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Motivation: non-linear regression

> Bone mineral density versus age for male versus female.

» To deal with non-linearity: split the data into a number a
parts; perform a regression on each part.

» Splitting either via evenly spaced “knots”, or via known
locations based on external information.

Piecewise constant model
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Piecewise linear model
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Continuous piecewise linear model
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Spline

» A spline is a piecewise polynomial function.
> A cubic spline is 3rd order polynomial.
» Fit piecewise continuous splines to noisy data.

The concept of spline is using a thin , flexible strip (called a
spline) to draw smocth curves through a set of points.

https://www.youtube.com/watch?v=LgodR7pww\W8



Quadratic splines

spniamd




Cubic splines
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Formal definition

» Assume f(x;) = f; of the function f(x) at the points
To <1 <...<Tp.
» A cubic interpolating spline s(x) is a function on the interval
[0, x| satisfying
» s(x) is a cubic polynomial on each node-to-node interval
@i, 1]
» s(xz;) = f; at each node z;
» the second order derivative s/ (z) exists and is continuous
throughout the entire interval [z, 2]
» at the terminal nodes, s”(z¢) = s"(z,) =0

w0l Spline Interpolation o




» Cubic splines are derived from the physical laws that govern
bending of thin beams.

» An approximate solution of the minimum energy bending
equation, valid when the amount of bending is small.




Properties of spline

» There is exactly one function s(x) on [z, x,] satisfying these
properties.

> Intuitively, these requirements leads to well-defined math
problems.
» For n knots, the number of parameters can be 4n
> At the same time,
» 2n zeroth-order condition s(x;) = f;
» n — 1 first order condition s’(z) continuous at knots
» n + 1 second order conditions
Number of unknowns = number of parameters (necessary
condition)



Computation for a spline

1/ho

inter-knot distances h; = ;41 — x;

second order derivative o; = s”(x;) (n + 1 parameters to
parameterize the cubic spline function)

we can derive the following
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Solving the linear system of equations

» Matrix M is symmetric and positive definite, and tridiagonal
» Cholesky factorization

M = LDL"
where ~ _
1 0
al 1
I =
L 0 ‘e Anp—2 1_

and D is a diagonal matrix.

This enables efficient inverse of the matrix
o=M"1Qf=(L")"'DTLTIQf

inversion of L and D has O(n) complexity.



Final expressions for splines

a; ag;
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Minimum energy property

» Why spline? For any other twice continuously differentiable

function N )
/ g (@) > / "¢ (2)]2d
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Error bound
Suppose that f(z) is twice continuously differentiable and s(z) is
the spline interpolating f(z) at the knots g < z1 < -+ < zp,. If
h = maxogign_l(xiﬂ — .CL‘Z) then
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RMS error = 3.76425E . 7 RMS error = 1.3619E . 3

f(z) = sin(2x) /x.



Problem with fitting a global polynomial

Runge's example

@) =

High order interpolation using a global polynomial often exhibit
these oscillations

» f(x) interpolated using 15th > f(:E) inte.rpolated using
order polynomial based on cubic spline based on 15

equidistant sample points. equidistant samples.



Example

i 0 1 2 3

Xj 0.9 1.3 19 21

yi 13 15 18 21
hi = xj11 — X 0.4 0.6 0.2

The equation for solving o becomes

2.0 04] [o1] _ [0.5
04 16| |oo] — |04
= 01 = 0.2105, 09 = 0.1974
=

So(x) = 0.0877(z — 0.9)% + 3.736(z — 0.9) + 3.25(1.3 — x)

S1(x) = 0.0585(x — 1.3)% + 0.0548(1.9 — z)3 + 3.0636(x — 1.3) 4 2.4790(1.9 — z)

So(x) = 0.1645(x — 1.9)% + 10.5(z — 1.9) + 9.2434(2.1 — x)



Nonlinear regression

» Given responses ¥;, and variables x;
’inf(xi)—l-Gi, 1=0,....,n

f: unknown regression function

spabend




Nonlinear regression

» Given weights wg, w1, ..., Ww,, w; > 0, minimize
Jol) = @Y wilys = sl + (L= ) [ 15" (@)Pda
i=0 o

> tradeoff between smoothness of s and goodness of fit
a€(0,1)

Noisy Observations




Matrix-vector parameterization

» One can show
Tn

s"(z)%dx = o' Mo
@

Jo(f)=aly= "Wy —-+1-a)ffQ"M'Qf
where W = diag{wyo, ..., w,}
» spline function s parameterized by f

» solution
f=[aW+1-a)QTM QI aWy
» one can show

& = [aM + (1 - a)Q"W Q) aQy



Cross validation

» For notational convenience, we reformulate the optimization
problem

= sz[yz — s(x))* + )\/:vn [s" (x)]?dx
i=0 *0

A=(1-a)/a

» Define leave-one-out cost function, for 1 < k <n

hf\_k)( —argmm Z w;[y; z;)]? —i—)\/ 8" (x)]*dx

i=0,i£k Zo

» Define cross-validation criterion function

n

V) = Y e — A5 ()

k=0



Example with n = 100 points:

A too small A just right A too big



One can show . )
~ [yr — F(V)4]
CV(A) = —
=2 T BOuP
Generalized CV (GCV): replace [S(\)]kr by its average, since it
can get close to 1.

~

“~ [yk — f(N))?
Gov(y) = S e JVT
kzzo 1 Tsenye

where

S(\) = [W 4+ QT MtQ~'w

Noisy Observations

Generalized Cross Validation

Gev()




Bi-cubic interpolation

A

1D nearesl- Linear Cubic
neighbour
2D nearest- Bilinear Bicubic

neighbour



