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What this course is about

> Interface between statistics and computer science

» Closely related to machine learning, data mining, and data
analytics

» Aim at the design of algorithm for implementing statistical
methods on computers



Major components

» Optimization tools for statistics
» First order and second order methods for likelihood
» Expectation-maximization methods
» Parametric methods
» Gaussian mixture model (GMM)
» Hidden Markov model (HMM)
» Model selection and cross validation

» Non-parametric methods

Principle component analysis and low-rank models
splines and approximation of functions

Bootstrap and resampling

Monte Carlo methods
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Statistics

data: images, video, audio, text, etc. sensor networks, social
networks, internet, genome.

statistics provide tools to
» model data
e.g. distributions, Gaussian mixture models, hidden Markov
models
» formulate problems or ask questions
e.g. maximum likelihood, Bayesian methods, point estimators,
hypothesis tests, how to design experiments
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Statistics needs computing

» once the problem has been formulated, we have to solve and
problem and this relies on computing

» the forms of the mathematical problem does not relate to how
to solve it

» computing: find efficient algorithms to solve them
e.g. maximum likelihood requires finding maximum of a cost
function

» "Before there were computers, there were algorithms. But
now that there are computers, there are even more algorithms,
and algorithms lie at the heart of computing. ”

Algorithm

(loosely speaking) a method or a set of instructions for doing
something...

A program is a set of computer instructions that implement the
algorithm.



computational statistics vs. optimization

> choosing decision parameter value to minimize the decision
risk

Example: linear regression

(l'iayi), = ]., , M.
Risk function: R(a,b) = > 1, (y; — (aw; + b)?

(é,b) = arg min R(a, b)

a,b



» choosing parameter value according to maximum likelihood

Example: maximum likelihood

> 0. parameter, x: data
log-likelihood function £(6|z) = log f(x|6)

v

Onit, = arg max £(0|z)

v

drop dependence on x, but remember that £(6) is a function
of data z

v

Simplest setting: maximize the log-likelihood function by
g dO) _
setting — 7~ =0

How to find a solution to the optimization problem? Is there is a
global solution, or there are many local solutions?



computational statistics vs. linear algebra

» A common data structure for statistical analysis is the
rectangular array: a matrix

> the property of the matrix says a lot about the structure of
the data

variables —
variables —»

observations observations

Common statistics.. High-dimensional statistics
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How to solve large linear systems

y= Az

> linear regression: A data matrix; y vector of response
variables, we need to solve (ATA)~1ATy

» directly compute matrix inverse may not be practical

> needs various regularization to obtain good solution

Example: big data challenge

The Human Genome Project has made great progress toward the
goals of identifying all the 100,000 genes in human DNA. With 10
patients, A is of size 10 by 100,000.



TABLE 1.1

Comparison Between Traditional Statistics and Computational Statistics
[Wegman, 1988]. Reprinted with permission from the Journal of the

Washington Academy of Sciences.

Traditional Statistics

Computational Statistics

Small to moderate sample size

Independent, identically distributed
data sets

One or low dimensional

Manually computational

Mathematically tractable

Well focused questions

Strong unverifiable assumptions:
Relationships (linearity, additivity)
Error structures (normality)

Statistical inference

Predominantly closed form
algorithms

Statistical optimality

Large to very large sample size

Nonhomogeneous data sets

High dimensional
Computationally intensive
Numerically tractable
Imprecise questions
Weak or no assumptions:
Relationships (nonlinearity)
Error structures (distribution free)

Structural inference

Iterative algorithms possible

Statistical robustness



Statistics needs computing - I

» many realistic models are not as mathematically tractable, we
may use computationally intensive methods involving
simulation, resampling of data etc.

Example

simple Bayesian inference

€T NN(/"?UQ)v H NN(eaT2)

posterior distribution p|z ~ /\/(Tzfgzaz + 02‘:12 0, G‘QQJ:TZQ)

But in other case

x ~ N(p,0?), i ~ Unif[0, 1], posterior distribution p|x is not any
known distribution




Statistics needs computing - Il

> to discover structure in the data: gaps, gaps, clusters,
principle components, rank, linear relationship between
variables, etc.

full rank = rank =~ 2



Example: Netflix Problem

» Netflix database: About 1,000,000 users and 25,000 movies
» Quantized moving ratings (e.g, 1,2,3,4,5)

» Observe a subset of entries (sparsely sampled)

Watch
Instantly

Browse
DVDs

Movies

Instanthy to
You'll @

your TV

Help Center

Q. What do the stars mean?

Hated it
Hated it
Ashamed of liking it.
Loved it.

Claimed fo love it, but was actually a little bored.




Guess the missing ratings?

observed true preference
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Regularized maximum-likelihood estimator

> log-likelihood function for categorical matrix completion
K
FQ,Y(X) 2 Z ZH[Yijzak] IOg(fk<Xij))'
(6,j)€Q k=1

» Nuclear norm regularization likelihood function

o~

M= Foy(X
arg max o,y (X),

S2 {X e RL*% .|| X||, < ay/rdidy,
—a < Xy < a,V(i,j) € [di] X [da]},



Optimization problem

> non-convex optimization problem

in f(M M,
Arglg%f( )+ A M|

matrix completion f(M) = — Z(ij)EQ log p(Yi;| M;j)
I': set of feasible estimators

exact algorithm: approximate algorithm:
Semidefinite program (SDP) singular value thresholding

O(dh) O(d?)



Algorithm 1 PMLSVT for Poisson matrix recovery and com-
pletion

1: Initialize: The maximum number of iterations K, parameters

e hRw

8:
O

a, 3, n, and t.
X + P(X, y:A;) {matrix recovery}

[X]ij + Yy, for (4, 5) € Qand [X)i; + (a+5)/2 otherwise

{matrix completion}
2 for k=1,2,... K do

C+X-— (l/t)Vf(X]

C =UXVT {singular value decomposition}
[Elis = (Ela=2t)"i=1,....d

X' + X {record previous step}

X « P(ULVT) {matrix recovery}

X + IIp, (UXVT) {matrix completion}

If f(X)>Q«X,X") then t + nt, go to 4.
If |(X) — Q:(X, X")] < 0.5/K then exit;

10: end for




Another example: HMM algorithm

* Let each spoken word to represented by a
sequence of speech signals
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Fig. 1.2 Jsolated Word Problem



Hidden Markov Model

» Green circles are hidden states
* Dependent only on the previous state

+ “The past is independent of the future given the
present.”



Formalism

HMM Formalism
. A A A A
* {5§,K, 11, A, B}

I1= {m,} are the initial state probabilities
A= {a;} are the state transition probabilities
B = {b,} are the observation state probabilities



Decoding

¢ o4 o

Given an observation sequence and a model,
compute the probability of the observation sequence

0 =(0,..0;), u=(A,B,II)
Compute P(O | 1)

Viterbi algorithm



computing needs statistics

Spectrum: Do we currently have the tools to provide those error bars?

Michael Jordan: We are just getting this engineering science assembled. We
have many ideas that come from hundreds of years of statistics and computer
science. And we're working on putting them together, making them scalable. A
lot of the ideas for controlling what are called familywise errors, where | have
many hypotheses and want to know my error rate, have emerged over the last 30
years. But many of them haven’t been studied computationally. It's hard
mathematics and engineering to work all this out, and it will take time.

It's not a year or two. It will take decades to get right. We are still learning how to
do big data well.



The age of big data

Machine-Learning Maestro Michael
Jordan on the Delusions of Big Data and
Other Huge Engineering Efforts

Big-data boondoggles and brain-inspired chips are just
two of the things we're really getting wrong

By Lee Gomes [1Share | [ Email | 5 Print
Posted 20 Oct 2014 | 19:37 GMT




“danger” of big data

Michael Jordan: | like to use the analogy of building bridges. If | have no
principles, and | build thousands of bridges without any actual science, lots of
them will fall down, and great disasters will occur.

Similarly here, if people use data and inferences they can make with the data
without any concern about error bars, about heterogeneity, about noisy data,
about the sampling pattern, about all the kinds of things that you have to be
serious about if you're an engineer and a statistician—then you will make lots of
predictions, and there's a good chance that you will occasionally solve some rea
interesting problems. But you will occasionally have some disastrously bad
decisions. And you won't know the difference a priori. You will just produce
these outputs and hope for the best.



Uncertainty quantification for algorithms

» many machine learning algorithms, little tools for uncertainty
quantification (“error bars")

» Many open research problems

a00
200
700+
g 600+
& 5004 =
g 4004 lxy:,f.
O 300
2004 -,
100~
0

._.
o
l"l.‘_

T T T T T T T T T T
10 20 30 40 50 B0 70 B0 90100 120
ltems



Example: bootstrap

> idea: in statistics, we learn about characteristics of the
population by taking samples.

» bootstrapping learns about the sample characteristics by
taking resamples and use the information to infer to the
population

» resample: we retake samples from the original samples

» calculate the standard error of an estimator, construct
confidence intervals, and many other uses

Bootstrap replicates
‘ s(x¥) s(x(2) s(x(®) ‘

1 I

Bootstrap sample (1) Bootstrap sample (2) Bootstrap sample (B)
xW={x,1), x,@), ... x4} X2 ={xo@), x,@), ... x,,@} x(®) ={xo®), x,®), ... x,,®}

t i f

Original dataset

X={Xg, X1, .. Xn-1}




