
ISyE 6416: Computational Statistics
Spring 2017

Lecture 2: Aspects of algorithms

Prof. Yao Xie

H. Milton Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology

Top 10 Algorithms of the 20th Century
1. 1946: The Metropolis Algorithm for Monte Carlo. Through the use of random

processes, this algorithm offers an efficient way to stumble toward answers to
problems that are too complicated to solve exactly.

2. 1947: Simplex Method for Linear Programming. An elegant solution to a
common problem in planning and decision-making.

3. 1950: Krylov Subspace Iteration Method. A technique for rapidly solving the
linear equations that abound in scientific computation.

4. 1951: The Decompositional Approach to Matrix Computations. A suite of
techniques for numerical linear algebra.

5. 1957: The Fortran Optimizing Compiler. Turns high-level code into efficient
computer-readable code.

6. 1959: QR Algorithm for Computing Eigenvalues. Another crucial matrix
operation made swift and practical.

7. 1962: Quicksort Algorithms for Sorting. For the efficient handling of large
databases.

8. 1965: Fast Fourier Transform. Perhaps the most ubiquitous algorithm in use
today, it breaks down waveforms (like sound) into periodic components.

9. 1977: Integer Relation Detection. A fast method for spotting simple equations
satisfied by collections of seemingly unrelated numbers.

10. 1987: Fast Multipole Method. A breakthrough in dealing with the complexity of
n-body calculations, applied in problems ranging from celestial mechanics to
protein folding.

https://www.siam.org/pdf/news/637.pdf

https://www.siam.org/pdf/news/637.pdf

I Aspects of algorithms

I Close-look at bisection, quick-sort, and FFT

Aspects of computer algorithms

Two most important aspects of algorithms

I Accuracy: e.g., absolute error |θ̂ − θ| or relative error
|θ̂ − θ|/|θ|

I Efficiency: how many computing resources are needed to
achieve certain precision

Other aspects

I Robustness

I Stable

Algorithm accuracy

I Some algorithms are exact (e.g., multiplying two matrices)
I Other algorithms are approximate because the result to be

computed does not have finite closed-form solution
I Truncation error: solving f(x) = 0 by solving f̃(x) = 0, where
f̃(x) is the Taylor expansion of f(x)

I Discretization error: solving continuous PDE via discretization
∂f(x)/∂x = g(x)

I Approximation error: solve f(x) = 0 using gradient descent.

Algorithm and data

I Performance of algorithm may depend on the data

Example [Wilkinson 59]

f(x) = (x− 1)(x− 2) · · · (x− 20) = x20 − 210x19 + · · ·+ 20!
if 210 is changed to 210 + 2−23 the root may change drastically

“condition of data”: quantify the condition of a set of data for a
particular set of operations

I finding root: increase in 1/ḟ(x) near the root

I condition number of a matrix M :
κ(M) = λmax(M)/λmin(M)

Algorithm robustness

An algorithm is robust if it can be applied reliably to a wide range
of data.

Example: robust optimization

Robust linear programming addresses linear programming problems
where the data is uncertain, and a solution which remains feasible
despite that uncertainty is sought.

(LP) min
x

cᵀx : aᵀi x ≤ bi, i = 1, . . . ,m.

(Robust LP) min
x

cᵀx : ai ∈ Ui, aᵀi x ≤ bi, i = 1, . . . ,m.

Robust Optimization, 2009. Aharon Ben-Tal, Laurent El Ghaoui &
Arkadi Nemirovski.

Algorithm stability

I If the algorithm always yields to a solution that is an exact
solution to a perturbed problem f̃(x) = f(x+ δx), the
algorithm is said to be stable.

I A small perturbation will not result in big difference in
solution of a stable algorithm.

I Perturbation to input data may be due to truncation error

I if problem is ill-conditioned, even stable algorithm may
produce bad results.

Algorithm efficiency

I usual measure of efficiency is speed, i.e., how long an
algorithm takes to produce its result

I analysis of algorithm: to determine the amount of resources
(time and storage) needed to execute an algorithm

I complexity of algorithm:
I time complexity: count the # of operations (flops)
I worst-case running time: the longest running time for any

input of size n
I order of growth of the running time that really interests us

asymptotic analysis and big O notation
e.g. f(n) = 9 log n+ 5(log n)3 + 3n2 + 2n3 = O(n3), as
n→∞

I also care of “memory” complexity

P vs. NP

NP: non-deterministic polynomial

I polynomial-time algorithms: on inputs of size n, the
worst-case running time is O(nk) for some constant k: e.g.,
sorting

I there are also problems that can be solved but not in time
O(nk) for any constant k

I we think of problems that are solvable by polynomial-time
algorithms as being tractable, or easy, and problems that
require superpolynomial time as being intractable, or hard

NP complete

I an interesting class of problems, called the NP-complete
problems, whose status is unknown: no polynomial-time
algorithm has yet been discovered for an NP-complete
problem, nor has anyone yet been able to prove that no
polynomial-time algorithm can exist for any one of them

I NP-complete problems: finding clique, travel salesman

Common approaches to design algorithm

I recursion: an algorithm that recursively calls itself.
Example: compute mean and variance

Horner’s method

pd(x) = cdx
d + · · ·+ c1x+ c0

evaluated as

pd(x) = x(· · ·x(x(cdx+ cd−1) + · · ·) + c1) + c0

I divide and conquer
A problem is broken into subproblems, each of which is
solved, and then the subproblem solutions are combined into a
solution for the original problem.
Example: “bubble sort” versus quick sort, FFT.

I greedy algorithm
I Each step is as efficient as possible without regarding future

steps
I Greedy algorithm is usually used in the early stages of

computation for a problem or when a problem lacks
understandable structures.

I Example: gradient descent, Newton’s method.

I Iterative method: bisection
Convergence: whether or not it will ends with a (right) fix
point if iterate enough steps

I Convex relaxations
replace non-convex constraints with convex ones.

Example: convex relaxation for variable selection

Solve y = Ax where x ∈ Rn is k-sparse.

Exponential complexity

minimize ‖x‖0
subject to y = Ax

Polynomial complexity

minimize ‖x‖1
subject to y = Ax

lasso algorithm and compressed sensing

Next, we exam 3 instances closely

I Bisection

I Quicksort

I Convolution and FFT

Bisection
I for a continuous monotone function g(x), find root such

that
x∗ : g(x∗) = 0

I bisection:
I start with g(a) < 0 < g(b)
I take c = 1

2 (a+ b)
I if g(c) < 0, consider right half interval [c, b]
I if g(c) > 0, consider left half interval [a, c]
I repeat the above corresponding subinterval

a c b

g(x)

c=1/2(a+b)

I By doing this, we always have

g(xL) < 0 < g(xr)

I since g is continuous, there must be a point x∗ ∈ [xl, xr] such
that g(x∗) = 0

I the length of the interval is halved each time

I after n iterations, the final bracketing interval has length
2−n(b− a), this means

|x∗ − x| < 2−n(b− a), ∀x ∈ [a, b]

I the length of the interval converges to 0 as n→∞
(convergence rate e−n log 2: exponential convergence rate)

Quicksort algorithm

I sorting: {3, 1, 5, 2} ⇒ {1, 2, 3, 5}
I Native “bubble sort”

Starting from the beginning of the list, compare every
adjacent pair, swap their position if they are not in the right
order (the latter one is smaller than the former one). After
each iteration, one less element (the last one) is needed to be
compared until there are no more elements left to be
compared.

I complexity:O(n2)

I Quicksort: a recursive algorithm using “divide-and-conquer”

I a vector of numbers c of length n, start location for sort p,
end location for sort q

I peudocode

quicksort(c, p, q)
r := findpivot(c, p, q)
quicksort(c, p, r-1)
quicksort(c, r+1, q)

Demo: http://me.dt.in.th/page/Quicksort/

172 Chapter 7 Quicksort

2 8 7 1 3 5 6 4
p,j ri

(a)

2 8 7 1 3 5 6 4
p,i rj

(b)

2 8 7 1 3 5 6 4
p,i rj

(c)

2 8 7 1 3 5 6 4
p,i rj

(d)

2 871 3 5 6 4
p rj

(e)
i

2 8 71 3 5 6 4
p rj

(f)
i

2 8 71 3 5 6 4
p rj

(g)
i

2 8 71 3 5 6 4
p r

(h)
i

2 871 3 5 64
p r

(i)
i

Figure 7.1 The operation of PARTITION on a sample array. Array entry AŒr ! becomes the pivot
element x. Lightly shaded array elements are all in the first partition with values no greater than x.
Heavily shaded elements are in the second partition with values greater than x. The unshaded el-
ements have not yet been put in one of the first two partitions, and the final white element is the
pivot x. (a) The initial array and variable settings. None of the elements have been placed in either
of the first two partitions. (b) The value 2 is “swapped with itself” and put in the partition of smaller
values. (c)–(d) The values 8 and 7 are added to the partition of larger values. (e) The values 1 and 8
are swapped, and the smaller partition grows. (f) The values 3 and 7 are swapped, and the smaller
partition grows. (g)–(h) The larger partition grows to include 5 and 6, and the loop terminates. (i) In
lines 7–8, the pivot element is swapped so that it lies between the two partitions.

The indices between j and r ! 1 are not covered by any of the three cases, and the
values in these entries have no particular relationship to the pivot x.

We need to show that this loop invariant is true prior to the first iteration, that
each iteration of the loop maintains the invariant, and that the invariant provides a
useful property to show correctness when the loop terminates.

example of
PARTITION
(to find pivot)

I best scenario: [1, 2, 3, 4, 5, 6, 7, 8], examining about n log n
elements

I worst scenario: [8, 7, 6, 5, 4, 3, 2, 1]
pass 1: [1, 8, 7, 6, 5, 4, 3, 2]
pass 2: [1, 2, 8, 7, 6, 5, 4, 3]
pass 3: [1, 2, 3, 8, 7, 6, 5, 4]
...

Complexity of quicksort

Average complexity of quicksort algorithm is O(n log n).

Proof:
Homework: show that the worst-case complexity of quicksort is
O(n2).

Convolution

I convolution of two functions

continuous: R(t) = x(t) ? h(t) =

∫
x(t− u)h(u)du

discrete: R[m] = x ? h =
∑
j

xm−jhj

I very important in statistics, image processing, signal
processing, computer science.

I distribution of sum of two random variables U + V is the
convolution of their PDFs

I “filtering” of an image

(Section 3, “Computational statistics” by J. Gentle.)

Convolution and Fourier transform

I Fourier transform, denoted as F(x) is defined as

F(x) , X(f) =

∫ ∞
−∞

x(t)e−i2πftdt

where i =
√
−1

I Inverse Fourier transform

x(t) =

∫ ∞
−∞

X(f)ei2πftdf

Convolution theorem

F(x ? h) = F(x) · F(h)

Proof:

Discrete Fourier transform

I Discrete Fourier transform (DFT), denoted as F(x) is a
vector such that each element is given by

x̃m =

N−1∑
j=0

xje
−i 2π

n
jm

where i =
√
−1

I Inverse DFT

xj =
1

N

N−1∑
m=0

x̃me
i 2π
N
jm

I equivalently
x̃ = Ax

where matrix A is N -by-N and Amj = e−
2πi
N
jm

Deep learning

Convolutional neural network (CNN)

[Courtesy: Prof. Le Song at Georgia Tech, CSE.]

FFT (Fast Fourier Transform)
I Recall: DFT is equivalent to computing x̃ = Ax
I Normally this is O(N2), when the matrix has special form,

however, it may be reduced. This is the idea of fast Fourier
Transform (FFT).

I Complexity of FFT is O(N logN)

butterfly

Derivation of FFT

I Assume N is even

I Let en = x2n represent the even-indexed samples

I Let on = x2n+1 represent the odd-indexed samples

I One can show that en and on are zero outside the interval
0 ≤ n ≤ (N/2)− 1

I One can show that

x̃k =
1

2
Ẽk +

1

2
W k
N Õk, k = 0, 1, . . . , N − 1

where WN = e−i
2π
N

the two terms are DFT of the even- and the odd-indexed
samples

Ẽk = 2

N/2−1∑
n=0

enW
nk
N/2, Õk = 2

N/2−1∑
n=0

onW
nk
N/2

I Moreover, there is symmetry

Ẽk+N/2 = Ẽk, Õk+N/2 = Õk.

I Length-N DFT of xn can be computed as two DFTs of
length N/2.

Analysis of Financial Time-Series using Fourier method

I Case-Shiller home price index for the city of New-York

I January 1987 to May 2008 and the index is reported on a
monthly basis

power spectral |X(f)|2

strong seasonalities aect home prices and they have a frequency of
recurrence of 12 months.

Summary

I Aspects of algorithms
I Accuracy
I Efficiency
I Robustness and stability

I Analyzing algorithms
I Bisection for finding root
I Quicksort algorithm for sorting a sequence of numbers
I Convolution and its quick implementation via FFT

