
ISyE 6416: Computational Statistics
Spring 2017

Lecture 8: Hidden Markov Model

Prof. Yao Xie

H. Milton Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology

Outline

I Motivating applications

I Set-up

I Forward-backward algorithm

I Viterbi algorithm

I Baum-Welch algorithm for model estimation

Speech recognition

Let each spoken word be represented by a sequence of speech
signals.

One speaks of an HMM ’generating’ a sequence. The HMM is composed of a number
of states. Each state ’emits’ symbols (residues) according to symbol-emission
probabilities, and the states are interconnected by state-transition probabilities. Start
from some initial state, a sequence of states is generated by moving from state to
state according to the state transition probabilities until an end state is reached. Each
state then emits symbols according to that state’s emission probability distribution,
creating an observable sequence of symbols. - L. R. Rabiner, A tutorial on hidden
Markov models and selected applications in speech recognition, Proc. IEEE, 1989

Genetics

For a given observed DNA sequence, we are interested in inferring the hidden state
sequence that ’generated’ it, that is, whether this position is in a CG-rich segment or
an AT-rich segment.

Gesture recognition

Gesture recognition is a topic in computer science and language technology with the
goal of interpreting human gestures via mathematical algorithms. Gestures can
originate from any bodily motion or state but commonly originate from the face or
hand, e.g., kinetic user interface.

Hidden Markov Model

I HMM is a Markov chain, where at each time, the hidden state
determines a observation.

I Goal is to infer the hidden state from the sequence of
observations.

I Its special structure enables efficiently statistical estimation: a
special case of graphical model

I HMM useful to model dependence in time sequence

Specifications

I Circles: states

I arrows: probabilistic dependencies between states.

I Green: hidden states. Each state only depends on previous
state.

I Purple: observations. Only depends on their corresponding
hidden states.

The past is independent of the future given the present.

Formalization

I Time horizon t = 1, . . . , T , number of possible states K

I {S,O,Π, A,B}
I Π = {πi} are the initial state probabilities

I A = {aij} are the state transition probabilities,
i, j = 1, . . . ,K

I B = {bk`} are the observation state probabilities,
k = 1, . . . ,K, ` = 1, . . . , |O|

Example: occasionally dishonest casino

I K = 2

I Hidden states St ∈ {F,L}
I Observations
Ot ∈ {1, 2, . . . , 6}

I Initial state probability
π1 = π2 = 1/2

I Transition matrix

A =

[
0.9 0.1
0.05 0.95

]
I Emission matrix

B =

[
1/6 1/6 · · · 1/6
1/2 1/10 · · · 1/10

]

Inference in an HMM

I Decoding: Given an observation sequence and a model,
compute the most likely hidden state sequence:
Forward-Backward algorithm and Viterbi algorithm

I Baum-Welch algorithm: Given observation sequence,
estimating model parameters; based on EM algorithm.

Probability calculation for HMM

(there is also an initial state S0)

I Joint state and observation

P(o1, . . . , oT , s0, s1, . . . , sT)

=πs0as0,s1bs1,o1as1,s2bs2,o2 · · · aST−1,ST
bST ,oT

Forward-Backward (FB) algorithm

I The Forward-Backward (FB) algorithm is used to compute the
probabilities efficiently

P(St = i|o1, . . . , oT) “most likely state at any time”

P(St = i, St+1 = j|o1, . . . , oT) “most likely transition at any time”

I Strategy: Break the sequence into past and future

P(St = i|o1, · · · , oT)

∝ P(St = i, o1, · · · , ot)︸ ︷︷ ︸
αi(t)

·P(ot+1, · · · , oT |St = i)︸ ︷︷ ︸
βi(t)

P(St = i, St+1 = j|o1, . . . , oT) ∝ αi(t)βj(t+ 1)ai,jbj,ot+1

I Brute-force computation O(TKT)

I FB complexity O(K2T)

Forward recursion

I Special structure gives an efficient solution using dynamic
programming
Define

αi(t) = P(o1, . . . , ot, St = i), αi(0) = πi

Recursion due to Markov structure

αj(t+ 1) = bjot+1

K∑
i=1

αi(t)aij , t = 0, . . . , T − 1

Proof

Backward recursion

Define
βi(T) = 1

βi(t) = P(ot+1, . . . , oT |St = i)

Can show recursion due to Markov

βi(t) =

K∑
j=1

aijbjot+1βj(t+ 1), t = 0, . . . , T − 1

Forward recursion

αj(t+ 1) = P(o1, . . . , ot+1, St+1 = j)

= P(o1, . . . , ot+1|St+1 = j)P(St+1 = j)

= P(o1, . . . , ot|St+1 = j)P(ot+1|St+1 = j)P(St+1 = j)

= P(o1, . . . , ot, St+1 = j)P(ot+1|St+1 = j)

=
∑

i=1,...,K

P(o1, . . . , ot, St = i, St+1 = j)P(ot+1|St+1 = j)

=
∑

i=1,...,K

P(o1, . . . , ot, St+1 = j|St = i)P(St = i)

P(ot+1|St+1 = j)

=
∑

i=1,...,K

P(o1, . . . , ot, St = i)P(St+1 = j|St = i)

P(ot+1|St+1 = j)

= bjot+1

K∑
i=1

αi(t)aij .

Backward recursion

βi(t) = P(ot+1, . . . , oT |St = i)

=
∑

j=1,...,K

P(ot+1, . . . , oT , St+1 = j|St = i)

=
∑

j=1,...,K

P(ot+1, . . . , oT |St+1 = j, St = i)P(St+1 = j|St = i)

=
∑

j=1,...,K

P(ot+1|St+1 = j)P(ot+2, . . . , oT |St+1 = j)

P(St+1 = j|St = i)

=

K∑
j=1

aijbjot+1βj(t+ 1)

Smoothing

I FB algorithm can be used to compute the most likely state for
any point in time

P(St = k|o1, . . . , oT) =
αk(t)βk(t)

P(o1, . . . , oT)

P(o1, . . . , oT) =

K∑
k=1

αk(t)βk(t), ∀t

I BUT FB cannot be used to find the most likely sequence of
states, have to be done through the Viterbi algorithm

Example: Rain man

I We would like to infer the
weather given observation of
a man either carrying nor
not carrying an umbrella

I two possible states for the
weather: state 1 = rain,
state 2 = no rain

I the weather has a 70%
chance of staying the same
each day and a 30% chance
of changing

Russell & Norvig 2010 Chapter 15 pp. 566

Example: Rain man (cont)

I transition probability

A =

[
0.7 0.3
0.3 0.7

]
→ {aij}

I assume each state generates 2 events: event 1 = umbrella,
event 2 = no umbrella.

I emission probability: the conditional probabilities for these
events occurring in each state

B =

[
0.9 0.1
0.2 0.8

]
→ {bij}

I observe a sequence of events: {umbrella, umbrella, no
umbrella, umbrella, umbrella}

I what’s the weather like?

Matrix-vector forms

I Define observation matrix

Oj = diag(b∗,oj)

Example:

events: {umbrella, umbrella, no umbrella, umbrella, umbrella}

I Initial state vector π0

I Forward probabilities

αi(t) = P(o1, . . . , ot, St = i)

f0:t = [α1(t), . . . , αK(t)]T

I Forward recursion

αi(0) = πi, αj(t+ 1) = bjot+1

K∑
i=1

αi(t)aij

Forward recurision

f0:0 = [π1, . . . , πK]T , f0:t+1 = Ot+1A
T f0:t, t = 0, . . . , T − 1

then scale each vector to sum up to 1 since
∑K

k=1 αk(t) = 1

I Backward probabilities

βi(t) = P(ot+1, . . . , oT |St = i)

rt:T = [β1(t), . . . , βK(t)]T , rT :T = [1, 1, . . . , 1]T

I Backward recursion

βi(t) =

K∑
j=1

aijbjot+1βj(t+ 1), t = 0, . . . , T − 1

can be written as

Backward recursion

rT :T = [1, 1, . . . , 1]T , rt:T = AOt+1rt+1:T , t = 0, . . . , T − 1

then scale each vector to sum up to 1 since
∑K

i=1 βi(t) = 1

Rain man: Computation - forward

events: {umbrella, umbrella, no umbrella, umbrella, umbrella}

f0:0 = (0.5, 0.5)T

Rain man: Computation - backward

b5:5 = (1.0, 1.0)T

Rain man: Computation - smoothing

P(St = k|o1, . . . , oT) =
αk(t)βk(t)

P(o1, . . . , oT)

events: {umbrella, umbrella, no umbrella, umbrella, umbrella}
estimate: {rain, rain, not rain, rain, rain}

example from wikipedia

Viterbi Algorithm

I Forward-backward algorithm finds posterior
probability of a single state at any time
P(St = k|o1, . . . , oT)

I Viterbi Algorithm finds the most likely sequence
of states by

max
S0,S1,...,ST

P(S0, S1, . . . , ST |o1, . . . , oT)

I Developed by Andrew Viterbi, 1966

I Solve using dynamic programming

I Exploit the Markov structure of the problem to
beat the “curse-of-dimensionality” and lead to
structured solution

Andrew Viterbi

Derivation of Viterbi algorithm

I Note that the likelihood function can be written as

P(S0, S1, . . . , ST |o1, . . . , oT) =
P(S0, S1, . . . , ST , o1, . . . , oT)

P(o1, . . . , oT)

I Then we can show

P(S0, . . . , ST , o1, . . . , oT) = πS0

T∏
k=1

aSk−1,Sk
bSk,ok

I Taking negative log, one aims to find {S0, S1, . . . , ST } to
minimize

− log πS0 +

T∑
k=1

[− log aSk−1,Sk
− log bSk,ok]︸ ︷︷ ︸

decouple in time

I Convert the problem of finding the most likely sequence to the
problem of finding the shortest path

I Find shortest path: first find a shortest path from S → step 1,
and then use the distance to calculate S → step 2

1

2

K

1

2

K

! "1 "2 %−log	+, −log	-,, − log	.,,0, 0

0

0

0

1

2

K

"2 −log	-,, − log	.,,03

!0 !3!1

− log πS0 +
∑T

k=1[− log aSk−1,Sk
− log bSk,ok]

I Solving maxS0,S1,...,ST
P(S0, S1, . . . , ST |o1, . . . , oT) by

brute-force (enumerate all possible paths) complexity is KT

I Viterbi has complexity O(K2T), memory requirement is
O(KT)

An example Trellis from “The Viterbi Algorithm” by D. Forney
1973

Example: path elimination

I Shortest path segment is called the survivor for a node

I important observation: the shortest complete path must begin
with one of the survivors

I each stage only need to store K survivor paths

Example: Doctor’s decision

Estimating Gaussian HMM Model

I Consider Gaussian emission probability

bk(o) = N (µk,Σk)

I Model parameters aij , i = 1, . . . ,K, j = 1, . . . ,K

I Initial distribution πi, i = 1, . . . ,K

I Emission probability parameters µi, Σi, i = 1, . . . ,K

Baum-Welch algorithm: EM for HMM

I E-step
Compute Li(t) and Hi,j(t) (from forward-backward algorithm)

Li(t) = P(St = i|o1, . . . , oT)

Hi,j(t) = P(St = i, St+1 = j|o1, . . . , oT)

I M-step: update parameters

µi =

∑T
t=0 Li(t)ot∑T
t=0 Li(t)

, Σi =

∑T
t=0 Li(t)(ot − µi)(ot − µi)T∑T

t=0 Li(t)

aij =

∑T−1
t=0 Hi,j(t)∑T−1
t=0 Li(t)

, πi ∝
T∑
t=0

Li(t)

Derivation of EM

I Compute Q(θ|θ′) function

log f(S0, . . . , ST , o1, . . . , oT |θ)

= log πS0 +

T∑
k=1

log aSk−1,Sk
+ log bSk,ok

E[log f(S0, . . . , ST , o1, . . . , oT |θ)|o1, . . . , oT , θ′]

=
∑
s

P(s|o, θ′)

[
log πS0 +

T∑
k=1

log aSk−1,Sk
+ log bSk,ok

]

=

K∑
i=1

Li(0) log(πi) +

t−1∑
t=0

K∑
i=1

K∑
j=1

Hij(t) log aij

+
T∑
t=0

K∑
i=1

Li(t) logP(ot|µi,Σi)

Comparison with GMM estimation

I Li(t) plays a similar role as the posterior probability of a
component (state) given observation:
HMM: Li(t) = P(St = i|o1, . . . , oT)
GMM: pi,t = P(St = i|ot)

I view a mixture model as a special HMM independent states

GMM HMM

