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Abstract. In the last decade, there has been considerable interest in understanding when
it is possible to find structured solutions to underdetermined systems of linear equations.
This paper surveys some of the mathematical theories, known as compressive sensing and
matrix completion, that have been developed to find sparse and low-rank solutions via
convex programming techniques. Our exposition emphasizes the important role of the
concept of incoherence.
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1. Introduction

Many engineering and scientific problems ask for solutions to underdetermined
systems of linear equations: a system is considered underdetermined if there are
fewer equations than unknowns (in contrast to an overdetermined system, where
there are more equations than unknowns). Examples abound everywhere but we
immediately give two concrete examples that we shall keep as a guiding thread
throughout the article.

• A compressed sensing problem. Imagine we have a signal x(t), t = 0, 1, . . . , n−
1, with possibly complex-valued amplitudes and let x̂ be the discrete Fourier
transform (DFT) of x defined by

x̂(ω) =

n−1∑
t=0

x(t)e−i2πωt/n, ω = 0, 1, . . . , n− 1.

In applications such as magnetic resonance imaging (MRI), it is often the case
that we do not have the time to collect all the Fourier coefficients so we only
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sample m� n of them. This leads to an underdetermined system of the form
y = Ax, where y is the vector of Fourier samples at the observed frequencies
and A is the m×n matrix whose rows are correspondingly sampled from the
DFT matrix.1 Hence, we would like to recover x from a highly incomplete
view of its spectrum.

• A matrix completion problem. Imagine we have an n1×n2 array of numbers
x(t1, t2) perhaps representing users’ preference for a collection of items as
in the famous Netflix challenge; for instance, x(t1, t2) may be a rating given
by user t1 (e.g. Emmanuel) for movie t2 (e.g. “The Godfather”). We do not
get to see many ratings as only a few entries from the matrix x are actually
revealed to us. Yet we would like to correctly infer all the unseen ratings;
that is, we would like to predict how a given user would rate a movie she has
not yet seen. Clearly, this calls for a solution to an underdetermined system
of equations.

In both these problems we have an n-dimensional object x and information of
the form

yk = 〈ak, x〉 , k = 1, . . . ,m, (1)

where m may be far less than n. Everyone knows that such systems have infinitely
many solutions and thus, it is apparently impossible to identify which of these
candidate solutions is indeed the correct one without some additional information.
In this paper, we shall see that if the object we wish to recover has a bit of structure,
then exact recovery is often possible by simple convex programming techniques.

What do we mean by structure? Our purpose, here, is to discuss two types,
namely, sparsity and low rank.

• Sparsity. We shall say that a signal x ∈ Cn is sparse, when most of the
entries of x vanish. Formally, we shall say that a signal is s-sparse if it has at
most s nonzero entries. One can think of an s-sparse signal as having only s
degrees of freedom (df).

• Low-rank. We shall say that a matrix x ∈ Cn1×n2 has low rank if its rank
r is (substantially) less than the ambient dimension min(n1, n2). One can
think of a rank-r matrix as having only r(n1 + n2 − r) degrees of freedom
(df) as this is the dimension of the tangent space to the manifold of rank-r
matrices.

The question now is whether it is possible to recover a sparse signal or a low-
rank matrix—both possibly depending upon far fewer degrees of freedom than
their ambient dimension suggests—from just a few linear equations. The answer
is in general negative. Suppose we have a 20-dimensional vector x that happens
to be 1-sparse with all coordinates equal to zero but for the last component equal
to one. Suppose we have 10 equations revealing the first 10 entries of x so that
ak = ek, k = 1, . . . , 10, where throughout ek is the kth canonical basis vector of Cn

1More generally, x might be a two- or three-dimensional image.
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or Rn (here, n = 20). Then y = 0 and clearly no method whatsoever would be able
to recover our signal x. Likewise, suppose we have a 20× 20 matrix of rank 1 with
a first row equal to an arbitrary vector x and all others equal to zero. Imagine that
we see half the entries selected completely at random. Then with overwhelming
probability we would not see all the entries in the first row, and many completions
would, therefore, be feasible even with the perfect knowledge that the matrix has
rank exactly one.

These simple considerations demonstrate that structure is not sufficient to make
the problem well posed. To guarantee recovery from y = Ax by any method
whatsoever, it must be the case that the structured object x is not in the null
space of the matrix A. We shall assume an incoherence property, which roughly
says that in the sparse recovery problem, while x is sparse, the rows of A are not,
so that each measurement yk is a weighted sum of all the components of x. A
different way to put this is to say that the sampling vectors ak do not correlate
well with the signal x so that each measurement contains a little bit of information
about the nonzero components of x. In the matrix completion problem, however,
the sampling elements are sparse since they reveal entries of the matrix x we care to
infer, so clearly the matrix x cannot be sparse. As explained in the next section, the
right notion of incoherence is that sparse subsets of columns (resp. rows) cannot
be singular or uncorrelated with all the other columns (resp. rows). A surprise
is that under such a general incoherence property as well as some randomness,
solving a simple convex program usually recovers the unknown solution exactly.
In addition, the number of equations one needs is—up to possible logarithmic
factors—proportional to the degrees of freedom of the unknown solution. This
paper examines this curious phenomenon.

2. Recovery by Convex Programming

The recovery methods studied in this paper are extremely simple and all take the
form of a norm-minimization problem

minimize ‖x‖ subject to y = Ax, (2)

where ‖ · ‖ is a norm promoting the assumed structure of the solution. In our two
recurring examples, these are:

• The `1 norm for the compressed sensing problem. The `1 norm, ‖x‖`1 =∑
i |xi|, is a convex surrogate for the `0 counting ‘norm’ defined as |{i : xi 6=

0}|. It is the best surrogate in the sense that the `1 ball is the smallest convex
body containing all 1-sparse objects of the form ±ei.

• The nuclear norm, or equivalently, Schatten-1 norm for the matrix comple-
tion problem defined as the sum of the singular values of a matrix X. It is
the best convex surrogate to the rank functional in the sense that the nuclear
ball is the smallest convex body containing all rank-1 matrices with spectral
norm at most equal to 1. This is the analogue to the `1 norm in the sparse
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recovery problem above since the rank functional simply counts the number
of nonzero singular values.

In truth, there is much literature on the empirical performance of `1 minimiza-
tion [72, 67, 66, 26, 73, 41] as well as some early theoretical results explaining some
of its success [55, 35, 37, 34, 75, 40, 46]. In 2004, starting with [16] and then [32]
and [20], a series of papers suggested the use of random projections as means to
acquire signals and images with far fewer measurements than were thought neces-
sary. These papers triggered a massive amount of research spanning mathematics,
statistics, computer science and various fields of science and engineering, which
all explored the promise of cheaper and more efficient sensing mechanisms. The
interested reader may want to consult the March 2008 issue of the IEEE Signal
Processing Magazine dedicated to this topic and [49, 39]. This research is highly
active today. In this paper, however, we focus on modern mathematical develop-
ments inspired by the three early papers [16, 32, 20]: in the spirit of compressive
sensing, the sampling vectors are, therefore, randomized.

Let F be a distribution of random vectors on Cn and let a1, . . . , am be a se-
quence of i.i.d. samples from F . We require that the ensemble F is complete in
the sense that the covariance matrix Σ = E aa∗ is invertible (here and below, a∗

is the adjoint), and say that the distribution is isotropic if Σ is proportional to
the identity. The incoherence parameter is the smallest number µ(F ) such that if
a ∼ F , then

max
1≤i≤n

| 〈a, ei〉 |2 ≤ µ(F ) (3)

holds either deterministically or with high probability, see [14] for details. If F is
the uniform distribution over scaled canonical vectors such that Σ = I, then the
coherence is large, i.e. µ = n. If x(t) were a time-dependent signal, this sampling
distribution would correspond to revealing the values of the signal at randomly
selected time points. If, however, the sampling vectors are spread as when F is the
ensemble of complex exponentials (the rows of the DFT) matrix, the coherence
is low and equal to µ = 1. When Σ = I, this is the lowest value the coherence
parameter can take on since by definition, µ ≥ E | 〈a, ei〉 |2 = 1.

Theorem 2.1 ([14]). Let x? be a fixed but otherwise arbitrary s-sparse vector in
Cn. Assume that the sampling vectors are isotropic (Σ = I) and let y = Ax? be the
data vector and the `1 norm be the regularizer in (2). If the number of equations
obeys

m ≥ Cβ · µ(F ) · df · log n, df = s,

then x? is the unique minimizer with probability at least 1 − 5/n − e−β. Further,
Cβ may be chosen as C0(1 + β) for some positive numerical constant C0.

Loosely speaking, Theorem 2.1 states that if the rows of A are diverse and
incoherent (not sparse), then if there is an s-sparse solution, it is unique and `1
will find it. This holds as soon as the number of equations is on the order of s·log n.
Continuing, one can understand the probabilistic guarantee as saying that most
deterministic systems with diverse and incoherent rows have this property. Hence,
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Theorem 2.1 is a fairly general result with minimal assumptions on the sampling
vectors, and which then encompasses many signal recovery problems frequently
discussed in practice, see [14] for a non-exhaustive list.

Theorem 2.1 is also sharp in the sense that for any reasonable values of (µ, s),
one can find examples for which any recovery algorithm would fail when presented
with fewer than a constant times µ(F ) · s · log n random samples [14]. As hinted,
our result is stated for isotropic sampling vectors for simplicity, although there are
extensions which do not require Σ to be a multiple of the identity; only that it has
a well-behaved condition number [53].

Three important remarks are in order. The first, is that Theorem 2.1 extends
the main result from [16], which established that a s-sparse signal can be recovered
from about 20 · s · log n random Fourier samples via minimum `1 norm with high
probability (or equivalently, from almost all sets with at least this cardinality).
Among other implications, this mathematical fact motivated MR researchers to
speed up MR scan acquisition times by sampling at a lower rate, see [56, 78]
for some impressive findings. Moreover, Theorem 2.1 also sharpens and extends
another earlier incoherent sampling theorem in [9]. The second is that other types
of Fourier sampling theorems exist, see [43] and [79]. The third is that in the case
the linear map A has i.i.d. Gaussian entries, it is possible to establish more precise
sampling theorems. Section 5 is dedicated to describing a great line of research on
this subject.

We now turn to the matrix completion problem. Here, the entries Xij of an
n1×n2 matrix X are revealed uniformly at random so that the sampling vectors a
are of the form eie

∗
j where (i, j) is uniform over [n1]× [n2] ([n] = {1, . . . n}). With

this,

Xij =
〈
eie
∗
j , X

〉
where 〈·, ·〉 is the usual matrix inner product. Again, we have an isotropic sam-
pling distribution in which Σ = (n1n2)−1I. We now need a notion of incoherence
between the sampling vectors and the matrix X, and define the incoherence pa-
rameter µ(X) introduced in [15], which is the smallest number µ(X) such that

max
1≤i≤n1

(n1/r) · ‖πcol(X)ei‖2`2 ≤ µ(X)

max
1≤j≤n2

(n2/r) · ‖πrow(X)ej‖2`2 ≤ µ(X),
(4)

where r is the rank of X and πcol(X) (resp. πrow(X)) is the projection onto the
column (resp. row) space of X. The coherence parameter measures the overlap
or correlation between the column/row space of the matrix and the coordinate
axes. Since

∑
i ‖πcol(X)ei‖2`2 = tr(πcol(X)) = r, we can conclude that µ(X) ≥ 1.

Conversely, the coherence is by definition bounded above by max(n1, n2)/r. A
matrix with low coherence has column and row spaces away from the coordinate
axes as in the case where they assume a uniform random orientation.2 Conversely,
a matrix with high coherence may have a column (or a row space) well aligned

2If the column space of X has uniform orientation, then for each i, (n1/r)·E ‖πcol(X)ei‖2`2 = 1.
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with a coordinate axis. As should become intuitive, we can only hope to recover
‘incoherent’ matrices; i.e. matrices with relatively low-coherence parameter values.

Theorem 2.2. Let X? be a fixed but otherwise arbitrary matrix of dimensions
n1 × n2 and rank r. Let y in (2) be the set of revealed entries of X? at randomly
selected locations and ‖ · ‖ be the nuclear norm. Then with probability at least
1− n−10, X? is the unique minimizer to (2) provided that the number of samples
obeys

m ≥ C0 · µ(X) · df · log2(n1 + n2), df = r(n1 + n2 − r),
for some positive numerical constant C0.

We have adopted a formulation emphasizing the resemblance with the earlier
sparse recovery theorem. Indeed just as before, Theorem 2.2 states that one can
sample without any information loss the entries of a low-rank matrix at a rate
essentially proportional to the coherence times its degrees of freedom. Moreover,
the sampling rate is known to be optimal up to a logarithmic factor in the sense
that for any reasonable values of the pair (µ(X), rank(X)), there are matrices that
cannot be recovered from fewer than a constant times µ(X) · df · log(n1 + n2)
randomly sampled entries [21].

The role of the coherence in this theory is also very natural, and can be under-
stood when thinking about the prediction of movie ratings. Here, we can imagine
that the complete matrix of ratings has (approximately) low rank because users’
preferences are correlated. Now the reason why matrix completion is possible un-
der incoherence is that we can exploit correlations and infer how a specific user is
going to like a movie she has not yet seen, by examining her ratings and learning
about her general preferences, and inferring how other users with such preferences
have rated this particular item. Whenever we have users or small groups of users
that are very singular in the sense that their ratings are orthogonal to those of
all other users, it is not possible to correctly predict their missing entries. Such
matrices have large coherence. (To convince oneself, consider situations where a
few users enter ratings based on the outcome of coin tosses.) An amusing example
of a low-rank and incoherent matrix may be the voting patterns of senators and
representatives in the U. S. Congress.

A first version of this result appeared in [15], however, with one additional
technical assumption concerning the approximate orthogonality between left- and
right-singular vectors. This condition appears in all the subsequent literature ex-
cept in unpublished work from Xiaodong Li and the author and in [27], so that
Theorem 2.2, as presented here, holds. Setting n = max(n1, n2), [15] proved that
on the order of µ(X) ·n6/5r · log n sampled entries are sufficient for perfect recovery,
a bound which was lowered to µ(X) · nr · loga n in [21], with a ≤ 6 and sometimes
equal to 2. Later, David Gross [47], using beautiful and new arguments, demon-
strated that the latter bound holds with a = 2. (Interestingly, all three papers
exhibit completely different proofs.) For a different approach to matrix comple-
tion, please see [52].

One can ask whether matrix completion is possible from more general ran-
dom equations, where the sampling matrices may not have rank one, and are still
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i.i.d. samples from some fixed distribution F . By now, one would believe that
if the sampling matrices do not correlate well with the unknown matrix X, then
matrix completion ought to be possible. This belief is correct. To give a concrete
example, suppose we have an orthobasis of matrices F = {Bj}1≤j≤n1n2

and that
we select elements from this family uniformly at random. Then [47] shows that if

max
B∈F

(n1/r) · ‖πcol(X)B‖2F ≤ µ(X)

max
B∈F

(n2/r) · ‖Bπrow(X)‖2F ≤ µ(X),

(‖ · ‖F is the Frobenius norm) holds along with another technical condition, Theo-
rem 2.2 holds. Note that in the previous example where B = eie

∗
j , ‖πcol(X)B‖2F =

‖πcol(X)ei‖2`2 so that we are really dealing with the same notion of coherence.

3. Why Does This Work?

(a) `1 ball (b) Nuclear ball

Figure 1: Balls associated with the `1 and nuclear norms together with
the affine feasible set for (2). The ball in (b) corresponds to 2×2 symmetric
matrices—thus depending upon three parameters—with nuclear norm at
most equal to that of x. When the feasible set is tangent to the ball, the
solution to (2) is exact.

The results we have presented may seem surprising at first: why is it that with
on the order of s · log n random equations, `1 minimization will find the unique s-
sparse solution to the system y = Ax? Our intent is to give an intuitive explanation
of this phenomenon. Define the cone of descent of the norm ‖ · ‖ at a point x as

C = {h : ‖x+ ch‖ ≤ ‖x‖ for some c > 0}. (5)

This convex cone3 is the set of non-ascent directions of ‖ · ‖ at x. In the literature
on convex geometry, this object is known as the tangent cone. Now it is straight-
forward to see that a point x is the unique solution to (2) if and only if the null

3A cone is a set closed under positive linear combinations
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space of A misses the cone of descent at x, i.e. C ∩ null(A) = {0}. A geometric
representation of this fact is depicted in Figure 1. Looking at the figure, we also
begin to understand why minimizing the `1 and nuclear norms recovers sparse and
low-rank objects: indeed, as the figure suggests, the tangent cone to the `1 norm
is ‘narrow’ at sparse vectors and, therefore, even though the null space is of small
codimension m, it is likely that if m is large enough, it will miss the tangent cone.
A similar observation applies to the nuclear ball, which also appears pinched at
low-rank objects.

As intuitive as it is, this geometric observation is far from accounting for the
style of results introduced in the previous section. For instance, consider Theorem
2.1 in the setting of Fourier sampling: then we would need to show that a plane
spanned by n−m complex exponentials selected uniformly at random misses the
tangent cone. For matrix completion, the null space is the set of all matrices
vanishing at the locations of the revealed entries. There, the null space misses
the cone of the nuclear ball at low-rank objects, which are sufficiently incoherent.
It does not miss the cone at coherent low-rank matrices since the exact recovery
property cannot hold in this case. So how do we go about proving these things?

Introduce the subdifferential of ‖ · ‖ at x, defined as the set of vectors

∂‖x‖ = {w : ‖x+ h‖ ≥ ‖x‖+ 〈w, h〉 for all h}. (6)

Then x is a solution to (2) if and only if

∃v ⊥ null(A) such that v ∈ ∂‖x‖.
For the `1 norm, letting T be the linear span of vectors with the same support as
x and T⊥ be its orthogonal complement (those vectors vanishing on the support
of x),

∂‖x‖`1 = {sgn(x) + w : w ∈ T⊥, ‖w‖`∞ ≤ 1}, (7)

where sgn(x) is the vector of signs equal to xi/|xi| whenever |xi| 6= 0 and to zero
otherwise. If we would like x to be the unique minimizer, a sufficient (and almost
necessary) condition is this: T ∩ null(A) = {0} and

∃v ⊥ null(A) such that v = sgn(x) + w, w ∈ T⊥, ‖w‖`∞ < 1. (8)

In the literature, such a vector v is called a dual certificate.
What does this mean for the Fourier sampling problem where we can only ob-

serve the Fourier transform of a signal x(t), t = 0, 1, . . . , n − 1, at a few random
frequencies k ∈ Ω ⊂ {0, 1, . . . , n − 1}? The answer: a sparse candidate signal x
is solution to the `1 minimization problem if and only if there exists a trigono-
metric polynomial with sparse coefficients P (t) =

∑
k∈Ω ck exp(i2πkt/n) obeying

P (t) = sgn(x(t)) whenever x(t) 6= 0 and |P (t)| ≤ 1 otherwise. If there is no such
polynomial, (2) must return a different answer. Moreover, if T ∩null(A) = {0} and
there exists P as above with |P (t)| < 1 off the support of x, then x is the unique
solution to (2).4

4The condition T ∩ null(A) = {0} means that the only polynomial P (t) =∑
0≤k≤n−1 ck exp(i2πkt/n), with ck = 0 whenever k ∈ Ω and support included in that of x,

is the zero polynomial P = 0.
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Turning to the minimum nuclear norm problem, let X = USV ∗ be a singular
value decomposition. Then

∂‖X‖S1 = {sgn(X) +W : W ∈ T⊥, ‖W‖S∞ ≤ 1};

here, ‖ · ‖S1 and ‖ · ‖S∞ are the nuclear and spectral norms, sgn(X) is the matrix
defined as sgn(X) = UV ∗, and T⊥ is the set of matrices with both column and row
spaces orthogonal to those of X. With these definitions, everything is as before
and X is the unique solution to (2) if T ∩ null(A) = {0} and, swapping the `∞
norm for the spectral norm, (8) holds.

4. Some Probability Theory

We wish to show that a candidate solution x? is solution to (2). This is equivalent
to being able to construct a dual certificate, which really is the heart of the matter.
Starting with [16], a possible approach is to study an ansatz, which is the solution
v to:

minimize ‖v‖`2 subject to v ⊥ null(A) and PT v = sgn(x?),

where PT is the projection onto the linear space T defined above. If ‖ · ‖∗ is the
norm dual to ‖ · ‖, then the property ‖PT⊥v‖∗ < 1 would certify optimality (with
the proviso that T ∩ null(A) = {0}). The motivation for this ansatz is twofold:
first, it is known in closed form and can be expressed as

v = A∗AT (A∗TAT )−1 sgn(x), (9)

where AT is the restriction of A to the subspace T ; please observe that A∗TAT
is invertible if and only if T ∩ null(A) = {0}. Hence, we can study this object
analytically. The second reason is that the ansatz is the solution to a least-squares
problem and that by minimizing its Euclidean norm we hope to make its dual
norm small as well.

At this point it is important to recall the random sampling model in which the
rows of A are i.i.d. samples from a distribution F so that

A∗A =

m∑
k=1

aka
∗
k

can be interpreted as an empirical covariance matrix. When the distribution is
isotropic (Σ = I) we know that EA∗A = mI and, therefore, EA∗TAT = mIT . Of
course, A∗A cannot be close to the identity since it has rank m � n but we can
nevertheless ask whether its restriction to T is close to the identity on T . It turns
out that under the stated assumptions of the theorems,

1

2
IT �

1

m
A∗TAT �

3

2
IT , (10)

meaning that m−1A∗TAT is reasonably close to its expectation. For our two run-
ning examples and presenting progress in a somewhat chronological fashion, [16]
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and [21] established this property by combinatorial methods, following a strategy
originating in the work of Eugene Wigner [81]. The idea is to develop bounds on
moments of the difference between the sampled covariance matrix and its expec-
tation,

HT = IT −m−1A∗TAT .

Controlling the growth of E tr(H2k
T ) for large powers gives control of ‖HT ‖S∞ .

However, since the entries of A are in general not independent, it is not possible to
invoke standard moment calculation methods, and this approach leads to delicate
combinatorial issues involving statistics of various paths in the plane that can be
interpreted as complicated variants of Dyck’s paths.

Next, to show that the ansatz (9) is indeed a dual certificate, one can expand
the inverse of A∗TAT as a Neumann series and write it as

v =
∑
j≥0

vj , vj = m−1A∗AT H
j
T sgn(x).

In the `1 problem, we would need to show that ‖PT⊥v‖`∞ < 1; that is to say, for all
t at which x(t) = 0, |v(t)| < 1. In [16], this is achieved by a combinatorial method
bounding the size of each term vj(t) by controlling an appropriately large moment
E |vj(t)|2k. This strategy yields the 20 · s · log n bound we presented earlier. In
the matrix completion problem, each term vj in the sum above is a matrix and we
wish to bound the spectral norm of the random matrix PT⊥v. The combinatorial
approach from [21] also proceeds by controlling moments of the form E tr(z∗j zj)

k,
where zj is the random matrix zj = PT⊥vj .

There is an easier way to show that the restricted sampled covariance matrix
is close to its mean (10), which goes by means of powerful tools from probabil-
ity theory such as the Rudelson selection theorem [64] or the operator Bernstein
inequality [2]. The latter is the matrix-valued analog of the classical Bernstein
inequality for sums of independent random variables and gives tail bounds on the
spectral norm of a sum of mean-zero independent random matrices. This readily
applies since both I −A∗A and its restriction to T are of this form. One downside
is that these general tools are unfortunately not as precise as combinatorial meth-
ods. Also, this is only one small piece of the puzzle, and it is not clear how one
would use this to show that ‖PT⊥v‖∗ < 1, although [15] made some headway. We
refer to [61] for a presentation of these ideas in the context of signal recovery.

A bit later, David Gross [47] provided an elegant construction of an inexact
dual certificate he called the golfing scheme, and we shall dedicate the remainder of
this section to presenting the main ideas behind this clever concept. To fix things,
we will assume that we are working on the minimum `1 problem although all of
this extends to the matrix completion problem. Our exposition is taken from [14].
To begin with, it is not hard to see that if (10) holds, then the existence of a vector
v ⊥ null(A) obeying

‖PT (v − sgn(x))‖`2 ≤ δ and ‖PT⊥v‖`∞ < 1/2, (11)

with δ sufficiently small, certifies that x is the unique solution. This is inter-
esting because by being a little more stringent on the size of v on T⊥, we can
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relax the condition PT v = sgn(x) so that it only holds approximately. To see
why this is true, take v as in (11) and consider the perturbation v′ = v −
A∗AT (A∗TAT )−1PT (sgn(x)− v). Then v′ ⊥ null(A), PT v

′ = sgn(x) and

‖PT⊥v′‖`∞ ≤ 1/2 + ‖A∗T⊥AT (A∗TAT )−1PT (sgn(x)− v)‖`∞ .

Because the columns of A have Euclidean norm at most µ(F )
√
m, then (10) to-

gether with Cauchy-Schwarz give that the second term in the right-hand side is
bounded by δ ·

√
2µ(F ), which is less than 1/2 if δ is sufficiently small.

Now partition A into row blocks so that from now on, A1 are the first m1 rows
of the matrix A, A2 the next m2 rows, and so on. The ` matrices {Aj}`j=1 are
independently distributed, and we have m1 + m2 + . . . + m` = m. The golfing
scheme then starts with v0 = 0, inductively defines

vj =
1

mj
A∗jAjPT (sgn(x)− vj−1) + vj−1

for j = 1, . . . , `, and sets v = v`. Clearly, v is in the row space of A, and thus
perpendicular to the null space. To understand this scheme, we can examine the
first step

v1 =
1

m1
A∗1A1PT sgn(x),

and observe that it is perfect on the average since E v1 = PT sgn(x) = sgn(x).
With finite sampling, we will not find ourselves at sgn(x) and, therefore, the next
step should approximate PT (sgn(x)− v1), and read

v2 = v1 +
1

m2
A∗2A2PT (sgn(x)− v1).

Continuing this procedure gives the golfing scheme, which stops when vj is suffi-
ciently close to the target. This reminds us of a golfer taking a sequence of shots
to eventually put his ball in the hole, hence the name. This also has the flavor of
an iterative numerical scheme for computing the ansatz (9), however, with a sig-
nificant difference: at each step we use a fresh set of sampling vectors to compute
the next iterate.

Set qj = PT (sgn(x)− vj) and observe the recurrence relation

qj =
(
IT −

1

mj
PTA

∗
jAjPT

)
qj−1.

If the block sizes are large enough so that ‖IT −m−1
j PTA

∗
jAjPT ‖S∞ ≤ 1/2 (this

is again the property that the empirical covariance matrix does not deviate too
much from the identity, compare (10)), then we see that the size of the error decays
exponentially to zero since it is at least halved at each iteration.5 We now examine

5Writing Hj = IT −mj
−1PTA

∗
jAjPT , note that we do not require that ‖Hj‖S∞ ≤ 1/2 with

high probability, only that for a fixed vector z ∈ T , ‖Hjz‖`2 ≤ ‖z‖`2/2, since Hj and qj−1 are
independent. This fact allows for smaller block sizes.
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the size of v on T⊥, that is, outside of the support of x, and compute

v =
∑̀
j=1

1

mj
A∗jAjqj−1.

The key point is that by construction, A∗jAj and qj−1 are stochastically inde-
pendent. In a nutshell, conditioned on qj−1, A∗jAjqj−1 is just a random sum of
the form

∑
k ak 〈ak, qj−1〉 and one can use standard large deviation inequalities to

bound the size of each term as follows:

1

mj
‖PTA∗jAjqj−1‖`∞ ≤ tj‖qj−1‖`2

for some scalars tj > 0, with inequality holding with large probability. Such a
general strategy along with many other estimates and ideas that we cannot possibly
detail in a paper of this scope, eventually yield proofs of the two theorems from
Section 2. Gross’ method is very general and useful, although it is generally not
as precise as the combinatorial approach.

5. Gaussian Models

The last decade has seen a considerable literature, which is impressive in its achieve-
ment, about the special case where the entries of the matrix A are i.i.d. real-valued
standard normal variables. As a result of this effort, the community now has a
very precise understanding of the performance of both `1- and nuclear-norm mini-
mization in this Gaussian model. We wish to note that [62] was the first paper to
study the recovery of a low-rank matrix from Gaussian measurements, using ideas
from restricted isometries.

The Gaussian model is very different from the Fourier sampling model or the
matrix completion problem from Section 1. To illustrate this point, we first revisit
the ansatz (9). The key point here is that when A is a Gaussian map,

PT⊥v = A∗T⊥q, q = AT (A∗TAT )−1 sgn(x),

where q and A∗T⊥ are independent, no matter what T is [8].6 Set dT to be the
dimension of T (this is the quantity we called degrees of freedom earlier on).
Conditioned on q, PT⊥v is then distributed as

ιT⊥g,

where ιT⊥ is an isometry from Rn−dT onto T⊥ and g ∼ N (0,m−1‖q‖2`2I). In the
sparse recovery setting, this means that conditioned on q, the nonzero components
of PT⊥v are i.i.d. N (0,m−1‖q‖2`2). In addition,

‖q‖2`2 =
〈
sgn(x), (A∗TAT )−1 sgn(x)

〉
6In the Gaussian model, A∗

TAT is invertible with probability one has long as m is greater or
equal to the dimension of the linear space T .
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and classical results in multivariate statistics assure us that up to a scaling factor,
‖q‖2`2 is distributed as an inverse chi-squared random variable with m − dT + 1
degrees of freedom. From there, it is not hard to establish that just about 2s log n
samples taken from a Gaussian map are sufficient for perfect recovery of an s-sparse
vector. Also, one can show that just about 3r(n1 + n2 − 5/3r) samples suffice for
an arbitrary rank-r matrix. We refer to [8] for details and results concerning other
structured recovery problems.

This section is not about these simple facts. Rather it is about the fact that un-
der Gaussian maps, there are immediate connections between our recovery problem
and deep ideas from convex geometry: as we are about to see, these connections
enable to push the theory very far. Recall from Section 3 that x is the unique
solution to (2) if the null space of A misses the cone of descent C. What makes
a Gaussian map special is that its null space is uniformly distributed among the
set of all (n − m)-dimensional subspaces in Rn. It turns out that Gordon [45]
gave a precise estimate of the probability that a random uniform subspace misses
a convex cone. To state Gordon’s result, we need the notion of Gaussian width of
a set K ⊂ Rn defined as:

w(K) := Eg sup
z∈K∩Sn−1

〈g, z〉 ,

where Sn−1 is the unit sphere of Rn and the expectation is taken over g ∼ N (0, I).
To the best of the author’s knowledge, Rudelson and Vershynin [65] were the first
to recognize the importance of Gordon’s result in this context.

Theorem 5.1 (Gordon’s escape through the mesh lemma, [45]). Let K ⊂ Rn be
a cone and A be a Gaussian map. If

m ≥ (w(K) + t)2 + 1,

then null(A) ∩ K = {0} with probability at least 1− e−t2/2.

Hence, Gordon’s theorem allows to conclude that slightly more than w(C) Gaus-
sian measurements are sufficient to recover a signal x whose cone of descent is C.
As we shall see later on, slightly fewer than w(C) would not do the job.

C Co

0

Figure 2: Schematic representation of the cone C and its polar Co.
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For Theorem 5.1 to be useful we need tools to calculate these widths. One
popular way of providing an upper bound on the Gaussian width of a descent cone
is via polarity [68, 60, 24, 3, 76]. The polar cone to C is the set

Co = {y : 〈y, z〉 ≤ 0 for all z ∈ C},
see Figure 2 for a schematic representation. For us, the cone polar to the cone of
descent is the set of all directions t · w where t > 0 and w ∈ ∂‖x‖. With this,
convex duality gives

w2(C) ≤ Eg min
z∈Co
‖g − z‖2`2 , (12)

where, once again, the expectation is taken over g. In words, the right-hand side
is the average squared distance between a random Gaussian vector and the cone
Co, and is called the statistical dimension of the descent cone denoted by δ(C) in
[3]. (One can can check that δ(C) = Eg ‖πC(g)‖2`2 where π is the projection onto
the convex cone C.) The particular inequality (12) appears in [24] but one can
trace this method to the earlier works [68, 60].7 The point is that the statistical
dimension of C is often relatively easy to calculate for some usual norms such as
the `1 and nuclear norms, please see [24, 3] for other interesting examples. To
make this claim concrete, we compute the statistical dimension of an ‘`1 descent
cone’.

Let x ∈ Rn be an s-sparse vector assumed without loss of generality to have
its first s components positive and all the others equal to zero. We have seen that
∂‖x‖`1 is the set of vectors w ∈ Rn obeying wi = 1, for all i ≤ s and |wi| ≤ 1 for
i > s. Therefore,

δ(C) = E inf
t≥0

∑
j≤s

(gj − t)2 +
∑
j>s

(|gj | − t)2
+

 , (13)

where a+ := max(a, 0). Using t = 2 log(n/s) in (13) together with some algebraic
manipulations yield

δ(C) ≤ 2s log(n/s) + 2s

as shown in [24]. Therefore, just about 2s log(n/s) Gaussian samples are sufficient
to recover an s-sparse signal by `1 minimization.

A beautiful fact is that the statistical dimension provides a sharp transition
between success and failure of the convex program (2), as made very clear by the
following theorem taken from Amelunxen, Lotz, McCoy and Tropp (please also see
related works from Stojnic [71, 70, 69]).

Theorem 5.2 (Theorem II in [3]). Let x? ∈ Rn be a fixed vector, ‖ ·‖ a norm, and
δ(C) be the cone of descent at x?. Suppose A is a Gaussian map and let y = Ax?.
Then for a fixed tolerance ε ∈ (0, 1),

m ≤ δ(C)− aε
√
n =⇒ (2) succeeds with probability ≤ ε;

m ≥ δ(C) + aε
√
n =⇒ (2) succeeds with probability ≥ 1− ε.

7There is an inequality in the other direction, w2(C) ≤ δ(C) ≤ w2(C)+1 so that the statistical
dimension of a convex cone is a real proxy for its Gaussian width.
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The quantity aε =
√

8 log(4/ε).

In other words, there is a phase transition of width at most a constant times
root n around the statistical dimension. Later in this section, we discuss some
history behind this result.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

s/n

m
/
n

Figure 3: The curve ψ(ρ).

It is possible to develop accurate estimates of the statistical dimension for `1-
and nuclear-descent cones. For the the `1 norm, it follows from (13) that

δ(C) ≤ inf
t≥0

E

∑
j≤s

(gj − t)2 +
∑
j>s

(|gj | − t)2
+


= inf
t≥0

E
{
s · (g1 − t)2 + (n− s) · (|g1| − t)2

+

}
= n · ψ(s/n),

(14)

where the function ψ : [0, 1]→ [0, 1] shown in Figure 3 is defined as

ψ(ρ) = inf
t≥0

{
ρ · E(g − t)2 + (1− ρ) · E(|g| − t)2

+

}
, g ∼ N (0, 1).

There is a connection to estimation theory: let z ∼ N (µ, 1) and consider the
soft-thresholding rule defined as

η(z;λ) =


z − λ, z > λ,

0, || ≤ λ,
z + λ, z < −λ.

Define its risk or mean-square error at µ (when the mean of z is equal to µ) as

r(µ, λ) = E(z − µ)2.

Then with r(∞, λ) = limµ→∞ r(µ, λ) = (1 + λ2),

ψ(ρ) = inf
λ≥0

{ρ · r(∞, λ) + (1− ρ) · r(0, λ)} .
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Informally, in large dimensions the scalar t which realizes the minimum in (13)
is nearly constant (it concentrates around a fixed value) so that the upper bound
(14) is tight. Formally, [3, Proposition 4.5] shows that the statistical dimension of
the `1 descent cone at an s-sparse point obeys

ψ(s/n)− 2√
s · n ≤

δ(C)
n
≤ ψ(s/n).

Hence, the statistical dimension is nearly equal to the total mean-square error
one would get by applying a coordinate-wise soft-thresholding rule, with the best
parameter λ, to the entries of a Gaussian vector z ∼ N (µ, I), where µ ∈ Rn is
structured as follows: it has a fraction ρ of its components set to infinity while
all the others are set to zero. For small values of s, the statistical dimension is
approximately equal to 2s log(n/s) and equal to the leading order term in the
calculation from [24] we presented earlier. This value, holding when s is small
compared to n is also close to the 2s log n bound given by the ansatz.

There has been much work over the last few years with the goal of characteriz-
ing as best as possible the phase transition from Theorem 5.2. As far as the author
knows, the transition curve ψ first appears in the work of Donoho [33] who studied
the recovery problem in an asymptotic regime, where both the ambient dimension
n and the number of samples m tend to infinity in a fixed ratio. He refers to this
curve as the weak threshold. Donoho’s approach relies on the polyhedral structure
of the `1 ball known as the cross-polytope in the convex geometry literature. A
signal x with a fixed support of size s and a fixed sign pattern belongs to a face F
of dimension s − 1. The projection of the cross-polytope—its image through the
Gaussian map—is a polytope and it is rather elementary to see that `1 minimiza-
tion recovers x (and any signal in the same face) if the face is conserved, i.e. if
the image of F is a face of the projected polytope. Donoho [33] and Donoho and
Tanner [31] leveraged pioneering works by Vershik and Sporyshev and by other
authors on polytope-angle calculations to understand when low-dimensional faces
are conserved; they established that the curve ψ asymptotically describes a tran-
sition between success and failure (we forgo some subtleties cleared in [3]). [31]
as well as related works [38] also study projections conserving all low-dimensional
faces (the strong threshold).

One powerful feature about the approach based on Gaussian process theory
described above, is that it is not limited to polytopes. Stojnic [68] used Gordon’s
work to establish empirically sharp lower bounds for the number of measurements
required for the `1-norm problem. These results are asymptotic in nature and
improve, in some cases, on earlier works. Oymak and Hassibi [60] used these
ideas to give bounds on the number of measurements necessary to recover a low-
rank matrix in the Gaussian model, see also [63]. In the square n × n case, for
small rank, simulations in [60] show that about 4nr measurements may suffice
for recovery (recall that the ansatz gives a nonasymptotic bound of about 6nr).
Chandrasekaran, Recht, Parrilo and Willsky [24] derived the first precise non-
asymptotic bounds, and demonstrated how applicable the Gaussian process theory
really is. Amelunxen et al. [3] bring definitive answers, and in some sense, this work
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represents the culmination of all these efforts, even though some nice surprises
continue to come around, see [42] for example. Finally, heuristic arguments from
statistical physics can also explain the phase transition at ψ, see [36]. These
heuristics have been justified rigorously in [5].

6. How Broad Is This?

Applications of sparse signal recovery techniques are found everywhere in science
and technology. These are mostly well known and far too numerous to review. Ma-
trix completion is a newer topic, which also comes with a very rich and diverse set
of applications in fields ranging from computer vision [74] to system identification
in control [57], multi-class learning in data analysis [1], global positioning—e.g.
of sensors in a network—from partial distance information [7], and quantum-state
tomography [48]. The list goes on and on, and keeps on growing. As the theory
and numerical tools for matrix completion develop, new applications are discov-
ered, which in turn call for even more theory and algorithms... Our purpose in
this section is not to review all these applications but rather to give a sense of the
breadth of the mathematical ideas we have introduced thus far; we hope to achieve
this by discussing two examples from the author’s own work.

Phase retrieval. Our first example concerns the fundamental phase retrieval
problem, which arises in many imaging problems for the simple reason that photo-
graphic plates, CCDs and other light detectors can only measure the intensity of
an electromagnetic wave as opposed to measuring its phase. For instance, consider
X-ray crystallography, which is a well-known technique for determining the atomic
structure of a crystal: there, a collimated beam of X-rays strikes a crystal; these
rays then get diffracted by the crystal or sample and the intensity of the diffrac-
tion pattern is recorded. Mathematically, if x(t1, t2) is a discrete two-dimensional
object of interest, then to cut a long story short, one essentially collects data of
the form

y(ω1, ω2) =

∣∣∣∣∣
n−1∑
t1,t2

x(t1, t2)e−i2π(ω1t1+ω2t2)

∣∣∣∣∣
2

, (ω1, ω2) ∈ Ω, (15)

where Ω is a sampled set of frequencies in [0, 1]2. The question is then how one can
invert the Fourier transform from phaseless measurements. Or equivalently, how
can we infer the phase of the diffraction pattern when it is completely missing?
This question arises in many fields ranging from astronomical imaging to speech
analysis and is, therefore, of significance.

While it is beyond the scope of this paper to review the immense literature on
phase retrieval, it is legitimate to ask in which way this is related to the topics
discussed in this paper. After all, the abstract formulation of the phase retrieval
problem asks us to solve a system of quadratic equations,

yk = | 〈ak, x〉 |2, k = 1, . . . ,m, (16)
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in which x is an n-dimensional complex or real-valued object; this is (15) with the
ak’s being trigonometric exponentials. This is quite different from the underdeter-
mined linear systems considered thus far. In passing, solving quadratic equations
is known to be notoriously difficult (NP-hard) [6, Section 4.3].

As it turns out, the phase retrieval problem can be cast as a matrix completion
problem [10], see also [22] for a similar observation in a different setup. To see this,
introduce the n×n positive semidefinite Hermitian matrix variable X ∈ Sn×n equal
to xx∗, and observe that

| 〈ak, x〉 |2 = tr(aka
∗
kxx

∗) = tr(AkX), Ak = aka
∗
k. (17)

By lifting the problem into higher dimensions, we have turned quadratic equations
into linear ones! Suppose that (16) has a solution x0. Then there obviously is
a rank-one solution to the linear equations in (17), namely, X0 = x0x

∗
0. Thus

the phase retrieval problem is equivalent to finding a rank-one matrix from linear
equations of the form yk = tr(aka

∗
kX). This is a rank-one matrix completion

problem! Since the nuclear norm of a positive definite matrix is equal to the trace,
the natural convex relaxation called PhaseLift in [10] reads:

minimize tr(X) subject to X � 0, tr(aka
∗
kX) = yk, k ∈ [m]. (18)

Similar convex relaxations for optimizing quadratic objectives subject to quadratic
constraints are known as Schor’s semidefinite relaxations, see [6, Section 4.3] and
[44] on the MAXCUT problem from graph theory. The reader is also encouraged
to read [80] to learn about another convex relaxation.

Clearly, whatever the sampling vectors might be, we are very far from the
Gaussian maps studied in the previous section.8 Yet, a series of recent papers
have established that PhaseLift succeeds in recovering the missing phase of the
data (and, hence, in reconstructing the signal) in various stochastic models of
sampling vectors, ranging from highly structured Fourier-like models to unstruc-
tured Gaussian-like models. In fact, the next theorem shows an even stronger
result than necessary for PhaseLift, namely, that there is only one matrix satisfy-
ing the feasibility conditions of (18) and, therefore, PhaseLift must recover x0x

∗
0

exactly with high probability.

Theorem 6.1. Suppose the ak’s are independent random vectors uniformly dis-
tributed on the sphere—equivalently, independent complex-valued Gaussian vectors—
and let A : Cn×n → Rm be the linear map A(X) = {tr(aka∗kX)}1≤k≤m. Assume
that

m ≥ c0 n, (19)

where c0 is a sufficiently large constant. Then the following holds with probability
at least 1−O(e−γm): for all x0 in Cn, the feasibility problem

{X : X � 0 and A(X) = A(x0x
∗
0)}

8Under a Gaussian map, a sample is of the form 〈W,X〉, where W is a matrix with i.i.d.N (0, 1)
entries.
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has a unique point, namely, x0x
∗
0. Thus, with the same probability, PhaseLift

recovers any signal x0 ∈ Cn up to a global sign factor.

This theorem states that a convenient convex program—a semidefinite program
(SDP)—can recover any n-dimensional complex vector from on the order of n
randomized quadratic equations. The first result of this kind appeared in [18]. As
stated, Theorem 6.1 theorem can be found in [11], see also [29]. Such results are
not consequences of the general theorems we presented in Section 2.

Of course the sampling vectors from Theorem 6.1 are not useful in imaging
applications. However, a version of this result holds more broadly. In particular,
[13] studies a physically realistic setup where one can modulate the signal of interest
and then collect the intensity of its diffraction pattern, each modulation thereby
producing a sort of coded diffraction pattern. To simplify our exposition, in one
dimension we would collect the pattern

y(ω) =

∣∣∣∣∣
n−1∑
t=0

x(t)d(t)e−i2πωt/n

∣∣∣∣∣
2

, ω = 0, 1, . . . , n− 1, (20)

where d := {d(t)} is a code or modulation pattern with random entries. This can be
achieved by masking the object we wish to image or by modulating the incoming
beam. Then [13] shows mathematically and empirically that if one collects the
intensity of a few diffraction patterns of this kind, then the solution to PhaseLift
is exact.

In short, convex programming techniques and matrix completion ideas can be
brought to bear, with great efficiency, on highly nonconvex quadratic problems.

Robust PCA. We now turn our attention to a problem in data analysis. Sup-
pose we have a family of n points belonging to a high-dimensional space of di-
mension d, which we regard as the columns of a d × n matrix M . Many data
analysis procedures begin by reducing the dimensionality by projecting each data
point onto a lower dimensional subspace. Principal component analysis (PCA) [51]
achieves this by finding the matrix X of rank k, which is closest to M in the sense
that it solves:

minimize ‖M −X‖ subject to rank(X) ≤ k,

where ‖ ·‖ is either the Frobenius or the usual spectral norm. The solution is given
by truncating the singular value decomposition as to retain the k largest singular
values. When our data points are well clustered along a lower dimensional plane,
this technique is very effective.

In many real applications, however, many entries of the data matrix are typi-
cally either unreliable or missing: entries may have been entered incorrectly, sensors
may have failed, occlusions in image data may have occurred, and so on. The prob-
lem is that PCA is very sensitive to outliers and few errors can throw the estimate
of the underlying low-dimensional structure completely off. Researchers have long
been preoccupied with making PCA robust and we cannot possibly review the
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literature on the subject. Rather, our intent is again to show how this problem fits
together with the themes from this paper.

Imagine we are given a d× n data matrix

M = L0 + S0,

where L0 has low rank and S0 is sparse. We observe M but L0 and S0 are hidden.
The connection with our problem is that we have a low-rank matrix that has been
corrupted in possibly lots of places but we have no idea about which entries have
been tampered with. Can we recover the low-rank structure? The idea in [12] is
to de-mix the low-rank and the sparse components by solving:

minimize ‖L‖S1 + λ‖S‖`1 subject to M = L+ S; (21)

here, λ is a positive scalar and abusing notation, we write ‖S‖`1 =
∑
ij |Sij | for

the `1 norm of the matrix S seen as an n × d dimensional vector. Motivated
by a beautiful problem in graphical modeling, Chandresakaran et al. proposed to
study the same convex model [25], see also [23]. For earlier connections on `1
minimization and sparse corruptions, see [19, 82, 55]. The surprising result from
[12] is that if the low-rank component is incoherent and if the nonzero entries of the
sparse components occur at random locations, then (21) with λ = 1/

√
max(n, d)

recovers L0 and S0 perfectly! To streamline our discussion, we sketch the statement
of Theorem 1.1 from [12].9

Theorem 6.2 (Sketch of Theorem 1.1 in [12]). Assume without loss of generality
that n ≥ d, and let L0 be an arbitrary n×d matrix with coherence µ(L0) as defined
in Section 2. Suppose that the support set of S0 is uniformly distributed among all
sets of cardinality m. Then with probability at least 1 − O(n−10) (over the choice
of support of S0), (L0, S0) is the unique solution to (21) with λ = 1/

√
n, provided

that

rank(L0) ≤ C0 · d · µ(L0)−1(log n)−2 and m ≤ C ′0 · n · d. (22)

Above, C0 and C ′0 are positive numerical constants.

Hence, if a positive fraction of the entries from an incoherent matrix of rank
at most a constant times d/ log2 n are corrupted, the convex program (21) will
detect those alterations and correct them automatically. In addition, the article
[12] presents analog results when entries are both missing and corrupted but we
shall not discuss such extensions here. For further results, see [50, 54] and [25] for
a deterministic analysis.

Figure 4 shows the geometry underlying the exact de-mixing. The fact that we
need incoherence should not be surprising. Indeed if L0 is a rank-1 matrix with
one row equal to x and all the others equal to y, there is no way any algorithm
can detect and recover corruptions in the x vector.

9Technically, [12] requires the additional technical assumption discussed in Section 2 although
it is probably un-necessary thanks to the sharpening from Li and the author, and from [27]
discussed earlier.
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Figure 4: Geometry of the robust PCA problem. The blue body is the
nuclear ball and the red the `1 ball (cross polytope). Since S0 = M − L0,
M − L0 is on a low-dimensional face of the cross polytope.

Finally, Figure 5 from [12] shows the practical performance of the convex pro-
gramming approach to robust PCA on randomly generated problems: there is a
sharp phase transition between success and failure. Looking at the numbers, we
see that we can corrupt up until about 22.5% of the entries of a 400× 400 matrix
of rank 40, and about 37.5% of those of a matrix of rank 20.

7. Concluding Remarks

A paper of this length on a subject of this scope has to make some choices. We have
certainly made some, and have consequently omitted to discuss other important
developments in the field. Below is a partial list of topics we have not touched.

• We have not presented the theory based on the concept of restricted isom-
etry property (RIP). This theory decouples the ‘stochastic part’ from the
‘deterministic part’. In a nutshell, in the sparse recovery problem, once a
sampling matrix obeys a relationship called RIP in [19] of the form (10) for
all subspaces T spanned by at most 2s columns of A, then exact and stable
recovery of all s-sparse signals occur [19, 17]; this is a deterministic state-
ment. For random matrices, the stochastic part of the theory amounts to
essentially showing that RIP holds [20, 4, 61]. For the matrix-completion
analog, see [62].

• In almost any application the author can think of, signals are never exactly
sparse, matrices do not have exactly low rank, and so on. In such circum-
stances, the solution to (2) continue to be accurate in the sense that if a
signal is approximately sparse or a matrix has approximately low rank, then
the recovered object is close. Ronald DeVore gave a plenary address at the
2006 ICM in Madrid on this topic as the theory started to develop. We refer
to his ICM paper [30] as well as [28].
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Figure 5: Fraction of correct recoveries across 10 trials, as a function
of rank(L0) (x-axis) and sparsity of S0 (y-axis). Here, n = d = 400. In
all cases, L0 = XY ∗ is a product of independent n × r i.i.d. N (0, 1/n)
matrices, and sgn(S0) is random. Trials are considered successful if ‖L̂−
L0‖F /‖L0‖F < 10−3. A white pixel indicates 100% success across trials,
a black pixel 0% success, and a gray pixel some intermediate value.

• For the methods we have described to be useful, they need to be robust to
noise and measurement errors. There are noise aware variants of (2) with
excellent empirical and theoretical estimation properties—sometimes near-
optimal. We have been silent about this, although many of the articles cited
in this paper will actually contain results of this sort. To give two examples,
Theorem 2.1 from Section 2 comes with variants enjoying good statistical
properties, see [14]. The PhaseLift approach also comes with optimal esti-
mation guarantees [11].

• We have not discussed algorithmic alternatives to convex programming. For
instance, there are innovative greedy strategies, which can also have theoret-
ical guarantees, e.g. under RIP see the works of Needell, Tropp, Gilbert and
colleagues [77, 59, 58].

The author is thus guilty of a long string of omissions. However, he hopes to
have conveyed some enthusiasm for this rich subject where so much is happening
on both the theoretical and practical/empirical sides. Nonparametric structured
models based on sparsity and low-rankedness are powerful and flexible and while
they may not always be the best models in any particular application, they are
often times surprisingly competitive.
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