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Introduction

I so far we have assumed we can draw random variables from
any desired distribution

I for some problems, we cannot do this.

I in Markov chain Monte Carlo (MCMC) we do this by
sampling x1, . . . , xn from a Markov chain constructed so that
the distribution of xi approaches the target distribution π

I MCMC originated in physics

I primary methods: Metropolis algorithm, Gibbs sampler



Markov chain

I a Markov chain is a mathematical model for stochastic
systems whose states, discrete or continuous, are governed by
transition probabilities.

I the current state in a Markov chain only depends on the most
recent previous states

I a Markov chain is often denoted by (Ω, ν, P )
for discrete state Markov chain

I Ω: state space
I P = (pij): probability to transition from state i to state j
I ν: a row vector contains the stationary distribution

I equilibrium distribution π: a row vector such that

π = πP

I in MCMC, we design a Markov chain such that its stationary
distribution converges to the desired distribution



Application of Markov Chain Monte Carlo

I learning: one need to compute posterior from likelihood
p(x|θ) and prior distribution p(θ)

p(θ|x) =
p(x|θ)p(θ)∫
p(x|z)p(z)dz

p(θ|x) may not be computed in close-form

I Bayesian network: p(x|θ), p(θ|ρ), p(ρ), and one has to figure
out p(ρ|x) for example

p(ρ|x) ∝
∫

θ
p(x|θ)p(θ|ρ)p(ρ)dθ



Example: Bayesian network

A simple Bayesian network with conditional probability tables.



Simple example

I let π(x) = 10xe−10/x!, x = 0, 1, 2, . . .

I set x0 = 0, 1, 2 with probability 1/3 for each

I set Markov chain transition probability

P{xi+1 = xi − 1|xi} =

{
xi/20, xi ≤ 9
1/2, xi > 9

P{xi+1 = xi|xi} =

{
(10− xi)/20, xi ≤ 9
(xi − 9)/(2(xi + 1)), xi > 9

P{xi+1 = xi + 1|xi} =

{
1/2, xi ≤ 9
5/(xi + 1), xi > 9

(from Lecture notes by Hakon Tjelmeland)



Trace plots of three runs
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Convergence to target distribution

	  

A (very) simple MCMC example (cont.)

• Convergence to the target distribution

0 iterations
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A (very) simple MCMC example (cont.)

• Convergence to the target distribution

5 iterations
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A (very) simple MCMC example (cont.)

• Convergence to the target distribution

50 iterations
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Metropolis-Hastings algorithm

I Given a prescribe equilibrium distribution π

I Come up with a proposed (arbitrary) transition probability
from state i to state j: qij (it is symmetric: qij = qji)

I Metropolis-Hasting is a two-stage method
I Stage 1: if the chain is currently in state i, then in the

proposal stage a new state j is proposed according to qij
I Stage 2: a random number is drawn uniformly from [0, 1] to

determine whether the proposed step is actually taken.
if the number is less than the Metropolis acceptance probability

pij = min{1, πjqji
πiqij

},

then the proposed step is taken; otherwise, the proposed step
is declined, and the chain remains in place.

I this will generate a Markov chain with equilibrium distribution
π



Intuition

I at each iteration, the algorithm picks a candidate for the next
sample value baed on the current sample value

I with some probability (based on pij), the candidate is either
accepted, or rejected (in this case the current value is reused
in the next iteration)

I the probability of acceptance is determined by comparing the
likelihoods of the current and candidate sample values with
respect to π



Proof

there are three components:

1. it suffices to verify the detailed balance πiqijpij = πjqjipji.
Suppose pij is well-defined, πi > 0 and qij > 0. WLOG,
assume πjqji/(πiqij) ≤ 1, for j 6= i. We have
pij = πjqji/(πiqij), and pji = 1 (since the inverse ratio is
greater than 1).

πiqijpij = πiqij
πjqji
πiqij

= πjqji = πjqjipji.

2. aperiodicity: acceptance-rejection allows the chain to remain
in place

3. irreducibility of the chain: πi > 0 for any i, and the chain
defined by qij is irreducible



Example: Bayesian inference

I Binomial distribution with non-standard prior
I Y = [Y1, . . . , Yn]T with Y1, . . . , Yn i.i.d. Bin(1, θ)
I Sn =

∑n
i=1 Yi

I π(θ) = 2 cos2(4πθ)

I the posterior is

π(θ|Y ) ∼ f(Y |θ)π(θ) = 2θSn(1− θ)n−Sn cos2(4πθ)

I proposal distribution q(θ′|θ) ∼ exp(− 1
2σ2 (θ − θ′)2)



acceptance probability

p(θ, θ′) = min{1, π(θ′|Y )q(θ|θ′)
π(θ|Y )q(θ′|θ)

}

= min{1, θ
′Sn(1− θ′)n−Sn cos2(4πθ′)

θSn(1− θ)n−Sn cos2(4πθ)
}

( )

0.00 0.25 0.50 0.75 1.00
0

1

2

3

4

5

6

θ

p
(θ

|Y
)

q(θ|0.2) q(θ|0.6)

0.00 0.25 0.50 0.75 1.00
0

500

1000

1500

2000

2500

θ

p̂
(θ

|Y
)

N=50000

σ = 0.1



Gibbs sampling

I Gibbs sampling is applicable when the joint distribution is not
known explicitly or is difficult to sample from directly, but the
conditional distribution of each variable is known and is easy
to sample from.

I The Gibbs sampling algorithm generates an instance from the
distribution of each variable in turn, conditional on the current
values of the other variables.

I the sequence of samples constitutes a Markov chain, and the
stationary distribution of that Markov chain is just the desired
joint distribution.

I Gibbs sampling is particularly well-adapted to sampling the
posterior distribution of a Bayesian network, since Bayesian
networks are typically specified as a collection of conditional
distributions.



Algorithm

I A special case of Metropolis-Hastings algorithm for Cartesian
product state space: S × S × · · · × S (product of m of S),
with a specific form of proposed probability as follows

I each sample point i = (i1, . . . , im) has m components. Gibbs
sampler updates one component of i at a time.

I let ic be a uniformly randomly chosen component.

I remaining component:

i−c = (i1, . . . , ic−1, ic+1, . . . , im).

I if j is a neighbor of i: identical by changing only one
component ic, then j−c = i−c



I define proposal probability for such a neighbor j

qij =
1

m

πj∑
k:k−c=i−c

πk

we have
πiqij = πjqji

I the ratio appeared in the Hastings-Metropolis algorithm is 1



Example: Ising Model

I mathematical model of ferromagnetism in statistical
mechanics

I m elementary particles equally spaces around the boundary of
the unit circle

I each particle c has two magnetic states: spin up (ic = 1) or
spin down (ic = −1). The Gibbs distribution:

πi ∝ exp(β
∑

d

idid+1).

Note im+1 = i1.

I for β > 0, state (1, . . . , 1) is favored and state
(1,−1, 1,−1, . . .) is not.

I normalizing constant Z =
∑

i exp(β
∑

d idid+1) is hard to
compute, but it is not needed implementing Gibbs sampler



I from the formula: choose jc = −ic and jc = ic with
probability

πj∑
k:k−c=i−c

πk

=
exp[β(jcic−1 + jcic+1)]∑
jc

exp[β(jcic−1 + jcic+1)]

=

{
exp[β(−icic−1−icic+1)]

exp[β(−icic−1−icic+1)]+exp[β(icic−1)+icic+1]
, if jc = −ic

exp[β(icic−1+icic+1)]
exp[β(−icic−1−icic+1)]+exp[β(icic−1)+icic+1]

, if jc = ic

=

{
1

1+exp[2β(icic−1)+icic+1]
, if jc = −ic

exp[β(icic−1+icic+1)]
exp[β(−icic−1−icic+1)]+exp[β(icic−1)+icic+1]

, if jc = ic

β: inverse temperature.
A demonstration of Ising model: http://physics.weber.edu/schroeder/software/demos/IsingModel.html





Simulated annealing

I Name: metal produced with a slow decrease in temperature
(annealing) is stronger than metals produced with a fast
decrease of the temperature.

I objective: finding the most probable state of a Markov chain:
k, πk > πi for all i 6= k

I Metropolis-Hastings acceptance probability

pij = min{(πj/πi)1/τ , 1}

τ is call temperature

I if τ goes from ∞ to 0, it becomes harder to accept/make a
move

I effect of τ : exploration vs. exploitation

I so far, no satisfactory theoretical justification



Simulation for solving optimization problems

I Traveling salesman problem: minimize distance traveled.



Example: solving traveling salesman problem

I a salesman must visit n towns

I given the traveling cost dij between every pair of towns i and
j, in what order should he visit the towns to minimize the
total cost?

I NP-complete problem: with deterministic solutions that are
conjectured to increase in complexity at an exponential rate in
n

I simulated annealing approach to solve this problem:
I assign each permutation σ = (σ1, . . . , σn) a cost

cσ =

n∑

i=1

dσi,σi+1

I define
πσ ∝ e−cσ

turns the problem into to finding the most probably
permutation σ.



A computer chess program could be seen as trying to find the set
of, say, 10 moves that produces the best evaluation function at the
end.

Monte Carlo tree search in AlphaGo.


