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Midterm 2
• Cover	
  
• Confidence	
  interval	
  

– One	
  sided	
  and	
  two	
  sided	
  confidence	
  intervals	
  
• Hypothesis	
  testing	
  

– Two	
  approaches	
  
• Fixed	
  significance	
  level	
  
• p-­‐value	
  
!

• Can	
  bring	
  a	
  1-­‐page	
  1-­‐sided	
  cheat	
  sheet	
  
!

• Make-­‐up	
  lecture	
  on	
  Friday	
  Nov.	
  8:	
  tentatively	
  
noon-­‐1:20pm	
  in	
  the	
  area	
  in	
  front	
  of	
  my	
  office,	
  
Groseclose	
  #339



Outline

• Test	
  difference	
  in	
  the	
  mean	
  
– Known	
  variance	
  
– Unknown	
  variance	
  

• Test	
  difference	
  in	
  sample	
  proportion	
  
• Test	
  difference	
  in	
  variance



Motivating Example
• Safety	
  of	
  drinking	
  water	
  (Arizona	
  Republic,	
  May	
  27,	
  
2001)	
  

• Water	
  sampled	
  from	
  10	
  communities	
  in	
  Pheonix	
  
• And	
  10	
  communities	
  from	
  rural	
  Arizona	
  
• Arsenic	
  concentration	
  (AC):	
  determines	
  water	
  quality,	
  
ranges	
  from	
  3	
  ppb	
  to	
  48	
  ppb	
  

• Is	
  there	
  a	
  difference	
  in	
  AC	
  
between	
  these	
  two	
  areas?	
  
If	
  the	
  difference	
  is	
  large	
  enough?



Formulate into statistical method

• Answered	
  by	
  statistical	
  methods	
  
!
!
!
!
!

• Whether	
  or	
  not	
  there	
  is	
  a	
  difference	
  between	
  in	
  
mean	
  AC	
  level,	
  μ1	
  and	
  μ2,	
  in	
  these	
  two	
  areas?	
  

• 	
  Equivalent	
  to:	
  test	
  whether	
  μ1-­‐μ2	
  is	
  different	
  from	
  0?

Pheonix	
  μ1 rural	
  Arizona	
  μ2	
  



In general: comparing two populations

• Comparing two population means is often the 
way used to prove one population is different or 
better than another

• Competing Companies / Products 

• Treatment vs. No Treatment 

• New method vs. Old method



Test difference in the mean



Test difference in mean, variance known
• Solve	
  the	
  following	
  hypothesis	
  test	
  
!
!
!
!

• Assumptions	
  for	
  two	
  sample	
  inference

H0 :µ1 − µ2 = Δ
H1 :µ1 − µ2 ≠ Δ



Test statistics

• A	
  reasonable	
  estimator	
  for	
  μ1	
  -­‐	
  μ2	
  is	
  	
  

!
!

• Under	
  H0,	
  its	
  mean	
  is	
  Δ	
  

• Its	
  variance	
  is	
  
!
!

• Detection	
  statistic	
  

X1 − X2

σ 1
2

n1
+
σ 2
2

n2

Z = X1 − X2 − Δ
σ 1
2

n1
+
σ 2
2

n2



Detection for two sample difference

• For	
  given	
  significance	
  level:	
  
• Reject	
  H0	
  when	
  

!
!
!
!
!

• And	
  decide	
  threshold	
  b	
  for	
  that	
  given	
  significance	
  
level

Z > b

Z = X1 − X2 − Δ
σ 1
2

n1
+
σ 2
2

n2



p-value

• Probability	
  of	
  observing	
  sample	
  difference	
  even	
  more	
  
extreme,	
  under	
  H0

P Z > z0( )= 1−Φ z0( )



Example: paint drying time



Solution
• test	
  difference	
  in	
  mean	
  drying	
  time	
  
!
!

• Δ	
  ＝	
  0	
  

!
!
• form	
  test	
  statistic

H0 :µ1 − µ2 = Δ
H1 :µ1 − µ2 > Δ

H0 :µ1 = µ2
H1 :µ1 > µ2

Z = X1 − X2
σ 1
2

n1
+
σ 2
2

n2



Fixed significance level approach
• Reject	
  H0	
  	
  when	
  

!
!
• Calculate:

Z = X1 − X2
σ 1
2

n1
+
σ 2
2

n2

> zα

x1 − x2
σ 1
2

n1
+
σ 2
2

n2

z0.05 = 1.65

>1.65
Reject	
  H0	
  

α = 0.05



!

• Compute	
  p-­‐value:	
  	
  
!
!
!
!
!

!
!
• p-­‐value:	
  
!

• Reject	
  H0	
  since	
  its	
  value	
  is	
  less	
  than	
  0.01
P Z > z0( )= 1−Φ z0( )= 1−Φ 2.52( )= 0.0059

Calculate p-value

Value	
  of	
  the	
  statistic	
  from	
  data



Outline

• Test	
  difference	
  in	
  the	
  mean	
  
– Known	
  variance	
  
– Unknown	
  variance	
  

• Test	
  difference	
  in	
  sample	
  proportion	
  
• Test	
  difference	
  in	
  variance



Case 2: test difference in mean, variance unknown, true 
variance equal

• Solve	
  the	
  following	
  hypothesis	
  test	
  
!

!
!
• 	
  Variances	
  are	
  equal	
  but	
  unknown,	
  so	
  we	
  	
  “pool”	
  	
  the	
  
samples	
  to	
  estimate	
  the	
  variance	
  
!
!
!

• S1	
  and	
  S2	
  are	
  sample	
  variances	
  

H0 :µ1 − µ2 = Δ
H1 :µ1 − µ2 ≠ Δ

Sp
2 =
(n1 −1)S1

2 + (n2 −1)S2
2

n1 + n2 − 2

Sp
2 (n1 + n2 − 2)

σ 2 ~ χn1+n2−2



!19

X1 − X2 − Δ
Sp 1/ n1 +1/ n2

~ tn1+n2− 2

Use the following as the test statistics

H0 :µ1 − µ2 = Δ
H1 :µ1 − µ2 ≠ Δ

For the following hypothesis test 
!
!
!
!
Reject H0 when 

X −Y − (µ1 − µ2 )
Sp 1/ n1 +1/ n2

> tα /2



Example

n1 = 10      x1 = 28      S1
2 = 4

n2 = 10     x2 = 26      S2
2 = 5

Test Statistic:   

t =
x-y

Sp 1
n1
+ 1

n2

 Sp
2 =

S1
2 (n1 −1)+S1

2 (n2 −1)
n1 + n2 − 2

=
4(9)+ 5(9)

18
= 4.5

Assume true variance equal

α = 0.05



Sp
2 = 4.5

Recall degrees of freedom here is  
n + m – 2 = 18

t18,0.025 = 2.101

 t = 28-26
4.5 1 /10 +1/10

= 2.11>2.101

 
p− value = P(|T| > 2.11)=2P(T > 2.11) = 2 × 0.0491=0.0982

Threshold:

Weakly	
  reject	
  H0	
  

Calculate p-value



Outline

• Test	
  difference	
  in	
  the	
  mean	
  
– Known	
  variance	
  
– Unknown	
  variance	
  

• Test	
  difference	
  in	
  sample	
  proportion	
  
• Test	
  difference	
  in	
  variance



Formulation

• Two	
  binomial	
  parameters	
  of	
  interests	
  
• Two	
  independent	
  random	
  samples	
  are	
  taken	
  from	
  2	
  
populations	
  

• Estimation	
  of	
  sample	
  proportion

X ~ Bin(n1, p1),    Y ~ Bin(n2, p2) ⇒ p̂1 =
X
n1
, p̂2 =

Y
n2

H0 : p1 = p2
H1 : p1 ≠ p2



Test statistics

Z = p̂1 − p̂2
p1 1− p1( )

n1
+
p2 1− p2( )

n2!
!
Pooled estimate 
  
!
!
Estimate the test statistic: p̂1 − p̂2

p̂ 1− p̂( ) 1
n1
+
1
n2

"

#$
%

&'

p̂ = X1 + X2
n1 + n2



Two-sided test

Z =
p̂1 − p̂2 − p1 − p2( )
p1 1− p1( )

n1
+
p2 1− p2( )

n2!
For two-sided test, 
  
!
!
reject H0 when 

H0 : p1 = p2
H1 : p1 ≠ p2

p̂1 − p̂2

p̂ 1− p̂( ) 1
n1
+
1
n2

"

#$
%

&'

> zα /2



Test statistics and one-sided test

!
Reject H0 when 

p̂1 − p̂2

p̂ 1− p̂( ) 1
n1
+
1
n2

"

#$
%

&'

< −zα

H0 : p1 = p2
H1 : p1 < p2

!
Reject H0 when 

p̂1 − p̂2

p̂ 1− p̂( ) 1
n1
+
1
n2

"

#$
%

&'

> zα

H0 : p1 = p2
H1 : p1 > p2



Comparing 2 population proportions: Example

Standard drug  X ~ Bin(100, p1) 

New drug  Y ~ Bin(100, p2)

A new drug is being compared to a standard using 200 clinical 
trials (100 patients for each group). For the new drug, 83 of 100 
patients improved. For the standard, 72 of 100 improved. Is the 
new drug statistically superior?



X1 = 72,X2 = 83
n1 = n2 = 100
p̂1 = 0.72, p̂2 = 0.83
z0.05 = 1.65

p̂1 − p̂2

p̂ 1− p̂( ) 1
n1
+
1
n2

"

#$
%

&'

= −1.7323 < −1.65

H0 : p1 = p2
H1 : p1 < p2

Reject	
  H0	
  

Fixed significance level approach



p-­‐value	
  
!
!
!
Less	
  than	
  α	
  =	
  0.05,	
  reject	
  H0

P(Z < −1.7323) = 0.0418

p-value

Reject	
  H0,	
  with	
  p-­‐value	
  0.0418	
  



Outline

• Test	
  difference	
  in	
  the	
  mean	
  
– Known	
  variance	
  
– Unknown	
  variance	
  

• Test	
  difference	
  in	
  sample	
  proportion	
  
• Test	
  difference	
  in	
  variance



Test difference in variance
• two	
  independent	
  normal	
  populations	
  
• means	
  and	
  variances	
  of	
  the	
  two	
  normals	
  are	
  
unknown	
  

• test	
  whether	
  or	
  not	
  two	
  variances	
  are	
  the	
  same

�31

10-5.1 F Distribution

Suppose that two independent normal populations are of interest, where the population means
and variances, say, !1, "2

1, !2, and "2
2, are unknown. We wish to test hypotheses about the

equality of the two variances, say, H0: "2
1 # "2

2. Assume that two random samples of size n1
from population 1 and of size n2 from population 2 are available, and let S 2

1 and S 2
2 be the sam-

ple variances. We wish to test the hypotheses

(10-26)

The development of a test procedure for these hypotheses requires a new probability
distribution, the F distribution. The random variable F is defined to be the ratio of two
independent chi-square random variables, each divided by its number of degrees of free-
dom. That is,

(10-27)

where W and Y are independent chi-square random variables with u and v degrees of freedom,
respectively. We now formally state the sampling distribution of F.

F #
W$u
Y$v

H1: "2
1 % "2

2

H0: "2
1 # "2

2

10-5 INFERENCE ON THE VARIANCES OF TWO NORMAL DISTRIBUTIONS 383

Let W and Y be independent chi-square random variables with u and v degrees of
freedom, respectively. Then the ratio

(10-28)

has the probability density function

(10-29)

and is said to follow the F distribution with u degrees of freedom in the numerator
and v degrees of freedom in the denominator. It is usually abbreviated as Fu,v.

f 1x2 #

&  au ' v
2 b auvbu$2 x 1u$22(1

& au2b & av2b c  auvb x ' 1 d 1u'v2$2,  0 ) x ) *

F #
W$u
Y$v

F Distribution

The mean and variance of the F distribution are ! # v!(v ( 2) for v + 2, and

Two F distributions are shown in Fig. 10-4. The F random variable is nonnegative, and the
distribution is skewed to the right. The F distribution looks very similar to the chi-square dis-
tribution; however, the two parameters u and v provide extra flexibility regarding shape.

"2 #
2v21u ' v ( 22
u1v ( 2221v ( 42 ,  v + 4

JWCL232_c10_351-400.qxd  1/15/10  2:14 PM  Page 383



Test based on sample variance ratio
• Test	
  statistics:	
  ratio	
  of	
  two	
  sample	
  variances	
  
!
!

• Need	
  to	
  introduce	
  F	
  distribution

�32

F = S1
2

S2
2

10-5.1 F Distribution

Suppose that two independent normal populations are of interest, where the population means
and variances, say, !1, "2

1, !2, and "2
2, are unknown. We wish to test hypotheses about the

equality of the two variances, say, H0: "2
1 # "2

2. Assume that two random samples of size n1
from population 1 and of size n2 from population 2 are available, and let S 2

1 and S 2
2 be the sam-

ple variances. We wish to test the hypotheses

(10-26)
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distribution, the F distribution. The random variable F is defined to be the ratio of two
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F distribution
• A	
  continuous	
  distribution	
  
!
!
!
!
!

• mean	
  =	
  
!

• we	
  should	
  reject	
  H0	
  when	
  	
  

the	
  statistic	
  is	
  large



Sample distribution

• Under	
  H0	
  the	
  detection	
  statistic	
  	
  

�34

F = S1
2

S2
2 =

(n1 −1)S1
2 /σ 1

2⎡⎣ ⎤⎦ / (n1 −1)
(n2 −1)S2

2 /σ 2
2⎡⎣ ⎤⎦ / (n2 −1)

σ 1
2 =σ 2

2( )	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

χn1−1
2

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

χn2−1
2

• has	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  distribution

10-5 INFERENCE ON THE VARIANCES OF TWO NORMAL DISTRIBUTIONS 385

Let X11, X12, p , X1n1
be a random sample from a normal population with mean !1 and

variance "2
1, and let X21, X22, p , X2n2

be a random sample from a second normal pop-
ulation with mean !2 and variance "2

2. Assume that both normal populations are
independent. Let and be the sample variances. Then the ratio

has an F distribution with n1 # 1 numerator degrees of freedom and n2 # 1 denom-
inator degrees of freedom.

F $
S2

1%"2
1

S2
2%"2

2

S2
2S2

1

Distribution 
of the Ratio 

of Sample
Variances from

Two Normal
Distributions

This result is based on the fact that (n1 # 1)S 2
1/"2

1 is a chi-square random variable with n1 # 1
degrees of freedom, that (n2 # 1)S 2

2!"2
2 is a chi-square random variable with n2 # 1 degrees

of freedom, and that the two normal populations are independent. Clearly under the null
hypothesis H0: "2

1 $ "2
2 the ratio has an distribution. This is the basis of

the following test procedure.
Fn1#1,n2#1F0 $ S2

1%S 
2
2

Null hypothesis: 

Test statistic: (10-31)

Alternative Hypotheses Rejection Criterion

f0 & f1#', n1#1,n2#1H1: "2
1 & "2

2

f0 ( f',n1#1,n2#1H1: "2
1 ( "2

2

f0 ( f'%2,n1#1,n2#1 or f0 & f1#'%2,n1#1,n2#1H1: "2
1 ) "2

2

F0 $
S2

1

S2
2

H0: "2
1 $ "2

2

Tests on the
Ratio of

Variances from
Two Normal

Distributions

The critical regions for these fixed-significance-level tests are shown in Figure 10-6.

(a)

/2, n – 1    α

α

*2

n – 1*2

/2, n – 1    α*20

f (x)

x
1 –

/2
α /2

(b)

, n – 1    α*2

n – 1*2

0

f (x)

x

(c)

n – 1*2

, n – 1    α*20

f (x)

x
1 –

α
α

Figure 10-6 The F distribution for the test of with critical region values for (a) , (b) ,
and (c) .H1: "2

1 & "2
2

H1: "2
1 ( "2

2H1: "2
1 ) "2

2H0: "2
1 $ "2

2

EXAMPLE 10-12 Semiconductor Etch Variability
Oxide layers on semiconductor wafers are etched in a mixture
of gases to achieve the proper thickness. The variability in the
thickness of these oxide layers is a critical characteristic of the
wafer, and low variability is desirable for subsequent process-
ing steps. Two different mixtures of gases are being studied to
determine whether one is superior in reducing the variability

of the oxide thickness. Sixteen wafers are etched in each gas.
The sample standard deviations of oxide thickness are s1 $
1.96 angstroms and s2 $ 2.13 angstroms, respectively. Is there
any evidence to indicate that either gas is preferable? Use a
fixed-level test with ' $ 0.05.
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Form of test

�35

10-5 INFERENCE ON THE VARIANCES OF TWO NORMAL DISTRIBUTIONS 385

Let X11, X12, p , X1n1
be a random sample from a normal population with mean !1 and

variance "2
1, and let X21, X22, p , X2n2

be a random sample from a second normal pop-
ulation with mean !2 and variance "2

2. Assume that both normal populations are
independent. Let and be the sample variances. Then the ratio

has an F distribution with n1 # 1 numerator degrees of freedom and n2 # 1 denom-
inator degrees of freedom.
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2%"2

2

S2
2S2

1

Distribution 
of the Ratio 

of Sample
Variances from

Two Normal
Distributions
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2
2

Null hypothesis: 

Test statistic: (10-31)

Alternative Hypotheses Rejection Criterion

f0 & f1#', n1#1,n2#1H1: "2
1 & "2

2

f0 ( f',n1#1,n2#1H1: "2
1 ( "2

2

f0 ( f'%2,n1#1,n2#1 or f0 & f1#'%2,n1#1,n2#1H1: "2
1 ) "2

2

F0 $
S2

1

S2
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(a)

/2, n – 1    α

α

*2

n – 1*2

/2, n – 1    α*20

f (x)
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EXAMPLE 10-12 Semiconductor Etch Variability
Oxide layers on semiconductor wafers are etched in a mixture
of gases to achieve the proper thickness. The variability in the
thickness of these oxide layers is a critical characteristic of the
wafer, and low variability is desirable for subsequent process-
ing steps. Two different mixtures of gases are being studied to
determine whether one is superior in reducing the variability

of the oxide thickness. Sixteen wafers are etched in each gas.
The sample standard deviations of oxide thickness are s1 $
1.96 angstroms and s2 $ 2.13 angstroms, respectively. Is there
any evidence to indicate that either gas is preferable? Use a
fixed-level test with ' $ 0.05.
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Let X11, X12, p , X1n1
be a random sample from a normal population with mean !1 and

variance "2
1, and let X21, X22, p , X2n2

be a random sample from a second normal pop-
ulation with mean !2 and variance "2

2. Assume that both normal populations are
independent. Let and be the sample variances. Then the ratio

has an F distribution with n1 # 1 numerator degrees of freedom and n2 # 1 denom-
inator degrees of freedom.
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This result is based on the fact that (n1 # 1)S 2
1/"2

1 is a chi-square random variable with n1 # 1
degrees of freedom, that (n2 # 1)S 2

2!"2
2 is a chi-square random variable with n2 # 1 degrees

of freedom, and that the two normal populations are independent. Clearly under the null
hypothesis H0: "2

1 $ "2
2 the ratio has an distribution. This is the basis of

the following test procedure.
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Null hypothesis: 

Test statistic: (10-31)
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The critical regions for these fixed-significance-level tests are shown in Figure 10-6.
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EXAMPLE 10-12 Semiconductor Etch Variability
Oxide layers on semiconductor wafers are etched in a mixture
of gases to achieve the proper thickness. The variability in the
thickness of these oxide layers is a critical characteristic of the
wafer, and low variability is desirable for subsequent process-
ing steps. Two different mixtures of gases are being studied to
determine whether one is superior in reducing the variability

of the oxide thickness. Sixteen wafers are etched in each gas.
The sample standard deviations of oxide thickness are s1 $
1.96 angstroms and s2 $ 2.13 angstroms, respectively. Is there
any evidence to indicate that either gas is preferable? Use a
fixed-level test with ' $ 0.05.
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s1 = 1.96
s2 = 2.13
n1 = n2 = 16
α = 0.05
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The seven-step hypothesis-testing procedure may be applied
to this problem as follows:

1. Parameter of interest: The parameter of interest are the
variances of oxide thickness !2

1 and !2
2. We will assume

that oxide thickness is a normal random variable for both
gas mixtures.

2. Null hypothesis:
3. Alternative hypothesis:
4. Test statistic: The test statistic is given by equation 10-31:

6. Reject H0 if : Because n1 " n2 " 16 and # " 0.05, we
will reject or ifH0: !2

1 " !2
2 if f0 $ f0.025,15,15 " 2.86

f0 "
s2

1

s2
2

H1: !2
1 % !2

2

H0: !2
1 " !2

2

. Refer to
Figure 10-6(a).

7. Computations: Because s2
1 " (1.96)2 " 3.84 and s2

2 "
(2.13)2 " 4.54, the test statistic is

8. Conclusions: Because f0.975,15,15 " 0.35 & 0.85 &
f0.025,15,15 " 2.86, we cannot reject the null hypothesis H0:
!2

1 " !2
2 at the 0.05 level of significance. 

Practical Interpretation: There is no strong evidence to
indicate that either gas results in a smaller variance of oxide
thickness.

f0 "
s2

1

s2
2

"
3.84
4.54

" 0.85

f0 & f0.975,15,15 " 1'f0.025,15,15 " 1'2.86 " 0.35

P-Values for the F-Test
The P-value approach can also be used with F-tests. To show how to do this, consider the
upper-tailed one-tailed test. The P-value is the area (probability) under the F distribution with
n1 ( 1 and n2 ( 1 degrees of freedom that lies beyond the computed value of the test statistic
f0. Appendix A Table IV can be used to obtain upper and lower bounds on the P-value. For
example, consider an F-test with 9 numerator and 14 denominator degrees of freedom for
which f0 " 3.05. From Appendix A Table IV we find that f0.05,9,14 " 2.65 and f0.025,9,14 " 3.21,
so because f0 = 3.05 lies between these two values, the P-value is between 0.05 and 0.025; that
is, 0.025 & P & 0.05. The P-value for a lower-tailed test would be found similarly, although
since Appendix A Table IV contains only upper-tail points of the F distribution, equation 10-30
would have to be used to find the necessary lower-tail points. For a two-tailed test, the bounds
obtained from a one-tail test would be doubled to obtain the P-value.

To illustrate calculating bounds on the P-value for a two-tailed F-test, reconsider
Example 10-12. The computed value of the test statistic in this example is f0 " 0.85. This
value falls in the lower tail of the F15,15 distribution. The lower-tail point that has 0.25 proba-
bility to the left of it is f0.75,15,15 " 1/ f0.25,15,15 " 1/1.43 " 0.70 and since 0.70 & 0.85, the prob-
ability that lies to the left of 0.85 exceeds 0.25. Therefore, we would conclude that the P-value
for f0 " 0.85 is greater than 2(0.25) " 0.5, so there is insufficient evidence to reject the null
hypothesis. This is consistent with the original conclusions from Example 10-12. The actual
P-value is 0.7570. This value was obtained from a calculator from which we found that
P(F15,15 ) 0.85) " 0.3785 and 2(0.3785) " 0.7570. Minitab can also be used to calculate the
required probabilities.

Minitab will perform the F-test on the equality of two variances of independent normal
distributions. The Minitab output is shown below.

Test for Equal Variances

95% Bonferroni confidence intervals for standard deviations

Sample N Lower StDev Upper
1 16 1.38928 1.95959 3.24891
2 16 1.51061 2.13073 3.53265

F-Test (Normal Distribution)
Test statistic " 0.85, P-value " 0.750

Finding the 
P-Value for 

Example 10-12
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The seven-step hypothesis-testing procedure may be applied
to this problem as follows:
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upper-tailed one-tailed test. The P-value is the area (probability) under the F distribution with
n1 ( 1 and n2 ( 1 degrees of freedom that lies beyond the computed value of the test statistic
f0. Appendix A Table IV can be used to obtain upper and lower bounds on the P-value. For
example, consider an F-test with 9 numerator and 14 denominator degrees of freedom for
which f0 " 3.05. From Appendix A Table IV we find that f0.05,9,14 " 2.65 and f0.025,9,14 " 3.21,
so because f0 = 3.05 lies between these two values, the P-value is between 0.05 and 0.025; that
is, 0.025 & P & 0.05. The P-value for a lower-tailed test would be found similarly, although
since Appendix A Table IV contains only upper-tail points of the F distribution, equation 10-30
would have to be used to find the necessary lower-tail points. For a two-tailed test, the bounds
obtained from a one-tail test would be doubled to obtain the P-value.

To illustrate calculating bounds on the P-value for a two-tailed F-test, reconsider
Example 10-12. The computed value of the test statistic in this example is f0 " 0.85. This
value falls in the lower tail of the F15,15 distribution. The lower-tail point that has 0.25 proba-
bility to the left of it is f0.75,15,15 " 1/ f0.25,15,15 " 1/1.43 " 0.70 and since 0.70 & 0.85, the prob-
ability that lies to the left of 0.85 exceeds 0.25. Therefore, we would conclude that the P-value
for f0 " 0.85 is greater than 2(0.25) " 0.5, so there is insufficient evidence to reject the null
hypothesis. This is consistent with the original conclusions from Example 10-12. The actual
P-value is 0.7570. This value was obtained from a calculator from which we found that
P(F15,15 ) 0.85) " 0.3785 and 2(0.3785) " 0.7570. Minitab can also be used to calculate the
required probabilities.

Minitab will perform the F-test on the equality of two variances of independent normal
distributions. The Minitab output is shown below.
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95% Bonferroni confidence intervals for standard deviations
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1 16 1.38928 1.95959 3.24891
2 16 1.51061 2.13073 3.53265

F-Test (Normal Distribution)
Test statistic " 0.85, P-value " 0.750

Finding the 
P-Value for 

Example 10-12

JWCL232_c10_351-400.qxd  1/15/10  2:14 PM  Page 386



�38

386 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

The seven-step hypothesis-testing procedure may be applied
to this problem as follows:

1. Parameter of interest: The parameter of interest are the
variances of oxide thickness !2

1 and !2
2. We will assume

that oxide thickness is a normal random variable for both
gas mixtures.

2. Null hypothesis:
3. Alternative hypothesis:
4. Test statistic: The test statistic is given by equation 10-31:
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will reject or ifH0: !2

1 " !2
2 if f0 $ f0.025,15,15 " 2.86

f0 "
s2

1

s2
2

H1: !2
1 % !2

2

H0: !2
1 " !2

2

. Refer to
Figure 10-6(a).
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upper-tailed one-tailed test. The P-value is the area (probability) under the F distribution with
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f0. Appendix A Table IV can be used to obtain upper and lower bounds on the P-value. For
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which f0 " 3.05. From Appendix A Table IV we find that f0.05,9,14 " 2.65 and f0.025,9,14 " 3.21,
so because f0 = 3.05 lies between these two values, the P-value is between 0.05 and 0.025; that
is, 0.025 & P & 0.05. The P-value for a lower-tailed test would be found similarly, although
since Appendix A Table IV contains only upper-tail points of the F distribution, equation 10-30
would have to be used to find the necessary lower-tail points. For a two-tailed test, the bounds
obtained from a one-tail test would be doubled to obtain the P-value.

To illustrate calculating bounds on the P-value for a two-tailed F-test, reconsider
Example 10-12. The computed value of the test statistic in this example is f0 " 0.85. This
value falls in the lower tail of the F15,15 distribution. The lower-tail point that has 0.25 proba-
bility to the left of it is f0.75,15,15 " 1/ f0.25,15,15 " 1/1.43 " 0.70 and since 0.70 & 0.85, the prob-
ability that lies to the left of 0.85 exceeds 0.25. Therefore, we would conclude that the P-value
for f0 " 0.85 is greater than 2(0.25) " 0.5, so there is insufficient evidence to reject the null
hypothesis. This is consistent with the original conclusions from Example 10-12. The actual
P-value is 0.7570. This value was obtained from a calculator from which we found that
P(F15,15 ) 0.85) " 0.3785 and 2(0.3785) " 0.7570. Minitab can also be used to calculate the
required probabilities.

Minitab will perform the F-test on the equality of two variances of independent normal
distributions. The Minitab output is shown below.

Test for Equal Variances

95% Bonferroni confidence intervals for standard deviations

Sample N Lower StDev Upper
1 16 1.38928 1.95959 3.24891
2 16 1.51061 2.13073 3.53265

F-Test (Normal Distribution)
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Let X11, X12, p , X1n1
be a random sample from a normal population with mean !1 and

variance "2
1, and let X21, X22, p , X2n2

be a random sample from a second normal pop-
ulation with mean !2 and variance "2

2. Assume that both normal populations are
independent. Let and be the sample variances. Then the ratio

has an F distribution with n1 # 1 numerator degrees of freedom and n2 # 1 denom-
inator degrees of freedom.
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This result is based on the fact that (n1 # 1)S 2
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1 is a chi-square random variable with n1 # 1
degrees of freedom, that (n2 # 1)S 2

2!"2
2 is a chi-square random variable with n2 # 1 degrees

of freedom, and that the two normal populations are independent. Clearly under the null
hypothesis H0: "2

1 $ "2
2 the ratio has an distribution. This is the basis of

the following test procedure.
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2
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Null hypothesis: 

Test statistic: (10-31)
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f0 & f1#', n1#1,n2#1H1: "2
1 & "2

2

f0 ( f',n1#1,n2#1H1: "2
1 ( "2

2

f0 ( f'%2,n1#1,n2#1 or f0 & f1#'%2,n1#1,n2#1H1: "2
1 ) "2

2

F0 $
S2

1

S2
2

H0: "2
1 $ "2

2

Tests on the
Ratio of

Variances from
Two Normal

Distributions

The critical regions for these fixed-significance-level tests are shown in Figure 10-6.
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Figure 10-6 The F distribution for the test of with critical region values for (a) , (b) ,
and (c) .H1: "2
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EXAMPLE 10-12 Semiconductor Etch Variability
Oxide layers on semiconductor wafers are etched in a mixture
of gases to achieve the proper thickness. The variability in the
thickness of these oxide layers is a critical characteristic of the
wafer, and low variability is desirable for subsequent process-
ing steps. Two different mixtures of gases are being studied to
determine whether one is superior in reducing the variability

of the oxide thickness. Sixteen wafers are etched in each gas.
The sample standard deviations of oxide thickness are s1 $
1.96 angstroms and s2 $ 2.13 angstroms, respectively. Is there
any evidence to indicate that either gas is preferable? Use a
fixed-level test with ' $ 0.05.
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The seven-step hypothesis-testing procedure may be applied
to this problem as follows:

1. Parameter of interest: The parameter of interest are the
variances of oxide thickness !2

1 and !2
2. We will assume

that oxide thickness is a normal random variable for both
gas mixtures.

2. Null hypothesis:
3. Alternative hypothesis:
4. Test statistic: The test statistic is given by equation 10-31:

6. Reject H0 if : Because n1 " n2 " 16 and # " 0.05, we
will reject or ifH0: !2

1 " !2
2 if f0 $ f0.025,15,15 " 2.86

f0 "
s2

1

s2
2

H1: !2
1 % !2

2

H0: !2
1 " !2

2

. Refer to
Figure 10-6(a).

7. Computations: Because s2
1 " (1.96)2 " 3.84 and s2

2 "
(2.13)2 " 4.54, the test statistic is

8. Conclusions: Because f0.975,15,15 " 0.35 & 0.85 &
f0.025,15,15 " 2.86, we cannot reject the null hypothesis H0:
!2

1 " !2
2 at the 0.05 level of significance. 

Practical Interpretation: There is no strong evidence to
indicate that either gas results in a smaller variance of oxide
thickness.

f0 "
s2

1

s2
2

"
3.84
4.54

" 0.85

f0 & f0.975,15,15 " 1'f0.025,15,15 " 1'2.86 " 0.35

P-Values for the F-Test
The P-value approach can also be used with F-tests. To show how to do this, consider the
upper-tailed one-tailed test. The P-value is the area (probability) under the F distribution with
n1 ( 1 and n2 ( 1 degrees of freedom that lies beyond the computed value of the test statistic
f0. Appendix A Table IV can be used to obtain upper and lower bounds on the P-value. For
example, consider an F-test with 9 numerator and 14 denominator degrees of freedom for
which f0 " 3.05. From Appendix A Table IV we find that f0.05,9,14 " 2.65 and f0.025,9,14 " 3.21,
so because f0 = 3.05 lies between these two values, the P-value is between 0.05 and 0.025; that
is, 0.025 & P & 0.05. The P-value for a lower-tailed test would be found similarly, although
since Appendix A Table IV contains only upper-tail points of the F distribution, equation 10-30
would have to be used to find the necessary lower-tail points. For a two-tailed test, the bounds
obtained from a one-tail test would be doubled to obtain the P-value.

To illustrate calculating bounds on the P-value for a two-tailed F-test, reconsider
Example 10-12. The computed value of the test statistic in this example is f0 " 0.85. This
value falls in the lower tail of the F15,15 distribution. The lower-tail point that has 0.25 proba-
bility to the left of it is f0.75,15,15 " 1/ f0.25,15,15 " 1/1.43 " 0.70 and since 0.70 & 0.85, the prob-
ability that lies to the left of 0.85 exceeds 0.25. Therefore, we would conclude that the P-value
for f0 " 0.85 is greater than 2(0.25) " 0.5, so there is insufficient evidence to reject the null
hypothesis. This is consistent with the original conclusions from Example 10-12. The actual
P-value is 0.7570. This value was obtained from a calculator from which we found that
P(F15,15 ) 0.85) " 0.3785 and 2(0.3785) " 0.7570. Minitab can also be used to calculate the
required probabilities.

Minitab will perform the F-test on the equality of two variances of independent normal
distributions. The Minitab output is shown below.

Test for Equal Variances

95% Bonferroni confidence intervals for standard deviations

Sample N Lower StDev Upper
1 16 1.38928 1.95959 3.24891
2 16 1.51061 2.13073 3.53265

F-Test (Normal Distribution)
Test statistic " 0.85, P-value " 0.750

Finding the 
P-Value for 

Example 10-12
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The P-value approach can also be used with F-tests. To show how to do this, consider the
upper-tailed one-tailed test. The P-value is the area (probability) under the F distribution with
n1 ( 1 and n2 ( 1 degrees of freedom that lies beyond the computed value of the test statistic
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example, consider an F-test with 9 numerator and 14 denominator degrees of freedom for
which f0 " 3.05. From Appendix A Table IV we find that f0.05,9,14 " 2.65 and f0.025,9,14 " 3.21,
so because f0 = 3.05 lies between these two values, the P-value is between 0.05 and 0.025; that
is, 0.025 & P & 0.05. The P-value for a lower-tailed test would be found similarly, although
since Appendix A Table IV contains only upper-tail points of the F distribution, equation 10-30
would have to be used to find the necessary lower-tail points. For a two-tailed test, the bounds
obtained from a one-tail test would be doubled to obtain the P-value.

To illustrate calculating bounds on the P-value for a two-tailed F-test, reconsider
Example 10-12. The computed value of the test statistic in this example is f0 " 0.85. This
value falls in the lower tail of the F15,15 distribution. The lower-tail point that has 0.25 proba-
bility to the left of it is f0.75,15,15 " 1/ f0.25,15,15 " 1/1.43 " 0.70 and since 0.70 & 0.85, the prob-
ability that lies to the left of 0.85 exceeds 0.25. Therefore, we would conclude that the P-value
for f0 " 0.85 is greater than 2(0.25) " 0.5, so there is insufficient evidence to reject the null
hypothesis. This is consistent with the original conclusions from Example 10-12. The actual
P-value is 0.7570. This value was obtained from a calculator from which we found that
P(F15,15 ) 0.85) " 0.3785 and 2(0.3785) " 0.7570. Minitab can also be used to calculate the
required probabilities.

Minitab will perform the F-test on the equality of two variances of independent normal
distributions. The Minitab output is shown below.

Test for Equal Variances

95% Bonferroni confidence intervals for standard deviations

Sample N Lower StDev Upper
1 16 1.38928 1.95959 3.24891
2 16 1.51061 2.13073 3.53265

F-Test (Normal Distribution)
Test statistic " 0.85, P-value " 0.750

Finding the 
P-Value for 

Example 10-12
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The seven-step hypothesis-testing procedure may be applied
to this problem as follows:

1. Parameter of interest: The parameter of interest are the
variances of oxide thickness !2

1 and !2
2. We will assume

that oxide thickness is a normal random variable for both
gas mixtures.

2. Null hypothesis:
3. Alternative hypothesis:
4. Test statistic: The test statistic is given by equation 10-31:

6. Reject H0 if : Because n1 " n2 " 16 and # " 0.05, we
will reject or ifH0: !2

1 " !2
2 if f0 $ f0.025,15,15 " 2.86

f0 "
s2

1

s2
2

H1: !2
1 % !2

2

H0: !2
1 " !2

2

. Refer to
Figure 10-6(a).

7. Computations: Because s2
1 " (1.96)2 " 3.84 and s2

2 "
(2.13)2 " 4.54, the test statistic is
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f0.025,15,15 " 2.86, we cannot reject the null hypothesis H0:
!2

1 " !2
2 at the 0.05 level of significance. 

Practical Interpretation: There is no strong evidence to
indicate that either gas results in a smaller variance of oxide
thickness.

f0 "
s2

1

s2
2

"
3.84
4.54

" 0.85

f0 & f0.975,15,15 " 1'f0.025,15,15 " 1'2.86 " 0.35
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P-value is 0.7570. This value was obtained from a calculator from which we found that
P(F15,15 ) 0.85) " 0.3785 and 2(0.3785) " 0.7570. Minitab can also be used to calculate the
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Minitab will perform the F-test on the equality of two variances of independent normal
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