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Classification

I Classification is a predictive task in which the response takes
the values across several categories (in the fundamental case,
two categories)

I Examples
I Predicting whether a patient will develop breast cancer or

remain healthy, given genetic information
I Predicting whether or not a user will like a new product, based

on user covariates and a history of his/her previous ratings
I Predicting the voting preference based on voter’s social,

political, and economical status

I Here we consider supervised classification, i.e., we know the
labels for the training data







Fisher’s Irish example
I The Iris flower data set or Fisher’s Iris data set is a

multivariate data set introduced by Sir Ronald Fisher (1936)
as an example of discriminant analysis. [1]

I The data set consists of 50 samples from each of three species
of Iris (Iris setosa, Iris virginica and Iris versicolor). Four
features were measured from each sample: the length and the
width of the sepals and petals, in centimetres.

I Based on the combinaBon of these four features, Fisher
developed a linear discriminant model to disBnguish the
species from each other



Classification model-based

I Linear and quadratic discriminant analysis: Gaussian densities.

I Mixtures of Gaussians.

I Naive Bayes: assume each of the class densities are products
of marginal densities, that is, all the variables are independent.

I Multivariate Gaussian density function

f(x) =
1

(2π)p/2|Σ|1/2
e−

1
2

(x−µ)T Σ−1(x−µ)



I Linear discriminant analysis (LDA) assumes that the data
within each class are normally distributed

hj(x) = P(X = x|C = j) = N (µi,Σ)

I Note that the covariance matrix is a common one

Σk = Σ, ∀k = 1, . . . ,K

I Each class has its own mean µj ∈ Rp

I Maximum likelihood principle: we find j so that the posterior
probability is the largest:

P(C = j|X = x)πj = hj(x)πj



I estimated class given a data (feature vector) x

fLDA(x) = arg max
j=1,...,K

δj(x)

I Discriminant function: δj(x), j = 1, . . . ,K

δj(x) = µTj Σ−1︸ ︷︷ ︸
aTj

x−1

2
µTj Σ−1µj + log πj︸ ︷︷ ︸

bj

is an affine function of x for LDA



LDA from data

I In practice, we estimate the model parameters from training
data

I π̂j = nj/n the proportion of observation in class j (nj : the
number of samples labeled as class j)

I µ̂j = 1
nj

∑
y=j xi: the centroid of class j

I Σ̂ = 1
n−K

∑K
j=1

∑
yi=j(xi − µ̂j)(xi − µ̂j)

T the pooled sample
covariance matrix



LDA decision boundaries

I Due to our decision rule: find j so that the posterior
probability is the largest:

P(C = j|X = x)πj = hj(x)πj

I The decision boundary between classes j and k is the set of
all x ∈ Rp such that δj(x) = δk(x), i.e.,

aj − ak + (bj − bk)Tx = 0



LDA computations and sphering

I The decision boundaries for LDA are useful for graphical
purposes, but to classify a new data x0, we simply compute
δ̂j(x0) for each j = 1, . . . ,K

I Note that LDA’s discriminant function can be written as

1

2
(x− µ̂j)T Σ̂−1(x− µ̂j)− log π̂j

I It helps to perform eigendecomposition of the sample
covariance matrix Σ̂ = UDUT , computation can be simplied

(x− µ̂j)TΣ−1(x− µ̂j) = ‖D−1/2UTx︸ ︷︷ ︸
x̃

−D−1/2UT µ̂j︸ ︷︷ ︸
µ̃j

‖22

which is just the Euclidean distance between x̃ and µ̃j

I compute the discriminant function δ̂j = 1
2‖x̃− µ̃j‖

2
2 − log π̂j ,

and then find the nearest centroid



Quadratic discriminant analysis

I Estimate covariance matrix Σk separately for each class k

I Quadratic discriminant function

δk(x) = −1

2
log |Σk| −

1

2
(x− µk)TΣ−1

k (x− µk) + log πk

I QDA fits data better than LDA, but has more parameters to
estimate.



Diabetes dataset

The scatter plot follows. Without diabetes: stars (class 1), with
diabetes: circles (class 2). Solid line: classification boundary
obtained by LDA. Dash dot line: boundary obtained by linear
regression of indicator matrix.



Diabetes dataset

I Two input variables computed from the principle components
of the original 8 variables

I Prior probabilities: π̂1 = 0.651, π̂2 = 0.349

I µ̂1 = (−0.4035,−0.1935)T , µ̂2 = (0.7528, 0.3611)T

Σ̂ =

[
1.7925 −0.1461
−0.1461 1.6634

]
I LDA Decision rule

fLDA(x) =

{
1 1.1443− x1 − 0.5802x2 ≥ 0
2 otherwise.

Within training data classification error rate: 28.26%



QDA for diabetes dataset

I Prior probabilities: π̂1 = 0.651, π̂2 = 0.349

I µ̂1 = (−0.4035,−0.1935)T , µ̂2 = (0.7528, 0.3611)T

Σ̂1 =

[
1.6769 −0.0461
−0.0461 1.5964

]
, Σ̂2 =

[
2.0087 −0.3330
−0.3330 1.7887

]
Within training data classification error rate: 29.04%.



LDA on expanded basis

I Expand input space to include X1X2, X2
1 , X2

2

I Input is five dimensional X = (X1, X2, X1X2, X
2
1 , X

2
2 )

µ̂1 =


0.403
0.193
0.032
1.836
1.630

 , µ̂2 =


0.752
0.361
0.059
2.568
1.912



Σ̂ =


1.7925 −0.1461 −0.6254 0.3548 0.5215
−0.1461 1.6634 0.6073 0.7421 1.2193
−0.6254 0.6073 3.5751 1.1118 0.5044
0.3548 0.7421 1.1118 12.3355 0.0957
0.5215 1.2193 −0.5044 −0.0957 4.4650


Classification boundary
0.651−0.728x1−0.552x2−0.006x1x2−0.071x2

1+0.170x2
2 = 0



I Classification boundaries obtained by LDA using the expanded
input space X1, X2, X1X2, X

2
1 , X

2
2 .

I Within training data classification error rate: 26.82%. Lower
than those by LDA and QDA with the original input.



Mixture discriminant analysis

I A single Gaussian to model a class, as in LDA, can be quite
restricted

I A method for classification (supervised) based on mixture
models

I Extension of linear discriminant analysis

I a mixture of normals is used to obtain a density estimation for
each class


