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Motivating example: real estate agent
Data was collected on 100 homes recently sold in a city. It
consisted of the sale price, house size, the number of bedrooms, the
number of bathrooms, the lot size, and the annual real estate tax.
Use price as the response variable and determine which of the
these factors should be included in the regression model.



Goal of model selection

yi = a1x1i + · · ·+ apxpi + εi, i = 1, . . . , n

I When we have p variables (with many possible interactions
xixj), it can be difficult to find a good model (a subset of
variables to explain response)

I Which main effect and interaction do we include?
“interpretable model”

I Essentially this is a combinatoric problem with 2p possibilities

I Model selection tries to “simplify” this task

I The problem of picking out the relevant variables from a
larger set is called “model selection” or “variable selection”

I estimating some coefficients to be exactly 0



Bias-Variance tradeoff

yi = a1x1i + · · ·+ apxpi + εi, i = 1, . . . , n

εi ∼ N (0, σ2)

MSE = BIAS2 + Variance



Ridge regression

I Ridge regression shrinks the estimated coefficient towards zero
to reduce variance

min
β
‖y −Xβ‖22 + λ‖β‖22︸ ︷︷ ︸

penalty

I Solution: β̂ = (XTX + λI)−1XT y

I Here λ ≥ 0 is a regularization parameter, which is tuned to
control the strength of the penalty term

I λ = 0: linear regression

I λ =∞, β̂ = 0

I for λ in between, we balance the bias and variance of the
model



Numerical example

n = 50, p = 30, σ2 = 1, λ = 25



Ridge regression doesn’t perform model selection
I Now if we vary λ to get different ridge regression coefficients,

the larger the λ the more shrunken
I Note that gray coefficient paths are not exactly zero, they are

shrunken, but still nonzero



Lasso

The lasso estimate

min
β
‖y −Xβ‖22 + λ‖β‖1

I The penalty term ‖β‖22 is replace by `1 norm ‖β‖1
I λ controls the strength of the penalty

I lasso is able to perform model selection in the linear model

I As λ increases, more coefficients are set to 0 (less variables
are selected)

I Among the nonzero coefficients, more shrinkage is employed

R. Tibshirani, 1996, Regression shrinkage and selection via the lasso.



Example: prostate data

I We are interested in the level of prostate-specific antigen
(PSA) elevated in men who has prostate cancer.

I Measure PSA on n = 97 patients, p = 8 clinical variables

Example: prostate data

Recall the prostate data example: we are interested in the level of
prostate-specific antigen (PSA), elevated in men who have prostate
cancer. We have measurements of PSA on n = 97 men with
prostate cancer, and p = 8 clinical predictors. Ridge coe�cients:
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What if the people who gave this data want us to derive a linear
model using only a few of the 8 predictor variables to predict the
level of PSA?
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Now the lasso coe�cient paths:
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We might report the first 3 coe�cients to enter the model: lcavol
(the log cancer volume), svi (seminal vesicle invasion), and lweight
(the log prostate weight)

How would we choose 3 (i.e., how would we choose �?) We’ll talk
about this later
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Ridge Lasso

I If we want the 3 leading factors, we report “cancer volume”,
“seminal sesicle invasion”, “prostate weight”



Why does lasso gives zero coefficients?
Why does the lasso give zero coe�cients?

(From page 71 of ESL)
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Choose a value for λ

I the value of λ controls how many variables are selected

I larger λ: more emphasis on regularization term, less emphasis
on data fit

I How to choose λ to achieve a good bias-variance tradeoff?
Cross-validation



Prediction errors

I regression model yi = xTi β + εi

I using training data (xi, yi), i = 1, . . . , n
fit model by finding β̂

I average prediction error over another set of observations
y′i = x′Ti β + ε′i that are independent of training data

PE(β̂) = E

[
1

n

n∑
i=1

(y′i − x′Ti β̂)
2

]

I prediction error is a function of λ since β̂ depends on λ

I Goal: find λ to minimize PE(λ)



Test error

I When it’s not easy to compute the expectation, we use test
error or Residual Sum of Square (RSS) to estimate prediction
error

I test data (x′i, y
′
i)

RSS(λ) =
1

n

n∑
i=1

(y′i − x′Ti β)
2

I we do not really have “test” data when algorithm is developed

I idea: use part of training data for training, the remaining
training data for estimating testing error, called
cross-validation



K-fold cross validation

I For a number K, split the training samples into K batches
(commonly K = 5 or K = 10)

I training on all but the kth part, and then validating on the
kth part, iterating over k = 1, . . . ,K

RSS(λ) =
1

K

K∑
i=1

RSSi(λ)

I When K = n, called leave-one-out cross-validation, because
we leave out one data point at a time

For a number K, we split the training pairs into K parts or “folds”
(commonly K = 5 or K = 10)

K-fold cross validation considers training on all but the kth part,
and then validating on the kth part, iterating over k = 1, . . . K

(When K = n, we call this leave-one-out cross-validation, because
we leave out one data point at a time)
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CV error
Having done this, we get a cross-validation error curve CV(✓) (this
curve is a function of ✓), e.g.,
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and we choose the value of tuning parameter that minimizes this
curve,

✓̂ = argmin
✓2{✓1,...✓m}

CV(✓)
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Example: choosing � for the lasso (continued)

The cross-validation error curve from our lasso example, with ±
standard errors:
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λ̂ = 3.458
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Leave-one-out short cut

I for leave-one-out CV, test error can be calculated in close form
(saves computation, without having to average CV errors)

RSS(λ) =
1

n

n∑
i=1

[
yi − xTi β̂

1− Sii

]2

S = X(XTX + λI)−1XT



Cross-validation alternatives

Cross-validation is a highly popular tool, but it is not the only way
to choose λ. There are other ways

I Information criterion like AIC, BIC

I SURE (Stein’s Unbiased Risk Estimate)

I Theoretically-guided choices (problem specific)



RSS is biased

I one can show that the training error is a downward-biased
estimate of PE, and the bias is

E(RSS)− PE = −2
n∑
i=1

cov(ŷi, yi)

I for linear estimation ŷi = Ayi for some A

E(RSS)− PE = −2σ2Tr(A)

i.e.
RSS + 2σ2Tr(A)

is an unbiased estimator of the prediction risk.



Cp statistic

I Given some model S ∈ {1, . . . , p}

ŷi = Ayi, A = XS(X
T
SXS)

−1XT
S

where XS : the submatrix of X only with the columns
corresponding to the selected variables

Tr(A) = Tr(XS(X
T
SXS)

−1XT
S )

=Tr((XT
SXS)

−1XT
SXS) = Tr(IS) = |S|

I Unbiased estimate of the prediction error: Cp statistic

RSS︸︷︷︸
data fit error

+ 2|S|σ̂2︸ ︷︷ ︸
model complexity



I Cp statistic has an equivalent form: Akaike Information
Criterion (AIC)

Cp =
RSS

σ̂2
− n+ 2|S|

I Bayesian Information Criterion (BIC)

Cp =
RSS

σ̂2
− n+ |S| log n


