
ISyE 6416: Computational Statistics

Lecture 1: Introduction

Prof. Yao Xie

H. Milton Stewart School of Industrial and Systems Engineering
Georgia Institute of Technology



What this course is about

I Interface between statistics and computer science

I Closely related to data mining, machine learning and data
analytics

I Aim at the design of algorithm for implementing statistical
methods on computers

I computationally intensive statistical methods including
resampling methods, Markov chain Monte Carlo methods,
local regression, kernel density estimation, artificial neural
networks and generalized additive models.



Statistics

data: images, video, audio, text, etc. sensor networks, social
networks, internet, genome.

statistics provide tools to

I model data
e.g. distributions, Gaussian mixture models, hidden Markov
models

I formulate problems or ask questions
e.g. maximum likelihood, Bayesian methods, point estimators,
hypothesis tests, how to design experiments



Computing

I how do we solve these problems?

I computing: find efficient algorithms to solve them
e.g. maximum likelihood requires finding maximum of a cost
function

I “Before there were computers, there were algorithms. But
now that there are computers, there are even more algorithms,
and algorithms lie at the heart of computing. ”



I an algorithm: a tool for solving a well-specified computational
problem

I examples:
I The Internet enables people all around the world to quickly

access and retrieve large amounts of information. With the aid
of clever algorithms, sites on the Internet are able to manage
and manipulate this large volume of data.

I The Human Genome Project has made great progress toward
the goals of identifying all the 100,000 genes in human DNA,
determining the sequences of the 3 billion chemical base pairs
that make up human DNA, storing this information in
databases, and developing tools for data analysis.

I mining the social networks



A primer of algorithms

I efficient algorithms: usual measure of efficiency is speed, i.e.,
how long an algorithm takes to produce its result

I complexity of algorithm:
I The running time of an algorithm on a particular input is the

number of primitive operations or “steps” executed
I worst-case running time: the longest running time for any

input of size n
I order of growth of the running time that really interests us,

e.g. O(n3)
I also care of “memory” complexity



P vs. NP

I polynomial-time algorithms: on inputs of size n, the
worst-case running time is O(nk) for some constant k: e.g.,
sorting

I there are also problems that can be solved but not in time
O(nk) for any constant k

I we think of problems that are solvable by polynomial-time
algorithms as being tractable, or easy, and problems that
require superpolynomial time as being intractable, or hard



NP complete

I an interesting class of problems, called the NP-complete
problems, whose status is unknown: no polynomial-time
algorithm has yet been discovered for an NP-complete
problem, nor has anyone yet been able to prove that no
polynomial-time algorithm can exist for any one of them

I NP-complete problems: finding clique, travel salesman



The age of big data



“danger” of big data



computing needs statistics





Example: convex relaxation

Solve y = Ax where x ∈ Rn is k-sparse.

Exponential complexity

minimize ‖x‖0
subject to y = Ax

Polynomial complexity

minimize ‖x‖1
subject to y = Ax


