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Determine area under a curve

I determine area under a curve y = h(x), continuous function
with 0 ≤ h(x) ≤M over the closed interval a ≤ x ≤ b

I select points at random from within the rectangular region

I area under the curve / area of rectangle ≈ number of points
counted below curve / total number of random points



Monte Carlo integration

I To compute E[h(X)] =
∫
h(x)f(x)dx

h(x): integrand, f(x): probability density function

I Monte Carlo approach to approximate the integration:
Take i.i.d. samples X1, . . . , Xn from pdf f(x).
Then take sample average

Î1 =
1

n

n∑
i=1

h(Xi)

I Convergence: law of large numbers, as n→∞

1

n

n∑
i=1

h(Xi)→ E[h(X)]



Monte Carlo methods

I Monte Carlo methods (or Monte Carlo experiments) are a
broad class of computational algorithms that rely on repeated
random sampling to obtain numerical results.

I most useful when it is difficult or impossible to use other
approaches.

I Monte Carlo methods are mainly used in three distinct
problem classes: optimization, numerical integration, and
generating draws from a probability distribution.



Estimating probabilities

I Evaluating probability can be rewritten using indicator
function as

P(X ∈ A) = IA(x)

I Widely used in engineering: example, wireless multi-hop
networks

I There are m ≥ 3 nodes randomly distributed in the unit square

I Each node can communicate directly with any other node that
is within a distance r of it

I A two-hop connection arises between nodes 1 and 2 when
nodes 1 and 2 are farther than r but are both within distance
r of node j for one or more j ∈ {3, . . . ,m}

Source: A. Owen, Monte Carlo theory, methods and examples.



m = 40
I Question: What is the probability of forming a two-way

connection?
I This probability is an integral over 2m = 40 dimensional space
I Run 10,000 independent replications of this problem
I Among them, 650 cases have two-hop connection
I The probability is estimated to be

p̂ = 650/10000 = 0.065.



I How good is the estimation?
CLT-based 99% confidence interval for p

p̂± z0.005︸ ︷︷ ︸
2.58

√
p̂(1− p̂)

n

leading to

0.065± 2.58

√
0.065× 0.945

10000
= 0.065± 0.0064



Estimating tail probability

I How strong a wind should we construct a building to be
resistant to?

P(W ≤ w) = exp(− exp((w − 52)/4))

Source: A. Owen, Monte Carlo theory, methods and examples.



Estimating tail probability

I Suppose the random variable X is binomially distributed with
m trials and success probability p. We want to evaluate the
right-tail probability α = P{X ≥ z}

I evaluating tail probability is important in hypothesis testing:
finding the significance level of the test, we need to evaluate
the tail probability of the test statistics under the null
distribution

I tail probability also used for risk management in insurance,
and portfolio investment

I For z much larger than mp, α is very small, and estimating
this small probability accurately is not easy



Convergence property

I If X is square integrable, we have

1

n

n∑
i=1

h(Xi)⇒ N
(
E[h(X)],

1

n
Var[h(X)]

)
I Estimate the order of the rate of convergence by

√
v/n, v =

1

n− 1

n∑
i=1

[h(Xi)−
1

n

n∑
j=1

h(Xj)]
2

I disadvantage: slow convergence rate n−1/2

I can we reduce v by generating samples smartly?



Important Sampling

I variance reduction method in Monte Carlo integration

I main idea: using samples generated from a different
distribution rather than the distribution given

I suppose g(x) is another pdf∫
h(x)f(x)dx =

∫
h(x)

f(x)

g(x)︸ ︷︷ ︸
likelihood ratio

g(x)dx

change the function to be integrated from

h(x)→ h(x)
f(x)

g(x)

change the pdf from f(x) to g(x)



I based on this, now we can sample Y1, Y2, . . . , Yn i.i.d. from
g(x)

I estimate the integration as

Î2 =
1

n

n∑
i=1

h(Yi)
f(Yi)

g(Yi)︸ ︷︷ ︸
weighted by likelihood ratio

I we can choose g(x) smartly so this estimator Î2 has smaller
variance than the one based on direct sampling Î1

I choose a distribution to encourage “important” values



How to choose a pdf to sample from

I we want to show that var{Î2} ≤ var{Î1}, since both methods
are unbiased: E{Î1} = E{Î2}, or equivalently E{Î22} ≤ E{Î21}:∫

[h(x)
f(x)

g(x)
]2g(x)dx ≤

∫
h(x)2f(x)dx, (∗)

I choose g(x) = |h(x)|f(x)∫
|h(v)|f(v)dv , we can show (*) is true

I main idea: choose g(x) to resemble |h(x)|f(x), the standard
error tends to be reduced

I difficulty: if |h(x)|f(x) is unknown, we have to approximate it



Proof.

∫
[
h(x)f(x)

g(x)
]2g(x)dx

=

∫
[h(x)f(x)]2/g(x)dx

=

∫
[h(x)f(x)]2/(|h(x)|f(x))dx · [

∫
|h(v)|f(v)dv]

= (

∫
|h(x)|f(x)dx)2 Cauchy Schwartz

≤
∫
|h(x)|2f(x)dx

∫
f(x)dx︸ ︷︷ ︸
=1

=

∫
h2(x)f(x)dx


