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Clustering

I A basic tool in data mining/pattern recognition

I Divide a set of data into groups

I Samples in one cluster are closer

I Samples in different clusters are far apart

I Usually done without knowing “label” information:
unsupervised learning



Approach

I Represent samples by feature vectors: X1, . . . , Xn

I Define a distance measure for the closeness between samples
d(Xi, Xj) (e.g. Euclidean distance)

I Choose K number of clusters (fixed)

I A clustering of points is an assignment function
C : Rp → {1, . . . ,K} that maps Xi to a group label
(short-handed as C(i) for the ith sample)

I C(i) = k means Xi is assigned to group k

I nk is the number of points in the group k

I Goal: minimize within-cluster scatter
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1
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dij



Simple example

I Red clustering: W = (0.25 + 0.53 + 0.52)/3 + 0.25/2 = 0.56

I Blue clustering: W = 0.25/2 + (0.1 + 0.17 + 0.25)/3 = 0.30

Blue cluster is better.
courtesy: Ryan Tibshirani.



Solving optimization problem

I To minimize W by choosing C is exponentially complex: a
combinatoric problem and one has to enumerate all possible
assignment of n points into K groups

I Instead, we will solve this approximately, using K-means



K-means for clustering

I Assume there are K clusters with centroids {Z1, . . . Zk}
I Each training sample is assigned to one cluster

I Cost function: total mean squared error between the training
samples and their representative cluster centroids

argmin
Z,C

n∑
i=1

‖Xi − ZC(i)‖



Two steps in K-means

I Fix centroids, update then assignment using the nearest
neighbor rule

C(i) = arg min
j∈[1,...,K]

‖Xi − Zj‖

I Fix assignments for samples, update the centroids by a simple
averaging

Zj =

∑
C(i)=j Xi

nj

where nj is the number of samples assigned to cluster j

I Alternate these two steps until converge to a local minimal
(the algorithm will converge since the objective function is
non-increasing)

I Solution depends on initialization



K-means example

courtesy: Ryan Tibshirani.



Graph clustering

I Two different criteria
I Compactness, e.g., K-means
I Connectivity: spectral clustering

courtesy: Aarti Singh.



Graph clustering

I Given data X1, . . . , Xn and similarity w(Xi, Xi), partition the
data into groups so that points in a group are similar and
points in different groups are dissimilar

I For example, Gaussian kernel to define similarity

Wij = e
‖Xi−Xj‖

2

2σ2

σ2 controls the size of the neighborhood



Graph partition
I Partition graph into sets (e.g., two sets)
I minimizing the total weights of the edges cut by the

partitioning

cut(A,B) =
∑

i∈A,j∈B
wij

I Consider the normalized cut

Ncut(A,B) = cut(A,B)(
1

vol(A)
+

1

vol(B)
)

di =
∑n

j=1Wij

vol(A) =
∑

i∈A di: measures the size of A by the weights of
its edges



Graph Laplacian

I Define diagonal matrix D = diag{d1, . . . , dn}
I Similarity matrix W

I The unnormalized graph Laplacian matrix is defined by

L = D −W

I Properties
I ∀f ∈ Rn

fTLf =
1

2

n∑
i,j=1

Wij(fi − fj)2

I L is symmetric and positive semi-definite
I the smallest eigenvalue of L is o and the eigenvector is the

all-one vector
I L has n non-negative, real-valued eigenvalues



Normalized cut and graph Laplacian

I Finding a partition to minimize the normalized cut

minNcut(A,B) = min
fTLf

fTDf

fi =

{
1

vol(A)
if i ∈ A

− 1
vol(B)

if i ∈ B , f = [f1, . . . , fn]
T

I Relaxation

min
fTLf

fTDf
s.t. fTD1 = 0

I Solution: f : second eigenvector of generalized eigenvalue
problem

Lf = λDf

I Obtain cluster assignment by thresholding f at 0


