�4, the error tolerance is given by ✏ = 10

�3. The other pa-
rameter values are ⌘

0

= 0.1, ↵
0

= 0.1, � = 0.01, and µ = 10

�3.
The data are generated by adding noise with variance �2

= 10

�4.



The noise variance is comparable to the minimum sample mean
over t (which is 10

�4). Proof-of-concept results are in a video
online at http://people.ee.duke.edu/⇠yx44/MOUSSE.m4v. In this
display, the dashed line corresponds to the true manifold, the red
lines correspond to the estimated union of subspaces, and the
+ signs correspond to the past 500 samples, with darker colors
corresponding to more recent observations. From this video, it is
clear that we are effectively tracking the dynamics of the mani-
fold, and keeping the representation parsimonious so the number
of subspaces used by our model is proportional to the curvature of
the manifold. As the curvature increases and decreases, the num-
ber of subspaces used in our approximation similarly increases
and decreases. The snapshots of this video at time t = 550 and
t = 1150 are shown in Fig. 3. The number of subsets Kt and
fitting error as a function of time are shown in Fig. 4. The red line
in Fig. 4(b) corresponds to 10

�3.
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Fig. 3. Approximation of MOUSSE at t = 550, 1150.

6. CONCLUSIONS

This paper presents MOUSSE, which can approximate and
track a time-varying manifold using subsets supported on low-
dimensional hyperplanes. We have demonstrated the good perfor-
mance of MOUSSE in tracking a curve in two-dimensional space.
We anticipate our method will be robust to missing elements in
each observation vector, and this is a key element of our ongoing
work. Our method is very fast and scalable because of the multi-
scale structure we employ. Moreover, our method does not need
the knowledge of model order (i.e., the best number of subsets
to use at each time) since our method is fully data adaptive. Our
ongoing research include studying the performance of MOUSSE
in approximating and tracking high-dimensional and experimental
data.
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Fig. 4. Performance of MOUSSE.
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