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Motivation: non-linear regression
I Bone mineral density versus age for male versus female.
I To deal with non-linearity: split the data into a number a

parts; perform a regression on each part.
I Splitting either via evenly spaced “knots”, or via known

locations based on external information.

Piecewise constant model



Piecewise linear model



Continuous piecewise linear model



Spline

I A spline is a piecewise polynomial function.

I A cubic spline is 3rd order polynomial.

I Fit piecewise continuous splines to noisy data.

https://www.youtube.com/watch?v=LgodR7pwwW8



Quadratic splines



Cubic splines



Formal definition

I Assume f(xi) = fi of the function f(x) at the points
x0 < x1 < . . . < xn.

I A cubic interpolating spline s(x) is a function on the interval
[x0, xn] satisfying

I s(x) is a cubic polynomial on each node-to-node interval
[xi, xi+1]

I s(xi) = fi at each node xi
I the second order derivative s′′(x) exists and is continuous

throughout the entire interval [x0, xn]
I at the terminal nodes, s′′(x0) = s′′(xn) = 0



I Cubic splines are derived from the physical laws that govern
bending of thin beams.

I An approximate solution of the minimum energy bending
equation, valid when the amount of bending is small.



Properties of spline

I There is exactly one function s(x) on [x0, xn] satisfying these
properties.

I Intuitively, these requirements leads to well-defined math
problems.

I For n knots, the number of parameters can be 4n

I At the same time,
I 2n zeroth-order condition s(xi) = fi
I n− 1 first order condition s′(x) continuous at knots
I n+ 1 second order conditions

Number of unknowns = number of parameters (necessary
condition)



Computation for a spline
I inter-knot distances hi = xi+1 − xi
I second order derivative σi = s′′(xi) (n+ 1 parameters to

parameterize the cubic spline function)
I we can derive the following

Mσ = Qf

M =
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σ = [σ1, · · · , σn−1], f = [f0, f1, . . . , fn]
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Solving the linear system of equations

I Matrix M is symmetric and positive definite, and tridiagonal

I Cholesky factorization

M = LDLT

where

L =
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and D is a diagonal matrix.

This enables efficient inverse of the matrix

σ =M−1Qf = (LT )−1D−1L−1Qf

inversion of L and D has O(n) complexity.



Final expressions for splines

si(x) =
σi
6hi

(xi+1 − x)3 +
σi+1

6hi
(x− xi)3

+
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)
(xi+1 − x)

i = 0, 1, . . . , n− 1.



Minimum energy property

I Why spline? For any other twice continuously differentiable
function ∫ xn

x0

[g′′(x)]2dx ≥
∫ xn

x0

[s′′(x)]2dx



Error bound
Suppose that f(x) is twice continuously differentiable and s(x) is
the spline interpolating f(x) at the knots x0 < x1 < · · · < xn. If
h = max0≤i≤n−1(xi+1 − xi) then

max
x0≤x≤xn

|f(x)− s(x)| ≤ h3/2[
∫ xn

x0

f ′′(y)2dy]1/2.

f(x) = sin(2x)/x.



Problem with fitting a global polynomial

Runge’s example

f(x) =
1

1 + x2

High order interpolation using a global polynomial often exhibit
these oscillations

I f(x) interpolated using 15th
order polynomial based on
equidistant sample points.

I f(x) interpolated using
cubic spline based on 15
equidistant samples.



Example

The equation for solving σ becomes[
2.0 0.4
0.4 1.6

] [
σ1
σ2

]
=

[
0.5
0.4

]
⇒ σ1 = 0.2105, σ2 = 0.1974
⇒

S0(x) = 0.0877(x− 0.9)3 + 3.736(x− 0.9) + 3.25(1.3− x)

S1(x) = 0.0585(x− 1.3)3 + 0.0548(1.9− x)3 + 3.0636(x− 1.3) + 2.4790(1.9− x)

S2(x) = 0.1645(x− 1.9)3 + 10.5(x− 1.9) + 9.2434(2.1− x)



Nonlinear regression

I Given responses yi, and variables xi

yi = f(xi) + εi, i = 0, . . . , n

f : unknown regression function



Nonlinear regression

I Given weights w0, w1, . . . , wn, wi > 0, minimize

Jα(s) = α

n∑
i=0

wi[yi − s(xi)]2 + (1− α)
∫ xn

x0

[s′′(x)]2dx

I tradeoff between smoothness of s and goodness of fit
α ∈ (0, 1)



Matrix-vector parameterization

I One can show ∫ xn

x0

s′′(x)2dx = σTMσ

Jα(f) = α(y − f)TW (y − f) + (1− α)fTQTM−1Qf

where W = diag{w0, . . . , wn}
I spline function s parameterized by f

I solution

f̂ = [αW + (1− α)QTM−1Q]−1αWy

I one can show

σ̂ = [αM + (1− α)QTW−1Q]−1αQy



Cross validation

I For notational convenience, we reformulate the optimization
problem

Jλ(s) =

n∑
i=0

wi[yi − s(xi)]2 + λ

∫ xn

x0

[s′′(x)]2dx

λ = (1− α)/α
I Define leave-one-out cost function, for 1 ≤ k ≤ n

h
(−k)
λ (x) = argmin

s

n∑
i=0,i 6=k

wi[yi − s(xi)]2 + λ

∫ xn

x0

[s′′(x)]2dx

I Define cross-validation criterion function

CV(λ) =
n∑
k=0

[yk − h
(−k)
λ (xk)]

2





One can show

CV(λ) =
n∑
k=0

[yk − f̂(λ)k]2

[1− [S(λ)]kk]2

Generalized CV (GCV): replace [S(λ)]kk by its average, since it
can get close to 1.

GCV(λ) =
n∑
k=0

[yk − f̂(λ)k]2

[1− Tr(S(λ))
(n+1) ]2

where
S(λ) = [W + λQTM−1Q]−1W
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Bi-cubic interpolation


