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Speech recognition

Let each spoken word be represented by a sequence of speech
signals.
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One speaks of an HMM ’generating’ a sequence. The HMM is composed of a number
of states. Each state 'emits’ symbols (residues) according to symbol-emission
probabilities, and the states are interconnected by state-transition probabilities. Start
from some initial state, a sequence of states is generated by moving from state to
state according to the state transition probabilities until an end state is reached. Each
state then emits symbols according to that state's emission probability distribution,
creating an observable sequence of symbols. - L. R. Rabiner, A tutorial on hidden
Markov models and selected applications in speech recognition, Proc. IEEE, 1989



Genetics

(a)

(b)
state sequence (hidden):

eYofolololololelelclc e

transitions: 7 099 099 09% 0599 001 09 09 08 01 099

symbol sequence (observable):
... A T C A A GG CGAT...
emissions: 04 04 01 04 04 05 05 04 05 04 04

For a given observed DNA sequence, we are interested in inferring the hidden state
sequence that 'generated’ it, that is, whether this position is in a CG-rich segment or
an AT-rich segment.



Gesture recognition

HOW IT WORKS...AND WHAT THE HAND SIGNALS MEAN

nThedev Controller box  Remote

is designed to __with camera contro
have a clear line ;
of sight to the
viewer and
the V. EAthe built-in
) camera can
recognise simple
hand gestures

|

E]SIgnaI issenttoa
remote control, which
controls the television
and most other
audio/visual equipment

Gesture recognition is a topic in computer science and language technology with the
goal of interpreting human gestures via mathematical algorithms. Gestures can
originate from any bodily motion or state but commonly originate from the face or
hand, e.g., kinetic user interface.



Hidden Markov Model

» HMM is a Markov chain, where at each time, the hidden state
determines a observation.

» Goal is to infer the hidden state from the sequence of
observations.

» lts special structure enables efficiently statistical estimation: a
special case of graphical model

» HMM useful to model dependence in time sequence
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Specifications

» Circles: states
> arrows: probabilistic dependencies between states.

» Green: hidden states. Each state only depends on previous
state.

» Purple: observations. Only depends on their corresponding
hidden states.

The past is independent of the future given the present.



Formalization

» Time horizon t = 1,...,T, number of possible states K
» {S,0,11, A, B}
» II = {m;} are the initial state probabilities

v

A = {aj;} are the state transition probabilities,
ij=1,....K

B = {bye} are the observation state probabilities,
k=1,... K, (=1,...,|0|

v



Example: occasionally dishonest casino

Model that generates the sequence Consider a Markov model with two
states and six possible emissions

0.95 0.9
L A weighted red coin, for which the
1. 118 1:1/10 probability of heads is .9 and the
2 1/6 0.05 2: 110 - N
3 s P a3 110 probability of tails is .1.
4: 1/6 g A 4: 1110
5 1/6 0.1 5110
SIS E12 A weighted green coin, for which the

Fair Loaded probability of heads is .95 and the

probability of tails is .05.

Rolls 3165116246446644245311321631164152133625144543631656626560666
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL




v

K=2
Hidden states S, € {F, L}

Observations |
O, € {17 2,... 76} Estimated model

Initial state probability 0r3 o7l

m =7 =1/2 (I 1: 0.19 1: U.OQ
" . 22019| o027 ]z o010
Transition matrix 3 023 3 0.10
4: 0.08 [ A 4 047
4 [0'9 0.1 ] 5 0.23 029 |5 005
= 6: 0.08 B: 0.52
0.05 0.95 Fair Loaded

Emission matrix

1/6 1/6 --- 1/6
B:L/z 1/10 - 1/10]



Inference in an HMM

» Decoding: Given an observation sequence and a model,
compute the most likely hidden state sequence:
Forward-Backward algorithm and Viterbi algorithm

» Baum-Welch algorithm: Given observation sequence,
estimating model parameters; based on EM algorithm.



Probability calculation for HMM

¢ bo4 o

(there is also an initial state Sp)

» Joint state and observation

P(o1,...,07,50,81,---,5T)

=Ts0@sg,51 051,00 Us1,89 059,00 = ASp_1 S7087 07



Forward-Backward (FB) algorithm

» The Forward-Backward (FB) algorithm is used to compute the
probabilities efficiently

P(S; = ilo1,...,0r) “most likely state at any time"

P(S; =i, S¢41 = jlo1,...,0r) “most likely transition at any time”

» Strategy: Break the sequence into past and future

P(St:i|01,"‘ 7OT)
X P(St:i,Ol,"‘,Ot)’IP)(Ot+1,"',OT‘St:'i)
a;(t) Bi(t)

P(St = i, St+1 = j|01, ceey OT) XX aj(t)ﬁj(t + l)ai7jbj7ot+1
» Brute-force computation O(TK™)
» FB complexity O(K?T)



Forward recursion

» Special structure gives an efficient solution using dynamic
programming
Define

a’b(t) :P(017"'70t)5t :7’)7 a’L(O) =T
Recursion due to Markov structure

aj(t+1) = JotHZaz aij, t=0,...,T—1

Proof



Backward recursion

Define
Bi(T) =1

ﬂz( )= (0t+1, . ,0T|St = 1)

Can show recursion due to Markov

K
t)zzaijbjot+1ﬁj(t+1), t=0,...,7—1
j=1



Forward recursion

Oéj(t—}—l) =P(o1,...,
= P(o1,...
= P(oy,...
:P(Ol,...,

P(o1,...,0¢, 8t = i, 811 = j)P(0441]Se41 = )

>

Ot+1,St41 = ])

, 0141|Se41 = J)P(Siy1 = J)
;0] Se1 = J)P(

0+1]St41 = J)P(St41 = J)
ot, St+1 = J)P(0t+1|St+1 = j)

i=1,...,.K
= Z ]P)(Ola”'votast-'rl :]‘St:Z)P(St:Z)
i=1,...,.K

P(o t+1|St+1 =)

>, P

i=1,...,

01, e, 08,5 = i)]P(St+1 = ]|St = Z)

P(041|St+1 = J)

K
= bjo, 11 Z o (t)aij-
=1



Backward recursion

/Bz(t) = P(Ot+1, A ,OT’St = 1)
= Z P(Ot+17"'7OT;St+]_ :]‘St:/[/)

j=1,...,. K

= Z P(Ot'i‘l? . 70T‘St+1 - j, St = i)P(St+1 = j‘St = Z)
7j=1,...,.K

= Z P(ot41]St+1 = j)P(0t+2, - - -, o |St41 = j)
j=1 K

P(St41 =4Sk = 9)

K
- Z aijbjOtJrlBj(t + 1)
j=1



Smoothing

» FB algorithm can be used to compute the most likely state for
any point in time

P(S; = kloi,...,or) = m
K

Plor,...,or) = > an(t)Be(t), Vi
k=1

» BUT FB cannot be used to find the most likely sequence of
states, have to be done through the Viterbi algorithm



Example: Rain man

> We would like to infer the
weather given observation of
a man either carrying nor
not carrying an umbrella

> two possible states for the
weather: state 1 = rain,
state 2 = no rain

» the weather has a 70%
chance of staying the same
each day and a 30% chance
of changing

Russell & Norvig 2010 Chapter 15 pp. 566



Example: Rain man (cont)

> transition probability

07 03
A= L13 0:4 — {aij}

> assume each state generates 2 events: event 1 = umbrella,
event 2 = no umbrella.

» emission probability: the conditional probabilities for these
events occurring in each state

0.9 0.1
B‘kzoJ%&ﬁ

> observe a sequence of events: {umbrella, umbrella, no
umbrella, umbrella, umbrella}

» what's the weather like?



Matrix-vector forms

» Define observation matrix
O; = diag(b«,o,)

Example:

events: {umbrella, umbrella, no umbrella, umbrella, umbrella}
0, = (0.9 ().0) 0, = (0,9 0,0) Qs = (0.1 0.0) 0, = (0.9 0.0) O = (0.9 0.0)
0.0 0.2 0.0 0.2 0.0 038 0.0 0.2 0.0 0.2

» Initial state vector 7



» Forward probabilities
ai(t) =P(o1,...,0, 5t = 1)

for =1 (t),...,ax®)]"
» Forward recursion

K

ai(0) =75, aj(t+1) =bjo,,, Y cilt)ay
=1

Forward recurision

foo=[m1,-. k)T, fotrr = Op1AT foy, t=0,...,T—1

then scale each vector to sum up to 1 since Zszl ag(t) =1



» Backward probabilities
Bi(t) = P(ot41,...,0r|S = 1)

reT = [Bl(t),...,ﬂK(t)]T, rr.T = [1,1,...,1]T

» Backward recursion

K
Bi(t) :ZaijbjotJrl,@j(t—i-l), t=0,....,T—1
j=1

can be written as

Backward recursion

rr.m = [1,1,...,1]T, Te.T = AOt—i—lrt—i-l:T; t= 0,...,T— 1

then scale each vector to sum up to 1 since Zfil Bi(t) =1



Rain man: Computation - forward

events: {umbrella, umbrella, no umbrella, umbrella, umbrella}

0; - (0,9 0.0) 0, = (0.9 0.0) 0s = (0.1 0.0) 0, = (0.9 0.0) 0; = (0.9 0.0)
0.0 02 0.0 0.2 0.0 08 0.0 02 0.0 02

fo:o = (0.5,0.5)

T .09 00)/07 03 0.5000 _1(0.4500 0.8182
(fon)" = ¢ =¢ =

0.0 0.2 03 0.7 0.5000 0.1000 0.1818

T (08 00 0.7 0.3 0.8182 _1(0.5645 0.8834
(fo2)” = ¢, =¢ =

0.0 0.2 03 0.7 0.1818 0.0745 0.1166

s 7 (01 0.0 0.7 03 0.8834 _1(0.0653 0.1907
(fﬂ:a) =4 =c3 =

0.0 0.8 03 0.7 0.1166 0.2772 0.8093

T 109 00 0.7 03 0.1907 _1{0.3386 0.7308
(fﬂ:ﬂ) =c, =c; =

00 02/\03 07 0.8093 0.1247 0.2692

T .09 00 0.7 03 0.7308 1 0.5331 0.8673
(fﬂ:S) =€ =05 =

0.0 0.2 03 0.7 0.2692 0.0815 0.1327



Rain man: Computation - backward

bs:s = (1.0,1.0)7

& _ (07 03)(09 00)(10000) (06000 _(0.6273
45 =%\ 03 07/)\00 0.2/ 10000/ " “\o4100/ " \ 03727
. 07 0.3)/09 0.0)/0.6273 0.4175 0.6533
bgs = =0 =
03 0.7/)\00 02/\0.3727 0.2215 0.3467
. 07 03)/01 0.0)/0.6533 0.1289 0.3763
bas =« =a =
03 0.7/)\00 08/\0.3467 0.2138 0.6237
. 0.7 0.3)/09 0.0)/0.3763 0.2745 0.5923
bis =a =a =
(0‘3 07) (00 02)(0.623?) (0.1889) (0.407?)
. 07 03)/09 0.0) /05923 0.3976 0.6469
bos = a =a =
(0‘3 0 7) (0 00 2) (0.407?) (0.2170) (0.3531)



Rain man: Computation - smoothing

o (t) Be(t)
P(St = ]{7’01,... 7OT) =
(01, ey OT)

0.5000 0.6469 0.3235 0.6469
o =(5000) * (os51) = (o70s) = (03501)

0.5000 0.3531 0.1765 0.3531

0.8182 0.5923 0.4846 0.8673
n)” = o ) (vtomr) == ( ) (03527)

0.1818 0.4077 0.0741 0.1327

0.8834 0.3763 0.3324 0.8204
(1)’ =a =a

0.1166 0.6237 0.0728 0.1796

0.1907 0.6533 0.1246 0.3075
(1) =« =a

0.8093 0.3467 0.2806 0.6925

(0 7308) (n 6273) (0 4534) (0.82(}4)

(T‘- = = ¥ =

0.2692 0.3727 0.1003 0.1796
(7s)" = a(o.sms) (1 onon) B (0.3573) - ({].8673)
780 =2 0.1327 1.0000/ \o0.1327/) \o0.1327

events: {umbrella, umbrella, no umbrella, umbrella, umbrella}
estimate: {rain, rain, not rain, rain, rain}

example from wikipedia



Viterbi Algorithm

» Forward-backward algorithm finds posterior
probability of a single state at any time
P(St = k|01, ey OT)

» Viterbi Algorithm finds the most likely sequence
of states by

o ax P(So, S15- .-, Srlo1,. .., 01)

> Developed by Andrew Viterbi, 1966

» Solve using dynamic programming Andrew Viterbi

» Exploit the Markov structure of the problem to
beat the “curse-of-dimensionality” and lead to
structured solution



Derivation of Viterbi algorithm

» Note that the likelihood function can be written as

P(Sy, S1,.--,57,01,...,0
P(So, S1,---,Srlo1,...,07) = (50, 51 L 7)

P(o1,...,01)
» Then we can show
T
IP>(50a oy ST, 01, 70T) = TS H aSk—laSkakyok
k=1

» Taking negative log, one aims to find {Sy, S1,...,S7} to
minimize
T

—log TSy T Z[_ log asy,_ 1,8, — log bSkyok]
k=1

decouple in time



» Convert the problem of finding the most likely sequence to the
problem of finding the shortest path

» Find shortest path: first find a shortest path from S — step 1,
and then use the distance to calculate S — step 2

—logmy

So

o
1 —log a;; —log by,

S1

02

Sr
o D
é—logaﬂ—lcgbmr ‘0 :’
0 v

—logms, + Zgzl [_ logag,_,,s, — log bSk,Ok]



» Solving maxg, s,... s, P(So, S1,...,S7|o1,...,or) by
brute-force (enumerate all possible paths) complexity is K7

» Viterbi has complexity O(K2T'), memory requirement is
O(KT)

)
From "The Viterbi Algorithm”, by D. Forney, 1973

An example Trellis from “The Viterbi Algorithm” by D. Forney
1973



Example: path elimination

Qé;
§

.P’

<



» Shortest path segment is called the survivor for a node

> important observation: the shortest complete path must begin
with one of the survivors

» each stage only need to store K survivor paths



Example: Doctor's decision

* Consider the following
model for a patient

* The patient visit 3 days in
a row, and her symptoms
are

{normal, cold, dizzy}

What's the most likely
sequence of states of the
patients in 3 days? Draw a
diagram for Viterbi
algorithm and calculate
weights on each edge.

\ /
/



Estimating Gaussian HMM Model

v

Consider Gaussian emission probability

bi(0) = N (pur, X))

v

Model parameters a;;, i =1,..., K, j=1,..., K
Initial distribution m;, i =1,..., K
Emission probability parameters u;, ¥;, 1 =1,..., K

v

v



Baum-Welch algorithm: EM for HMM
> E-step
Compute L;(t) and H; ;(t) (from forward-backward algorithm)
Ll(t) = ]P)(St = i|017 L) OT)

H; ;(t) =P(S; =i, Se41 = jlo1,...,07)

» M-step: update parameters

= LtT:O Li(t)or 5, = ZtT:O Li(t)(or — pi)(0r — )"
Ym0 Li(t)

7

Yo Li(t)

T—1 T
LH ()
ap = =E=20 W 7r-o<§ :L-(t)
YoyLey &



Derivation of EM
» Compute Q(6]6’) function

logf(S(),... 7ST7017" . 70T|0)
T

= log TS, + Z log as,_1,S: log bSk,Ok
k=1

E[]Og f(So, ey ST, O1,... ,OT‘Q)‘Ol, ...,07, 9/]
T
= ZP(S|0,«9’) log s, + Zlog as, s, +1logbs, o,
s k=1
K t—-1 K K
L;(0)log(m;) + Z Z H;; (t)log Qi
i=1 =0 i=1 j=1
T
+ ) Li(t) log P(og| i, i)

t=0 i=1



Comparison with GMM estimation

» L;(t) plays a similar role as the posterior probability of a
component (state) given observation:
HMM: Li(t) = P(St = Z"Ol, - ,OT)
GMM: p; s = P(S; = iloy)

> view a mixture model as a special HMM independent states

@
@ O A

GMM HMM



