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Multiple linear regression
> set-up
Vi = Brxin + ... Bpxip + Bo+ €, i=1,...,n
p variables: 3 = [Bo, 1, -, Bp]T

n samples

mln Z — (Brzin + ... Bpzip + Bo))?

» matrix-vector form

1 r11 . o mpl
y=AB+e A= |: : e Rx(p+1)

» parameter estimation

mﬂinHy—AﬁII%



Example: prostate cancer

The data for this example come from a study by Stamey et al. (1989). They
examined the correlation between the level of prostate-specific antigen and
a number of clinical measures in men who were about to receive a radical
prostatectomy. The variables are log cancer volume (1lcavol), log prostate
weight (1weight), age, log of the amount of benign prostatic hyperplasia
(1bph), seminal vesicle invasion (svi), log of capsular penetration (1lcp),
Gleason score (gleason), and percent of Gleason scores 4 or 5 (pgg4s).
The correlation matrix of the predictors given in Table 3.1 shows many
strong correlations. Figure 1.1 (page 3) of Chapter 1 is a scatterplot matrix
showing every pairwise plot between the variables. We see that svi is a
binary variable, and gleason is an ordered categorical variable. We see, for

example, that both lcavol and lcp show a strong relationship with the
response lpsa, and with each other. We need to fit the effects jointly to
untangle the relationships between the predictors and the response.
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FIGURE 1.1. Seatierplol matriz of the prostate eancer data. The first row shows
the response against each of the predictors in turn. Two of the predictors, svi and
gleason, are calegorical.



Regression

* Simple linear regression
YZB0+B1X+E
* Multiple linear regression

Y =fo+ BiXy + PaXat g

* Polynomial regression

Y= B0+ B1X+ B2X2+8

Variable selection: for multiple linear regression, select the “most
important” variables that are responsible for the output.




Method of least squares

> Linear regression model
yi=Po+bizit+e, i=1,2,...,n

» To estimate (8o, 81), we find values that minimize the risk

(square error)

min R(fy, = min i — Bo — Brai)?
Bo.B1 (BO /81) Bo,B1 ;(y bo=hr )

Bl = SCCy/SCCCC
fo=17— bz

n

Sry = Z?:l(yi —Y)(w; — ), Spz = zizl(xi - 5)2



Logistic regression
» random variable y{0, 1} with distribution

‘ B . exp(aTz +0b)
h(w;a,0) =Py =1) = 1+ exp(aTx + b)

1

Sigmoid function s(z) = 1=

» maximum likelihood

max > _{yilog h(zi;a,b) + (1 — y;) log(1 — h(zi;a, b))}
R
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Here we present an analysis of binary data to illustrate the traditional
statistical use of the logistic regression model. The data in Figure 4.12 are a
subset of the Coronary Risk-Factor Study (CORIS) baseline survey, carried
out in three rural areas of the Western Cape, South Africa (Rousseauw et
al., 1983). The aim of the study was to establish the intensity of ischemic
heart disease risk factors in that high-incidence region. The data represent
white males between 15 and 64, and the response variable is the presence or
absence of myocardial infarction (MI) at the time of the survey (the overall
prevalence of MI was 5.1% in this region). There are 160 cases in our data
set, and a sample of 302 controls. These data are described in more detail
in Hastie and Tibshirani (1987).
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FIGURE 4.12. A zeatterplot tnatriz af the South African heert disease data.
Each plot shows a pair af risk factors, end the cases end controls are solor eoded
fred s a case). The variable family history of heart disease (fashist) is binary
(ies or noj.



Deep learning and neural networks
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Solving optimization problem

> solve optimization problem
min f(x)
X
» produce sequence of points (), k' =0,1,2,... with

fa®)) = p*

» can be interpreted as iterative methods for solving optimality
condition
Vfiz*)=0



Gradient decent

2EHD) = 3 ) _ )y 0

t(F): step-size for the kth iteration
V f(x): gradient vector

» can be viewed as function iteration for function
h(z) =x —tVf(x)

» for convex optimization it gives the global optimum under
fairly general conditions.

» for nonconvex optimization it arrives at local optimum



Example: solving multiple linear regression

mﬂin ly — AﬁH%, A e RX(+1)

v

f(8) = lly — 48|13

Gradient Vf(5) = 2AT(AB —y)

Hessian H[f](5) = 2ATA

Exact solution 3 = (ATA)~1 ATy, issue: complexity O(p?)

v

v

v

Gradient descent

v

B — gk) _ 94(R) AT(450) _ )

complexity O(n?p)

Exercise: gradient descent for logistic regression



Choice of step-size

J(w)

J(w)

w

Large learning rate: Overshooting.

w

Small learning rate: Many iterations
until convergence and trapping in
local minima.



Newton's method for finding function root

» solve g(z) =0

g(xnfl)

> iterative method: z,, = x,,—1 — 7 )

» functional iteration z,, = f(x,—1) with f(z) =z — Z-%

glx)

] x2 x1 x0=1



Newton's method for optimization

240 = o) — O {0 V()
(k). step-size for the kth iteration

> interpretation  + Az minimizes the second order
approximation of the function

fle ) ~ f(@) + V@) + o H{f (@)

(, F(=))"
(z + Az, f(z + Awnt)): f



dashed lines are contour lines of f; ellipse is {z +v | vT V2f(z)v = 1}

arrow shows —V f(z)



Convex function

A function f is convex if

fOz+(1—=0)y) <0f(x)+(1-0)f(y)

i)
(z, flx))—

convex functions

» affine: ax + b

> exponential e**

> powers |z|* for p > 1
concave:

> affine: ax + b

> log: logx

» powers z¢ for 0 < a <1



Strong convexity and implications

> f is strongly convex on domain S if there exists an m > 0
such that
H{f(z)} >mlI, forallzels.

» implications
» forz,y €5

F4) = f(@) + V@) Ty — )+ Flle =yl

» forx e S )
F@) —p" < 5 IV )3

useful as a stoping criterion



Convergence results

» Gradient descent: for strongly convex f with constant m
number of iterations until f(x) — p* < e is bounded above by

f@W) —p* < F(f(@ ) - p¥)

c € (0,1) is a constant depend on (%), step-size, m etc.
Very simple, but converges very slow

» Newton’s method: for strongly convex f with constant m
number of iterations until f(x) — p* < € is bounded above by

(0)y _ %
W + log logy(€p/€)

constants v, €y depends on €y, m, L (Lipschitz constant for
the Hessian).



Quadratic convergence of Newton's method

> let ey = |z, — Too

» quadratic convergence: lim,, o e{f—"l = %f”(woo)
z_

f'(@s0), f:

» linear convergence definition: if lim,, oo ee—’zl =
iteration function, 0 < |f'(zx0)| < 1



Functional iteration

» find a root of the equation g(x) =0
» introduce f(z) =g(z) +z, g(x) =0= f(z) =2

> in many examples, iterates z,, = f(x,—1) convergens to
x* = f(z*), «* called fixed point of f(z)

y=x

i
X3 x2 x1



Convergence

Suppose the function f(x) defined on a closed interval I satisfies
the conditions:

1. f(z) € I whenever z € I
2. |f(y) — f(x)| < Ay — x| for any two points x and y in I.

Then, provided the Lipschiz constant A is in [0,1), f(x) has a
unique fixed point z* € I, and x,, = f(x,,—1) converges to x*
regardless of starting point xg € I. Furthermore, we have

n

|xn_xm| < |l‘1—$0|.

“1-A



First consider
|1 — 2kl = [f(xr) — F(@r-1)] < Aoy — 2] < A2y — a0

then for some m > n,

\371 -z

[ — a] < Z|xk+1—xkr< ZA 21— 20| < -

So {z,,} forms a Cauchy sequence. Since I € R is closed and
bounded, it is compact.



Example

> g(x) = —sm("""*e find = such that g( )=0

),
> f(2) = glz) + 2, f(z) = —Lcos(2EL) + 1
> [ f/(x)] < 1for [—e!, T — e1] = [—0.3679,4.5669] (so we
can apply function iteration to g(z)
» let I =[—0.3,3], then f(z) € I whenever z € I, and A < 1

for f(x) on this range
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Computation for maximum likelihood

» Given PDF, we form the likelihood or log-likelihood function,
estimate parameter by maximum likelihood

mgxﬁ(@\x)
» Newton method f = —/
9+ = k) B {—0(0")} IV [—£(0%)]

» Drawback: most of time, H{/(8*))} is complex, and may not
be positive definite (no guarantee to be invertible)



SAS Global Forum 2008

Paper 360-2008

Convergence Failures in Logistic Regression
Paul D. Allison, University of Pennsylvania, Philadelphia, PA

ABSTRACT

A frequent problem in estimating logistic regression models is a failure of the likelihood maximization algorithm to
converge. In most cases, this failure is a consequence of data patterns known as complete or quasi-complete
separation. For these patterns, the maximum likelihood estimates simply do not exist. In this paper, | examine how
and why complete or quasi paration oceur, and the effects they produce in output from sAs® procedures.
I then describe and evaluate several possible solutions.




Fish scoring
» Remove observations, replace Hessian by the expected Hessian

0?log ((0)

J(6) = BAH |~ log £(8]2)]} = ~B{ 5}

Fisher information (FI)

» Under mild regularity conditions
J(0) = E{H[—log £(0]x)]} = IE{( 5 108 £(0]2))*}

(Recall CRB)




Advantage of Fisher Scoring

» J(0) usually has simpler close form
» J(6) is nonnegative definite (invertible)

> if § is the maximum likelihood estimator (MLE), then J1(6)
is the variance/covariance of the MLE 0

» Example: FI for Geometric distribution

10 = 21—

increasing as p moves away from 2/3 towards 0 or 1.



Exponential family

» Exponential family: provides a general framework to
parameterize distributions

F(@]6) = g(a)eP OO

» Example: exp(A), N(u, 0?)
» Sufficient statistic: h(z)

» Fisher information for general exponential family
¥(0) = Var[h(x)]

J(0) = VT (0)2(6)Vo(0)

Distribution £(6) gf(f) J(6)
Binomial | zln ;i}, +nin(l —p) y.'l’_ﬂ‘: =]
Multinomial Yimilnp; (:f) (;7“)
T

Poisson —p+alnp -1+

Exponential —Inp— Z _




Example: Newton's method using Fisher scoring

» Consider multinomial distribution Multi(n; p1,...,p4)

» Assume n =56, 1 =20, 9 =9, 3 =1 and x4 = 26.

» Find MLE for p1, p2, p3 and p4.

» FI J(6) is diagonal matrix with diagonal entries (n/p;)

» needed for Newton step: J~1(0)V[—£(6)] is diagonal matrix

xi/pi x4
n/pi n
» Newton's updating rule

with entries —

k+1 k Xq
é+)=é)+u#



x=[20 91 26];
n= su.tn(x}
P_init = [0 0 0 0]/4;
p = P_init; % initial walue
for ind=1:3,
p_oew = p + x./n; % Newton’s update
p = p_new ./ suni{p_new) }{ constraint: sum p_i =1.
end;

Some limitations

» ignores the condition 23:1 p; = 1 (constrained optimization;
need to include Lagrangian multiplier)

» sensitive to the initial value



Stochastic gradient descent

» Stochastic gradient descent method uses noisy unbiased

subgradients

LO41) _ o (R) (k)

— g
» 3 is any noisy unbiased gradient of a function at z(*)
E[g*] = g

» Convergence

. 2 22
i=1,....k 237

Ellg®|3 < G Ellz™ —2*|| < R



Email SPAM classification via SVMs

» Support Vector Machine (SVM) is the name in machine
learning for a linear classifier

» Suppose we wish to train the classifier to classify emails as
spam/nonspam.

» Each email is represented using a vector that gives the
frequencies of various words in it (“bag of words” model).




> Z1,...,%, emails, label y; € {—1,1}

> If spam were perfectly identifiable by a linear classifier, there
would be a function such that wTx; > 1 if X; is spam, and
wTx; < —1 otherwise. Hence,

1 —ywTz; <0

Solve
minz Loss(1 — y;wTx;) + Mwl3 (%)
i
Hinge loss: Loss(z) = max{0,x}
» Loss(.) a function that penalizes unsatisfied constraints
according to the amount by which they are unsatisfied



» Note that (*) is a sum of many similar terms

» If we randomly pick a single term (data for one email) and
compute just its gradient, the expectation of this gradient is
just the true gradient

1) @, @) @) @),

w

: MM‘LMM%‘
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