
ISyE 6416: Computational Statistics
Spring 2017

Lecture 4: Gradient Decent and
Newton’s Method

Prof. Yao Xie

H. Milton Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology

Multiple linear regression

I set-up

yi = β1xi1 + . . . βpxip + β0 + εi, i = 1, . . . , n

p variables: β = [β0, β1, · · · , βp]ᵀ
n samples

min
β

n∑
i=1

(yi − (β1xi1 + . . . βpxip + β0))
2

I matrix-vector form

y = Aβ + ε, A =

1 x11 · · · xp1
...

...
...

1 x1n · · · xpn

 ∈ Rn×(p+1)

I parameter estimation

min
β
‖y −Aβ‖22

Example: prostate cancer

Regression

Variable selection: for multiple linear regression, select the “most
important” variables that are responsible for the output.

Method of least squares

I Linear regression model

yi = β0 + β1xi + εi, i = 1, 2, . . . , n

I To estimate (β0, β1), we find values that minimize the risk
(square error)

min
β0,β1

R(β0, β1) = min
β0,β1

n∑
i=1

(yi − β0 − β1xi)2

β̂1 = Sxy/Sxx

β̂0 = ȳ − β̂1x̄

Sxy =
∑n

i=1(yi − ȳ)(xi − x̄), Sxx =
∑n

i=1(xi − x̄)2

Logistic regression
I random variable y{0, 1} with distribution

h(x; a, b) = P(y = 1) =
exp(aᵀx+ b)

1 + exp(aᵀx+ b)

Sigmoid function s(x) = 1
1+e−x

I maximum likelihood

max
a,b

n∑
i=1

{yi log h(xi; a, b) + (1− yi) log(1− h(xi; a, b))}

Deep learning and neural networks

Solving optimization problem

I solve optimization problem

min
x
f(x)

I produce sequence of points x(k), k = 0, 1, 2, . . . with

f(x(k))→ p∗

I can be interpreted as iterative methods for solving optimality
condition

∇f(x∗) = 0

Gradient decent

x(k+1) = x(k) − t(k)∇f(x(k))

t(k): step-size for the kth iteration
∇f(x): gradient vector

I can be viewed as function iteration for function
h(x) = x− t∇f(x)

I for convex optimization it gives the global optimum under
fairly general conditions.

I for nonconvex optimization it arrives at local optimum

Example: solving multiple linear regression

min
β
‖y −Aβ‖22, A ∈ Rn×(p+1)

I f(β) = ‖y −Aβ‖22
I Gradient ∇f(β) = 2Aᵀ(Aβ − y)

I Hessian H[f](β) = 2AᵀA

I Exact solution β̂ = (AᵀA)−1Aᵀy, issue: complexity O(p3)

I Gradient descent

β(k+1) = β(k) − 2t(k)Aᵀ(Aβ(k) − y)

complexity O(n2p)

Exercise: gradient descent for logistic regression

Choice of step-size

Newton’s method for finding function root

I solve g(x) = 0

I iterative method: xn = xn−1 − g(xn−1)
g′(xn−1)

I functional iteration xn = f(xn−1) with f(x) = x− g(x)
g′(x)

Newton’s method for optimization

x(k+1) = x(k) − t(k)[H{f(x(k))}]−1∇f(x(k))

t(k): step-size for the kth iteration

I interpretation x+ ∆x minimizes the second order
approximation of the function

f(x+ v) ≈ f(x) +∇f(x)ᵀv +
1

2
vᵀH{f(x)}v

Convex function

A function f is convex if

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

convex functions

I affine: ax+ b

I exponential eax

I powers |x|α for p ≥ 1

concave:

I affine: ax+ b

I log: log x

I powers xα for 0 ≤ α ≤ 1

Strong convexity and implications

I f is strongly convex on domain S if there exists an m > 0
such that

H{f(x)} ≥ mI, for all x ∈ S.
I implications

I for x, y ∈ S

f(y) ≥ f(x) +∇f(x)ᵀ(y − x) +
m

2
‖x− y‖22

I for x ∈ S
f(x)− p∗ ≤ 1

2m
‖∇f(x)‖22

useful as a stoping criterion

Convergence results

I Gradient descent: for strongly convex f with constant m
number of iterations until f(x)− p∗ ≤ ε is bounded above by

f(x(k))− p∗ ≤ ck(f(x(0))− p∗)

c ∈ (0, 1) is a constant depend on x(0), step-size, m etc.
Very simple, but converges very slow

I Newton’s method: for strongly convex f with constant m
number of iterations until f(x)− p∗ ≤ ε is bounded above by

f(x(0))− p∗

γ
+ log log2(ε0/ε)

constants γ, ε0 depends on ε0, m, L (Lipschitz constant for
the Hessian).

Quadratic convergence of Newton’s method

I let en = |xn − x∞|
I quadratic convergence: limn→∞

en
e2n−1

= 1
2f
′′(x∞)

I linear convergence definition: if limn→∞
en
en−1

= f ′(x∞), f :

iteration function, 0 < |f ′(x∞)| < 1

Functional iteration

I find a root of the equation g(x) = 0

I introduce f(x) = g(x) + x, g(x) = 0⇒ f(x) = x

I in many examples, iterates xn = f(xn−1) convergens to
x∗ = f(x∗), x∗ called fixed point of f(x)

x3 x2 x1

y=x

Convergence

Theorem

Suppose the function f(x) defined on a closed interval I satisfies
the conditions:

1. f(x) ∈ I whenever x ∈ I
2. |f(y)− f(x)| ≤ λ|y − x| for any two points x and y in I.

Then, provided the Lipschiz constant λ is in [0, 1), f(x) has a
unique fixed point x∗ ∈ I, and xn = f(xn−1) converges to x∗

regardless of starting point x0 ∈ I. Furthermore, we have

|xn − x∞| ≤
λn

1− λ
|x1 − x0|.

First consider

|xk+1 − xk| = |f(xk)− f(xk−1)| ≤ λ|xk − xk−1| · · · ≤ λk|x1 − x0|

then for some m > n,

|xm − xn| ≤
m−1∑
k=n

|xk+1 − xk| ≤
m−1∑
k=n

λk|x1 − x0| ≤
λn

1− λ
|x1 − x0|

So {xn} forms a Cauchy sequence. Since I ∈ R is closed and
bounded, it is compact.

Example

I g(x) = − sin(x+e
−1

π), find x such that g(x) = 0

I f(x) = g(x) + x, f ′(x) = − 1
π cos(x+e

−1

π) + 1

I |f ′(x)| < 1 for [−e−1, π2

2 − e
−1] = [−0.3679, 4.5669] (so we

can apply function iteration to g(x)

I let I = [−0.3, 3], then f(x) ∈ I whenever x ∈ I, and λ < 1
for f(x) on this range

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

x

f(
x
)

Computation for maximum likelihood

I Given PDF, we form the likelihood or log-likelihood function,
estimate parameter by maximum likelihood

max
θ
`(θ|x)

I Newton method f = −`

θ(k+1) = θ(k) − t(k)[H{−`(θ(k))}]−1∇[−`(θ(k))]

I Drawback: most of time, H{`(θ(k))} is complex, and may not
be positive definite (no guarantee to be invertible)

Fish scoring

I Remove observations, replace Hessian by the expected Hessian

J(θ) = E{H[− log `(θ|x)]} = −E{∂
2 log `(θ)

∂θ∂θᵀ
}

Fisher information (FI)

I Under mild regularity conditions

J(θ) = E{H[− log `(θ|x)]} = E{(∂
∂θ

log `(θ|x))2}

(Recall CRB)

Advantage of Fisher Scoring

I J(θ) usually has simpler close form

I J(θ) is nonnegative definite (invertible)

I if θ̂ is the maximum likelihood estimator (MLE), then J−1(θ̂)
is the variance/covariance of the MLE θ̂

I Example: FI for Geometric distribution

J(p) =
n

p2(1− p)

increasing as p moves away from 2/3 towards 0 or 1.

Exponential family

I Exponential family: provides a general framework to
parameterize distributions

f(x|θ) = g(x)eβ(θ)+h
ᵀ(x)v(θ)

I Example: exp(λ), N (µ, σ2)

I Sufficient statistic: h(x)

I Fisher information for general exponential family

Σ(θ) = Var[h(x)]

J(θ) = ∇vᵀ(θ)Σ(θ)∇v(θ)

Example: Newton’s method using Fisher scoring

I Consider multinomial distribution Multi(n; p1, . . . , p4)

I Assume n = 56, x1 = 20, x2 = 9, x3 = 1 and x4 = 26.

I Find MLE for p1, p2, p3 and p4.

I FI J(θ) is diagonal matrix with diagonal entries (n/pi)

I needed for Newton step: J−1(θ)∇[−`(θ)] is diagonal matrix

with entries −xi/pi
n/pi

= −xi
n

I Newton’s updating rule

p
(k+1)
i = p

(k)
i + µ

xi
n

Some limitations

I ignores the condition
∑4

i=1 pi = 1 (constrained optimization;
need to include Lagrangian multiplier)

I sensitive to the initial value

Stochastic gradient descent

I Stochastic gradient descent method uses noisy unbiased
subgradients

x(k+1) = x(k) − αkg̃(k)

I g̃(k) is any noisy unbiased gradient of a function at x(k)

E[g̃(k)] = g(k)

I Convergence

min
i=1,...,k

(Ef(x(i))− p∗) ≤ R2 +G2‖α‖22
2
∑k

i=1 αi

E‖g(k)‖22 ≤ G2, E‖x(1) − x∗‖ ≤ R2

Email SPAM classification via SVMs

I Support Vector Machine (SVM) is the name in machine
learning for a linear classifier

I Suppose we wish to train the classifier to classify emails as
spam/nonspam.

I Each email is represented using a vector that gives the
frequencies of various words in it (“bag of words” model).

I x1, . . . , xn emails, label yi ∈ {−1, 1}
I If spam were perfectly identifiable by a linear classifier, there

would be a function such that wᵀxi ≥ 1 if Xi is spam, and
wᵀxi ≤ −1 otherwise. Hence,

1− yiwᵀxi ≤ 0

Solve
min

∑
i

Loss(1− yiwᵀxi) + λ‖w‖22 (∗)

Hinge loss: Loss(x) = max{0, x}
I Loss(.) a function that penalizes unsatisfied constraints

according to the amount by which they are unsatisfied

I Note that (*) is a sum of many similar terms

I If we randomly pick a single term (data for one email) and
compute just its gradient, the expectation of this gradient is
just the true gradient

w(1) g̃(x1)−−−→ w(2) g̃(x2)−−−→ w(3) · · ·

