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Classification

» Classification is a predictive task in which the response takes
the values across several categories (in the fundamental case,
two categories)

» Examples

» Predicting whether a patient will develop breast cancer or
remain healthy, given genetic information

> Predicting whether or not a user will like a new product, based
on user covariates and a history of his/her previous ratings

» Predicting the voting preference based on voter’s social,
political, and economical status

» Here we consider supervised classification, i.e., we know the
labels for the training data
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Fisher's Irish example

» The Iris flower data set or Fisher's Iris data set is a
multivariate data set introduced by Sir Ronald Fisher (1936)
as an example of discriminant analysis. [1]

» The data set consists of 50 samples from each of three species
of Iris (Iris setosa, lris virginica and Iris versicolor). Four
features were measured from each sample: the length and the
width of the sepals and petals, in centimetres.

» Based on the combinaBon of these four features, Fisher
developed a linear discriminant model to disBnguish the
species from each other




Classification model-based
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Linear and quadratic discriminant analysis: Gaussian densities.

Mixtures of Gaussians.
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Naive Bayes: assume each of the class densities are products
of marginal densities, that is, all the variables are independent.
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Multivariate Gaussian density function
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Linear discriminant analysis (LDA) assumes that the data
within each class are normally distributed

hj(z) = P(X = 2|C = j) = N (1, %)
Note that the covariance matrix is a common one
Yp=XVk=1,...,K

Each class has its own mean p; € R?

Maximum likelihood principle: we find j so that the posterior
probability is the largest:

P(C =j|X = 2)m; = hj(z)m;



> estimated class given a data (feature vector) x

fIPA(z) = arg max 4;(z)
j K

=1,...,

» Discriminant function: §;(z), j=1,..., K

(%(:C)zﬂ?i] x—= MJE Y +log
——
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J b]

is an affine function of x for LDA



LDA from data

> In practice, we estimate the model parameters from training
data
» @; =n;/n the proportion of observation in class j (n;: the
number of samples labeled as class j)
> Q= % >_,—; Tit the centroid of class j

» 3= e ZJK:1 Dy (@i — i) (@ — f1;)T the pooled sample
covariance matrix




LDA decision boundaries

» Due to our decision rule: find j so that the posterior
probability is the largest:

P(C = j|X = z)mj = hj(x)n;

» The decision boundary between classes j and k& is the set of
all z € R? such that 6;(z) = dx(x), i.e.,

a; — ag + (bj — bk)TﬂS =0

fLDA (1:)




LDA computations and sphering

>

The decision boundaries for LDA are useful for graphical
purposes, but to classify a new data zg, we simply compute
dj(xp) foreach j =1,..., K

Note that LDA's discriminant function can be written as

1 C\T— . .
Sl = )73 @ — fy) — log
It helps to perform elgendecomp05|t|on of the sample
covariance matrix 3 = UDU7T, computation can be simplied
(z i)' o = fy) = | D20 e~ DTVPUT iy |13
J J \_\;_, ~ j 2

[2%]

which is just the Euclidean distance between & and [i;

compute the discriminant function 6 $1Z — 5] — log 75,
and then find the nearest centroid



Quadratic discriminant analysis

» Estimate covariance matrix Y separately for each class &
» Quadratic discriminant function

1 1 _
Or(x) = —§1Og |2x| — §($ — ) S @ — ) + log

» QDA fits data better than LDA, but has more parameters to
estimate.




Diabetes dataset

The scatter plot follows. Without diabetes: stars (class 1), with
diabetes: circles (class 2). Solid line: classification boundary
obtained by LDA. Dash dot line: boundary obtained by linear
regression of indicator matrix.
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Diabetes dataset

» Two input variables computed from the principle components
of the original 8 variables

Prior probabilities: 71 = 0.651, 715 = 0.349
fi1 = (—0.4035, —0.1935)T, iz = (0.7528,0.3611)7

v

v

$_ 1.7925 —0.1461
~|—-0.1461 1.6634

» LDA Decision rule

LpA, ) 1 1.1443 — 21 — 0.5802z2 > 0
Jr ) = { 2 otherwise.

Within training data classification error rate: 28.26%



QDA for diabetes dataset

» Prior probabilities: 71 = 0.651, 7y = 0.349
> fi1 = (—0.4035,-0.1935)T, fi; = (0.7528,0.3611)7
Sy =

s _ [ 16769 —0.0461},

2.0087 —0.3330
L= 120.0461  1.5964

—0.3330 1.7887

Within training data classification error rate: 29.04%.



LDA on expanded basis

» Expand input space to include X; Xo, X7, X3
» Input is five dimensional X = (X1, X2, X1 Xo, X2, X2)

0.403 0.752
0.193 0.361
fi1 = [0.032], 2= [0.059
1.836 2.568
1.630 1.912

1.7925 —0.1461 —-0.6254 0.3548 0.5215
—0.1461 1.6634 0.6073  0.7421 1.2193

S = [-0.6254 0.6073  3.5751 1.1118 0.5044
0.3548  0.7421 1.1118  12.3355 0.0957
0.5215  1.2193 —0.5044 —0.0957 4.4650

Classification boundary
0.651—0.72871 —0.55222 —0.006x1 22 —0.07122 +0.17023 = 0



» Classification boundaries obtained by LDA using the expanded
input space X1, Xo, X1 Xo, X2, X2.

» Within training data classification error rate: 26.82%. Lower
than those by LDA and QDA with the original input.



Mixture discriminant analysis

» A single Gaussian to model a class, as in LDA, can be quite
restricted

» A method for classification (supervised) based on mixture
models

» Extension of linear discriminant analysis

» a mixture of normals is used to obtain a density estimation for
each class

E

Left: Decision boundaries by LDA. Right: Decision boundaries
obtained by modeling each class by a mixture of two Gaussians.



