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Statistics and statistical thinking

The field of Statistics deals with the collection, presentation,
analysis, and use of data to model systems, make decisions, solve
problems, and design products and processes

Statistics is the science of data

Examples: Statistics helps us

I Predict the demand of a product / the stock prices

I Select the best supplier with the least lead time (or highest
quality)

I Monitor and control a process

I Simulate and model an ER

I Determine the probabilistic distribution of machines life

I Design new products



Population vs. sample

I Population: a finite well-defined group of ALL objects which,
although possibly large, can be enumerated in theory

I Sample: A sample is a SUBSET of a population (e.g. select
50 out of 1,000 GT students for the survey)



Variability in data

I Samples are random – individual variability
I noise
I measurement errors
I the world has randomness

I Random results in variability:
successive observations of a system or phenomenon do not
produce exactly the same result.

I We capture the randomness by probability models



Probability vs. statistics

I Probability: given the information in the pail, what is in your
hand?

I Statistics: given the information in your hand, what is in the
pail?



I Commonly used probabilistic models
I Discrete random variables

I Bernoulli: X ∈ {0, 1}, P(X = 1|p) = p
I Binomial: X ∈ {0, 1, . . . , n}, X ∼BIN(n, p),

P(X = k|n, p) =
(
n
k

)
pk(1− p)n−k

I Geometric: P(X = k|p) = (1− p)k−1p, k = 1, 2, . . .

I Continuous random variables
I Normal (Gaussian) distribution (central limit theorem):
N (µ, σ2)

I Exponential distribution: f(x|λ) = λe−λx, x > 0, λ > 0
I Uniform distribution, Beta distribution, Gamma distribution...

I Fundamental statistical tasks
I Point estimator
I Confidence interval
I Hypothesis testing
I Regression analysis
I Variable selection



Point estimator

I Digital thermometer takes measurements

I measurements subject to a random error additive to the true
value

I If you take 6 measurements, and obtain a sequence of
numbers

98.2 98.6 97.4 98.2 97.9 98.9

What is the value of the true parameter?

I Methods for constructing point estimators:
method-of-moments, maximum likelihood



Maximum likelihood estimator

I Maximum likelihood: assume data x following distribution
with f(x|θ) with true parameter value θ

I likelihood function `(θ|x) = f(x|θ), usually we consider
log-likelihood log `(θ|x)

I maximum likelihood estimator

θ̂ = arg max
θ
`(θ|x)

estimator θ̂ is a function of data x, and hence itself is random
and has certain distribution.

I Example: maximum likelihood estimator for Gaussian
N (µ, σ2)

I property of an estimator
I Bias: |θ̂ − θ|

Unbias estimator has zero-bias.
I Mean-square-error: E[(θ̂ − θ)2]



Bayesian estimator

I Assume the parameter has a prior distribution ρ(θ|τ): τ
hyper-parameter

I Posterior distribution of the parameter

f(θ|x) =
f(x|θ)ρ(θ|τ)

f(x)
(Bayes formula)

usually the marginal distribution f(x) does not matter

I Maximum a-posterior (MAP) estimator

θ̂ = arg max
θ

log f(θ|x) = arg max
θ
`(θ|x)ρ(θ|τ)

I Homework: compute the posterior distribution for Gaussian
mean



Confidence interval

I if instead of asking “what is the most likely true temperature”

I we ask “what is a range [a, b], such that the true temperature
is most likely to be within”

I Usually determined such that

P(θ ∈ [a, b]) = 1− α

1− α: confidence level, 0.95, 0.99

Example: For Gaussian mean, confidence interval is

[x̄− tα/2,n−1σ̂/
√
n, x̄+ tα/2,n−1σ̂/

√
n].

Since (x̄− µ)/(σ̂/
√
n) follows tn−1-distribution



Cramer-Rao lower bound

Lower bound on the best estimator we can find.

Cramer-Rao lower bound (CRB)

Let X1, . . . , Xn be a sample with pdf f(x|θ), and let
W (X) = WX1,...,Xn be any estimator satisfying

d

dθ
EθW (X) =

∫
d

dθ
[W (x)f(x|θ)]dx

and VarθW (X) <∞. Then

VarθW (X) ≥
( ddθEθW (X))2

Eθ((
d
dθ log f(X|θ))2)

(CRB)

Fisher information



CRB for i.i.d. samples

VarθW (X) ≥
( ddθEθW (X))2

nEθ((
d
dθ log f(X|θ))2)

(CRB)

I unbiased estimator EθW (X) = θ

I Example: estimator for parameter of exponential distribution
VarλW ≥ λ

n which is met by the sample mean 1
n

∑n
i=1Xi.

I another fact

Eθ((
d

dθ
log f(X|θ))2) = −Eθ(

d2

dθ2
log f(X|θ)) = I(x|θ)

Fisher information



Hypothesis test

I Production line produces a batch of 12 laptops

I Quality test shows that 1 out of 12 laptops’s battery life time
is shorter than design

I A technician claims the production line is defective.

I The claim is true of false?

I Setup: xi, i = 1, . . . , 12, xi ∼ N (µ, σ2), threshold

H0 : µ > t (null hypothesis)
H1 : µ < t (alternative hypothesis)

t: threshold.
Which hypothesis is true?



Construct hypothesis test

I Likelihood ratio test (LRT)

I Consider simple hypothesis test: assuming xi i.i.d.
∼ N (µ, σ2), i = 1, . . . , n

H0 : µ = µ0

H1 : µ = µ1

I log-likelihood ratio

log `(µ0, µ1) =

n∑
i=1

log
f(xi|µ1)

f(xi|µ0)
∝

I likelihood ratio test (LRT)
Reject H0 if log `(µ0, µ1) > b, where b is a threshold.



I Performance metrics:

α: type-I error; β: type-II error.
I Power of a test = 1− β
I Neyman-Pearson lemma: likelihood ratio test is optimal (it

achieves the smallest β for fixed α).
I Generalized likelihood ratio test (GLRT)

H0 : µ ∈ Θ0

H1 : µ ∈ Θ1

Reject null when
maxµ1∈Θ1 f(xi|µ1)

maxµ0∈Θ0 f(xi|µ0)
> b



Neyman-Pearson lemma
The likelihood ratio test is the most poweful test for simple
hypothesis.

Neyman-Pearson lemma

Consider testing H0 : θ = θ0 versus H1 : θ = θ1, where the pdf
corresponding to θi is f(x|θi), i = 0, 1, using the test that reject
the null hypothesis when

f1(x|θ1)

f0(x|θ0)
> b

for some threshold b ≥ 0, and significant level

α = Pf0(X leads to rejection).

Such a test is the uniformly most powerful (UMP) test.

UMP Roughly means: has the smallest type-II error for given
type-I error.



p-value

I In a nutshell, p-value is the probability that observing
something more “extreme” than the data under the null
hypothesis

I definition

p(x) = sup
θ∈Θ0

Pf(X|θ)(W (X) ≥W (x))

W (x) is the value of the test statistic calculated over the data



Relation between hypothesis test and confidence interval

I For instance

H0 : µ = µ0

H1 : µ 6= µ0

I Construct Confidence Interval (CI) for µ

[x̄− zα/2
σ√
n
, x̄+ zα/2

σ√
n

]

I If CI does not include µ0, then reject H0



Example



Basics of statistical inference

A quick overview of basic statistical inference problems and classic
methods.

I point estimator

I confidence interval

I hypothesis test

I regression

I variable selection

Computational tasks are everywhere.


