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Why PCA

I Real-world data sets usually exhibit structures among their
variables

I Principal component analysis (PCA) rotates the original data
to new coordinates

I Dimension reduction
I Classification
I Denoising



Data compression



Face recognition

Eigenfaces



Denoising



Data visualization

“The system collects opinions on statements as scalar values on a
continuous scale and applies dimensionality reduction to project
the data onto a two-dimensional plane for visualization and
navigation.” Using Canonical Correla.on Analysis (CCA) for Opinion

Visualiza.on, Faridani et.al, UC Berkeley, 2010.



What is PCA
I Given a data matrix X ∈ Rn×p: n samples, and p variables
I Transform data set to one with a few number of principal

components

vTj xi, j = 1, 2, . . . ,K, i = 1, 2, . . . , n.

I It is a form of linear dimension reduction
I Specifically, “interesting directions” means “high variance”



Projection onto unit vectors

(xT v) ∈ R: score
(xT v)v ∈ Rp: projection



Example: projection onto unit vectors



Projections onto orthonormal vectors

Source: R. Tibshrani.



First principal component

I The first principal component direction of X is the unit vector
v1 ∈ Rp that maximizes the sample variance of Xv1 ∈ Rn

among all unit length vector

v1 = arg max
‖v‖2=1

(Xv)T (Xv)

Note that

Xv =

x
T
1 v
...

xTnv


are projection of each of the sample on a unit length vector

I Xv1 is the first principal component score



Eigenvector and eigenvalue

v1 = arg max
‖v‖2=1

(Xv)T (Xv)

I v1 corresponds to the largest eigenvector of XTX: sample
covariance matrix

I vT1 X
TXv1, the largest eigenvalue of XTX is the variance

explained by v1
I Rayleigh quotient R(v) = vTAv

vT v

λmin ≤
vTAv

vT v
≤ λmax



Example: X ∈ R50×2



Beyond first principal component
I What’s next? The idea is the find orthogonal directions of the

remaining highest variance
I Orthogonal: since we have already explained the variance

along v1, we need new direction that has no “overlap” with v1
to avoid redundancy.

v2 = arg max
‖v‖2=1,vT v1=0

(Xv)T (Xv)

I Can repeat this process to find the kth principal component
direction

vk = arg max
‖v‖2=1,vT vj=0,j=1,...,k−1

(Xv)T (Xv)



Example: X ∈ R50×2



Properties

I There are at most p principal components

I [v1, v2, . . . , vp] can be found from eigendecomposition
Let Σ = XTX

Σ = UΛUT

where Λ = diag{λ1, . . . , λp}, U is orthogonal matrix

I Can be computed efficiently if you only need the first principle
component: power’s method

v(k) := Σv(k−1)/‖Σv(k−1)‖

I In general can be computed using Jacobi’s method

I Sparse Σ



PCA example: financial data analysis

I Daily swap rates of eight maturities from 7/3/2000 to
7/15/2005

data from

http://www.stanford.edu/~xing/statfinbook/data.html

http://www.stanford.edu/~xing/statfinbook/data.html




We typically take difference of these time series: yt = xt − xt−1, to
make it more “stationary”.



Use the MATLAB command to perform PCA

eigenvalues first 3 eigenvectors



Resulted first 3 reduced dimensions


