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Midterm 2
• Cover	  
• Confidence	  interval	  

– One	  sided	  and	  two	  sided	  confidence	  intervals	  
• Hypothesis	  testing	  

– Two	  approaches	  
• Fixed	  significance	  level	  
• p-‐value	  
!

• Can	  bring	  a	  1-‐page	  1-‐sided	  cheat	  sheet	  
!

• Make-‐up	  lecture	  on	  Friday	  Nov.	  8:	  tentatively	  
noon-‐1:20pm	  in	  the	  area	  in	  front	  of	  my	  office,	  
Groseclose	  #339



Outline

• Test	  difference	  in	  the	  mean	  
– Known	  variance	  
– Unknown	  variance	  

• Test	  difference	  in	  sample	  proportion	  
• Test	  difference	  in	  variance



Motivating Example
• Safety	  of	  drinking	  water	  (Arizona	  Republic,	  May	  27,	  
2001)	  

• Water	  sampled	  from	  10	  communities	  in	  Pheonix	  
• And	  10	  communities	  from	  rural	  Arizona	  
• Arsenic	  concentration	  (AC):	  determines	  water	  quality,	  
ranges	  from	  3	  ppb	  to	  48	  ppb	  

• Is	  there	  a	  difference	  in	  AC	  
between	  these	  two	  areas?	  
If	  the	  difference	  is	  large	  enough?



Formulate into statistical method

• Answered	  by	  statistical	  methods	  
!
!
!
!
!

• Whether	  or	  not	  there	  is	  a	  difference	  between	  in	  
mean	  AC	  level,	  μ1	  and	  μ2,	  in	  these	  two	  areas?	  

• 	  Equivalent	  to:	  test	  whether	  μ1-‐μ2	  is	  different	  from	  0?

Pheonix	  μ1 rural	  Arizona	  μ2	  



In general: comparing two populations

• Comparing two population means is often the 
way used to prove one population is different or 
better than another

• Competing Companies / Products 

• Treatment vs. No Treatment 

• New method vs. Old method



Test difference in the mean



Test difference in mean, variance known
• Solve	  the	  following	  hypothesis	  test	  
!
!
!
!

• Assumptions	  for	  two	  sample	  inference

H0 :µ1 − µ2 = Δ
H1 :µ1 − µ2 ≠ Δ



Test statistics

• A	  reasonable	  estimator	  for	  μ1	  -‐	  μ2	  is	  	  

!
!

• Under	  H0,	  its	  mean	  is	  Δ	  

• Its	  variance	  is	  
!
!

• Detection	  statistic	  

X1 − X2

σ 1
2

n1
+
σ 2
2

n2

Z = X1 − X2 − Δ
σ 1
2

n1
+
σ 2
2

n2



Detection for two sample difference

• For	  given	  significance	  level:	  
• Reject	  H0	  when	  

!
!
!
!
!

• And	  decide	  threshold	  b	  for	  that	  given	  significance	  
level

Z > b

Z = X1 − X2 − Δ
σ 1
2

n1
+
σ 2
2

n2



p-value

• Probability	  of	  observing	  sample	  difference	  even	  more	  
extreme,	  under	  H0

P Z > z0( )= 1−Φ z0( )



Example: paint drying time



Solution
• test	  difference	  in	  mean	  drying	  time	  
!
!

• Δ	  ＝	  0	  

!
!
• form	  test	  statistic

H0 :µ1 − µ2 = Δ
H1 :µ1 − µ2 > Δ

H0 :µ1 = µ2
H1 :µ1 > µ2

Z = X1 − X2
σ 1
2

n1
+
σ 2
2

n2



Fixed significance level approach
• Reject	  H0	  	  when	  

!
!
• Calculate:

Z = X1 − X2
σ 1
2

n1
+
σ 2
2

n2

> zα

x1 − x2
σ 1
2

n1
+
σ 2
2

n2

z0.05 = 1.65

>1.65
Reject	  H0	  

α = 0.05



!

• Compute	  p-‐value:	  	  
!
!
!
!
!

!
!
• p-‐value:	  
!

• Reject	  H0	  since	  its	  value	  is	  less	  than	  0.01
P Z > z0( )= 1−Φ z0( )= 1−Φ 2.52( )= 0.0059

Calculate p-value

Value	  of	  the	  statistic	  from	  data



Outline

• Test	  difference	  in	  the	  mean	  
– Known	  variance	  
– Unknown	  variance	  

• Test	  difference	  in	  sample	  proportion	  
• Test	  difference	  in	  variance



Case 2: test difference in mean, variance unknown, true 
variance equal

• Solve	  the	  following	  hypothesis	  test	  
!

!
!
• 	  Variances	  are	  equal	  but	  unknown,	  so	  we	  	  “pool”	  	  the	  
samples	  to	  estimate	  the	  variance	  
!
!
!

• S1	  and	  S2	  are	  sample	  variances	  

H0 :µ1 − µ2 = Δ
H1 :µ1 − µ2 ≠ Δ

Sp
2 =
(n1 −1)S1

2 + (n2 −1)S2
2

n1 + n2 − 2

Sp
2 (n1 + n2 − 2)

σ 2 ~ χn1+n2−2



!19

X1 − X2 − Δ
Sp 1/ n1 +1/ n2

~ tn1+n2− 2

Use the following as the test statistics

H0 :µ1 − µ2 = Δ
H1 :µ1 − µ2 ≠ Δ

For the following hypothesis test 
!
!
!
!
Reject H0 when 

X −Y − (µ1 − µ2 )
Sp 1/ n1 +1/ n2

> tα /2



Example

n1 = 10      x1 = 28      S1
2 = 4

n2 = 10     x2 = 26      S2
2 = 5

Test Statistic:   

t =
x-y

Sp 1
n1
+ 1

n2

 Sp
2 =

S1
2 (n1 −1)+S1

2 (n2 −1)
n1 + n2 − 2

=
4(9)+ 5(9)

18
= 4.5

Assume true variance equal

α = 0.05



Sp
2 = 4.5

Recall degrees of freedom here is  
n + m – 2 = 18

t18,0.025 = 2.101

 t = 28-26
4.5 1 /10 +1/10

= 2.11>2.101

 
p− value = P(|T| > 2.11)=2P(T > 2.11) = 2 × 0.0491=0.0982

Threshold:

Weakly	  reject	  H0	  

Calculate p-value



Outline

• Test	  difference	  in	  the	  mean	  
– Known	  variance	  
– Unknown	  variance	  

• Test	  difference	  in	  sample	  proportion	  
• Test	  difference	  in	  variance



Formulation

• Two	  binomial	  parameters	  of	  interests	  
• Two	  independent	  random	  samples	  are	  taken	  from	  2	  
populations	  

• Estimation	  of	  sample	  proportion

X ~ Bin(n1, p1),    Y ~ Bin(n2, p2) ⇒ p̂1 =
X
n1
, p̂2 =

Y
n2

H0 : p1 = p2
H1 : p1 ≠ p2



Test statistics

Z = p̂1 − p̂2
p1 1− p1( )

n1
+
p2 1− p2( )

n2!
!
Pooled estimate 
  
!
!
Estimate the test statistic: p̂1 − p̂2

p̂ 1− p̂( ) 1
n1
+
1
n2

"

#$
%

&'

p̂ = X1 + X2
n1 + n2



Two-sided test

Z =
p̂1 − p̂2 − p1 − p2( )
p1 1− p1( )

n1
+
p2 1− p2( )

n2!
For two-sided test, 
  
!
!
reject H0 when 

H0 : p1 = p2
H1 : p1 ≠ p2

p̂1 − p̂2

p̂ 1− p̂( ) 1
n1
+
1
n2

"

#$
%

&'

> zα /2



Test statistics and one-sided test

!
Reject H0 when 

p̂1 − p̂2

p̂ 1− p̂( ) 1
n1
+
1
n2

"

#$
%

&'

< −zα

H0 : p1 = p2
H1 : p1 < p2

!
Reject H0 when 

p̂1 − p̂2

p̂ 1− p̂( ) 1
n1
+
1
n2

"

#$
%

&'

> zα

H0 : p1 = p2
H1 : p1 > p2



Comparing 2 population proportions: Example

Standard drug  X ~ Bin(100, p1) 

New drug  Y ~ Bin(100, p2)

A new drug is being compared to a standard using 200 clinical 
trials (100 patients for each group). For the new drug, 83 of 100 
patients improved. For the standard, 72 of 100 improved. Is the 
new drug statistically superior?



X1 = 72,X2 = 83
n1 = n2 = 100
p̂1 = 0.72, p̂2 = 0.83
z0.05 = 1.65

p̂1 − p̂2

p̂ 1− p̂( ) 1
n1
+
1
n2

"

#$
%

&'

= −1.7323 < −1.65

H0 : p1 = p2
H1 : p1 < p2

Reject	  H0	  

Fixed significance level approach



p-‐value	  
!
!
!
Less	  than	  α	  =	  0.05,	  reject	  H0

P(Z < −1.7323) = 0.0418

p-value

Reject	  H0,	  with	  p-‐value	  0.0418	  



Outline

• Test	  difference	  in	  the	  mean	  
– Known	  variance	  
– Unknown	  variance	  

• Test	  difference	  in	  sample	  proportion	  
• Test	  difference	  in	  variance



Test difference in variance
• two	  independent	  normal	  populations	  
• means	  and	  variances	  of	  the	  two	  normals	  are	  
unknown	  

• test	  whether	  or	  not	  two	  variances	  are	  the	  same

�31

10-5.1 F Distribution

Suppose that two independent normal populations are of interest, where the population means
and variances, say, !1, "2

1, !2, and "2
2, are unknown. We wish to test hypotheses about the

equality of the two variances, say, H0: "2
1 # "2

2. Assume that two random samples of size n1
from population 1 and of size n2 from population 2 are available, and let S 2

1 and S 2
2 be the sam-

ple variances. We wish to test the hypotheses

(10-26)

The development of a test procedure for these hypotheses requires a new probability
distribution, the F distribution. The random variable F is defined to be the ratio of two
independent chi-square random variables, each divided by its number of degrees of free-
dom. That is,

(10-27)

where W and Y are independent chi-square random variables with u and v degrees of freedom,
respectively. We now formally state the sampling distribution of F.

F #
W$u
Y$v

H1: "2
1 % "2

2

H0: "2
1 # "2

2

10-5 INFERENCE ON THE VARIANCES OF TWO NORMAL DISTRIBUTIONS 383

Let W and Y be independent chi-square random variables with u and v degrees of
freedom, respectively. Then the ratio

(10-28)

has the probability density function

(10-29)

and is said to follow the F distribution with u degrees of freedom in the numerator
and v degrees of freedom in the denominator. It is usually abbreviated as Fu,v.

f 1x2 #

&  au ' v
2 b auvbu$2 x 1u$22(1

& au2b & av2b c  auvb x ' 1 d 1u'v2$2,  0 ) x ) *

F #
W$u
Y$v

F Distribution

The mean and variance of the F distribution are ! # v!(v ( 2) for v + 2, and

Two F distributions are shown in Fig. 10-4. The F random variable is nonnegative, and the
distribution is skewed to the right. The F distribution looks very similar to the chi-square dis-
tribution; however, the two parameters u and v provide extra flexibility regarding shape.

"2 #
2v21u ' v ( 22
u1v ( 2221v ( 42 ,  v + 4

JWCL232_c10_351-400.qxd  1/15/10  2:14 PM  Page 383



Test based on sample variance ratio
• Test	  statistics:	  ratio	  of	  two	  sample	  variances	  
!
!

• Need	  to	  introduce	  F	  distribution

�32

F = S1
2

S2
2

10-5.1 F Distribution
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and variances, say, !1, "2

1, !2, and "2
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1 # "2

2. Assume that two random samples of size n1
from population 1 and of size n2 from population 2 are available, and let S 2

1 and S 2
2 be the sam-

ple variances. We wish to test the hypotheses
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F distribution
• A	  continuous	  distribution	  
!
!
!
!
!

• mean	  =	  
!

• we	  should	  reject	  H0	  when	  	  

the	  statistic	  is	  large



Sample distribution

• Under	  H0	  the	  detection	  statistic	  	  

�34

F = S1
2

S2
2 =

(n1 −1)S1
2 /σ 1

2⎡⎣ ⎤⎦ / (n1 −1)
(n2 −1)S2

2 /σ 2
2⎡⎣ ⎤⎦ / (n2 −1)

σ 1
2 =σ 2

2( )	  	  	  	  	  	  	  	  	  	  	  

χn1−1
2

	  	  	  	  	  	  	  	  	  	  	  

χn2−1
2

• has	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  distribution

10-5 INFERENCE ON THE VARIANCES OF TWO NORMAL DISTRIBUTIONS 385

Let X11, X12, p , X1n1
be a random sample from a normal population with mean !1 and

variance "2
1, and let X21, X22, p , X2n2

be a random sample from a second normal pop-
ulation with mean !2 and variance "2

2. Assume that both normal populations are
independent. Let and be the sample variances. Then the ratio

has an F distribution with n1 # 1 numerator degrees of freedom and n2 # 1 denom-
inator degrees of freedom.

F $
S2

1%"2
1

S2
2%"2

2

S2
2S2

1

Distribution 
of the Ratio 

of Sample
Variances from

Two Normal
Distributions

This result is based on the fact that (n1 # 1)S 2
1/"2

1 is a chi-square random variable with n1 # 1
degrees of freedom, that (n2 # 1)S 2

2!"2
2 is a chi-square random variable with n2 # 1 degrees

of freedom, and that the two normal populations are independent. Clearly under the null
hypothesis H0: "2

1 $ "2
2 the ratio has an distribution. This is the basis of

the following test procedure.
Fn1#1,n2#1F0 $ S2

1%S 
2
2

Null hypothesis: 

Test statistic: (10-31)

Alternative Hypotheses Rejection Criterion

f0 & f1#', n1#1,n2#1H1: "2
1 & "2

2

f0 ( f',n1#1,n2#1H1: "2
1 ( "2

2

f0 ( f'%2,n1#1,n2#1 or f0 & f1#'%2,n1#1,n2#1H1: "2
1 ) "2

2

F0 $
S2

1

S2
2

H0: "2
1 $ "2

2

Tests on the
Ratio of

Variances from
Two Normal

Distributions

The critical regions for these fixed-significance-level tests are shown in Figure 10-6.

(a)

/2, n – 1    α

α

*2

n – 1*2

/2, n – 1    α*20

f (x)

x
1 –

/2
α /2

(b)

, n – 1    α*2

n – 1*2

0

f (x)

x

(c)

n – 1*2

, n – 1    α*20

f (x)

x
1 –

α
α

Figure 10-6 The F distribution for the test of with critical region values for (a) , (b) ,
and (c) .H1: "2

1 & "2
2

H1: "2
1 ( "2

2H1: "2
1 ) "2

2H0: "2
1 $ "2

2

EXAMPLE 10-12 Semiconductor Etch Variability
Oxide layers on semiconductor wafers are etched in a mixture
of gases to achieve the proper thickness. The variability in the
thickness of these oxide layers is a critical characteristic of the
wafer, and low variability is desirable for subsequent process-
ing steps. Two different mixtures of gases are being studied to
determine whether one is superior in reducing the variability

of the oxide thickness. Sixteen wafers are etched in each gas.
The sample standard deviations of oxide thickness are s1 $
1.96 angstroms and s2 $ 2.13 angstroms, respectively. Is there
any evidence to indicate that either gas is preferable? Use a
fixed-level test with ' $ 0.05.
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Form of test

�35
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variance "2
1, and let X21, X22, p , X2n2

be a random sample from a second normal pop-
ulation with mean !2 and variance "2

2. Assume that both normal populations are
independent. Let and be the sample variances. Then the ratio

has an F distribution with n1 # 1 numerator degrees of freedom and n2 # 1 denom-
inator degrees of freedom.
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This result is based on the fact that (n1 # 1)S 2
1/"2

1 is a chi-square random variable with n1 # 1
degrees of freedom, that (n2 # 1)S 2

2!"2
2 is a chi-square random variable with n2 # 1 degrees

of freedom, and that the two normal populations are independent. Clearly under the null
hypothesis H0: "2

1 $ "2
2 the ratio has an distribution. This is the basis of

the following test procedure.
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Null hypothesis: 

Test statistic: (10-31)

Alternative Hypotheses Rejection Criterion

f0 & f1#', n1#1,n2#1H1: "2
1 & "2

2

f0 ( f',n1#1,n2#1H1: "2
1 ( "2

2

f0 ( f'%2,n1#1,n2#1 or f0 & f1#'%2,n1#1,n2#1H1: "2
1 ) "2

2

F0 $
S2

1

S2
2

H0: "2
1 $ "2

2

Tests on the
Ratio of

Variances from
Two Normal

Distributions

The critical regions for these fixed-significance-level tests are shown in Figure 10-6.
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Figure 10-6 The F distribution for the test of with critical region values for (a) , (b) ,
and (c) .H1: "2
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EXAMPLE 10-12 Semiconductor Etch Variability
Oxide layers on semiconductor wafers are etched in a mixture
of gases to achieve the proper thickness. The variability in the
thickness of these oxide layers is a critical characteristic of the
wafer, and low variability is desirable for subsequent process-
ing steps. Two different mixtures of gases are being studied to
determine whether one is superior in reducing the variability

of the oxide thickness. Sixteen wafers are etched in each gas.
The sample standard deviations of oxide thickness are s1 $
1.96 angstroms and s2 $ 2.13 angstroms, respectively. Is there
any evidence to indicate that either gas is preferable? Use a
fixed-level test with ' $ 0.05.

JWCL232_c10_351-400.qxd  1/15/10  2:14 PM  Page 385



Example: Semiconductor etch variability

• variability	  in	  oxide	  layer	  of	  semiconductor	  is	  a	  critical	  
characteristic	  of	  the	  semiconductor	  

• two	  kind	  of	  semiconductors,	  sample	  standard	  
deviation	  
!
!
!
!

• test:	  whether	  or	  not	  their	  variances	  are	  the	  same	  
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s1 = 1.96
s2 = 2.13
n1 = n2 = 16
α = 0.05
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The seven-step hypothesis-testing procedure may be applied
to this problem as follows:

1. Parameter of interest: The parameter of interest are the
variances of oxide thickness !2

1 and !2
2. We will assume

that oxide thickness is a normal random variable for both
gas mixtures.

2. Null hypothesis:
3. Alternative hypothesis:
4. Test statistic: The test statistic is given by equation 10-31:

6. Reject H0 if : Because n1 " n2 " 16 and # " 0.05, we
will reject or ifH0: !2

1 " !2
2 if f0 $ f0.025,15,15 " 2.86

f0 "
s2

1

s2
2

H1: !2
1 % !2

2

H0: !2
1 " !2

2

. Refer to
Figure 10-6(a).

7. Computations: Because s2
1 " (1.96)2 " 3.84 and s2

2 "
(2.13)2 " 4.54, the test statistic is

8. Conclusions: Because f0.975,15,15 " 0.35 & 0.85 &
f0.025,15,15 " 2.86, we cannot reject the null hypothesis H0:
!2

1 " !2
2 at the 0.05 level of significance. 

Practical Interpretation: There is no strong evidence to
indicate that either gas results in a smaller variance of oxide
thickness.

f0 "
s2

1

s2
2

"
3.84
4.54

" 0.85

f0 & f0.975,15,15 " 1'f0.025,15,15 " 1'2.86 " 0.35

P-Values for the F-Test
The P-value approach can also be used with F-tests. To show how to do this, consider the
upper-tailed one-tailed test. The P-value is the area (probability) under the F distribution with
n1 ( 1 and n2 ( 1 degrees of freedom that lies beyond the computed value of the test statistic
f0. Appendix A Table IV can be used to obtain upper and lower bounds on the P-value. For
example, consider an F-test with 9 numerator and 14 denominator degrees of freedom for
which f0 " 3.05. From Appendix A Table IV we find that f0.05,9,14 " 2.65 and f0.025,9,14 " 3.21,
so because f0 = 3.05 lies between these two values, the P-value is between 0.05 and 0.025; that
is, 0.025 & P & 0.05. The P-value for a lower-tailed test would be found similarly, although
since Appendix A Table IV contains only upper-tail points of the F distribution, equation 10-30
would have to be used to find the necessary lower-tail points. For a two-tailed test, the bounds
obtained from a one-tail test would be doubled to obtain the P-value.

To illustrate calculating bounds on the P-value for a two-tailed F-test, reconsider
Example 10-12. The computed value of the test statistic in this example is f0 " 0.85. This
value falls in the lower tail of the F15,15 distribution. The lower-tail point that has 0.25 proba-
bility to the left of it is f0.75,15,15 " 1/ f0.25,15,15 " 1/1.43 " 0.70 and since 0.70 & 0.85, the prob-
ability that lies to the left of 0.85 exceeds 0.25. Therefore, we would conclude that the P-value
for f0 " 0.85 is greater than 2(0.25) " 0.5, so there is insufficient evidence to reject the null
hypothesis. This is consistent with the original conclusions from Example 10-12. The actual
P-value is 0.7570. This value was obtained from a calculator from which we found that
P(F15,15 ) 0.85) " 0.3785 and 2(0.3785) " 0.7570. Minitab can also be used to calculate the
required probabilities.

Minitab will perform the F-test on the equality of two variances of independent normal
distributions. The Minitab output is shown below.

Test for Equal Variances

95% Bonferroni confidence intervals for standard deviations

Sample N Lower StDev Upper
1 16 1.38928 1.95959 3.24891
2 16 1.51061 2.13073 3.53265

F-Test (Normal Distribution)
Test statistic " 0.85, P-value " 0.750

Finding the 
P-Value for 

Example 10-12
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The seven-step hypothesis-testing procedure may be applied
to this problem as follows:

1. Parameter of interest: The parameter of interest are the
variances of oxide thickness !2

1 and !2
2. We will assume

that oxide thickness is a normal random variable for both
gas mixtures.

2. Null hypothesis:
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which f0 " 3.05. From Appendix A Table IV we find that f0.05,9,14 " 2.65 and f0.025,9,14 " 3.21,
so because f0 = 3.05 lies between these two values, the P-value is between 0.05 and 0.025; that
is, 0.025 & P & 0.05. The P-value for a lower-tailed test would be found similarly, although
since Appendix A Table IV contains only upper-tail points of the F distribution, equation 10-30
would have to be used to find the necessary lower-tail points. For a two-tailed test, the bounds
obtained from a one-tail test would be doubled to obtain the P-value.

To illustrate calculating bounds on the P-value for a two-tailed F-test, reconsider
Example 10-12. The computed value of the test statistic in this example is f0 " 0.85. This
value falls in the lower tail of the F15,15 distribution. The lower-tail point that has 0.25 proba-
bility to the left of it is f0.75,15,15 " 1/ f0.25,15,15 " 1/1.43 " 0.70 and since 0.70 & 0.85, the prob-
ability that lies to the left of 0.85 exceeds 0.25. Therefore, we would conclude that the P-value
for f0 " 0.85 is greater than 2(0.25) " 0.5, so there is insufficient evidence to reject the null
hypothesis. This is consistent with the original conclusions from Example 10-12. The actual
P-value is 0.7570. This value was obtained from a calculator from which we found that
P(F15,15 ) 0.85) " 0.3785 and 2(0.3785) " 0.7570. Minitab can also be used to calculate the
required probabilities.

Minitab will perform the F-test on the equality of two variances of independent normal
distributions. The Minitab output is shown below.
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95% Bonferroni confidence intervals for standard deviations
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The seven-step hypothesis-testing procedure may be applied
to this problem as follows:

1. Parameter of interest: The parameter of interest are the
variances of oxide thickness !2

1 and !2
2. We will assume

that oxide thickness is a normal random variable for both
gas mixtures.

2. Null hypothesis:
3. Alternative hypothesis:
4. Test statistic: The test statistic is given by equation 10-31:
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2 "
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The P-value approach can also be used with F-tests. To show how to do this, consider the
upper-tailed one-tailed test. The P-value is the area (probability) under the F distribution with
n1 ( 1 and n2 ( 1 degrees of freedom that lies beyond the computed value of the test statistic
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example, consider an F-test with 9 numerator and 14 denominator degrees of freedom for
which f0 " 3.05. From Appendix A Table IV we find that f0.05,9,14 " 2.65 and f0.025,9,14 " 3.21,
so because f0 = 3.05 lies between these two values, the P-value is between 0.05 and 0.025; that
is, 0.025 & P & 0.05. The P-value for a lower-tailed test would be found similarly, although
since Appendix A Table IV contains only upper-tail points of the F distribution, equation 10-30
would have to be used to find the necessary lower-tail points. For a two-tailed test, the bounds
obtained from a one-tail test would be doubled to obtain the P-value.

To illustrate calculating bounds on the P-value for a two-tailed F-test, reconsider
Example 10-12. The computed value of the test statistic in this example is f0 " 0.85. This
value falls in the lower tail of the F15,15 distribution. The lower-tail point that has 0.25 proba-
bility to the left of it is f0.75,15,15 " 1/ f0.25,15,15 " 1/1.43 " 0.70 and since 0.70 & 0.85, the prob-
ability that lies to the left of 0.85 exceeds 0.25. Therefore, we would conclude that the P-value
for f0 " 0.85 is greater than 2(0.25) " 0.5, so there is insufficient evidence to reject the null
hypothesis. This is consistent with the original conclusions from Example 10-12. The actual
P-value is 0.7570. This value was obtained from a calculator from which we found that
P(F15,15 ) 0.85) " 0.3785 and 2(0.3785) " 0.7570. Minitab can also be used to calculate the
required probabilities.

Minitab will perform the F-test on the equality of two variances of independent normal
distributions. The Minitab output is shown below.

Test for Equal Variances

95% Bonferroni confidence intervals for standard deviations

Sample N Lower StDev Upper
1 16 1.38928 1.95959 3.24891
2 16 1.51061 2.13073 3.53265

F-Test (Normal Distribution)
Test statistic " 0.85, P-value " 0.750

Finding the 
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p-value
• Observe	  “test	  statistic”	  more	  extreme	  than	  what	  we	  
got	  
!
!
!
!

• calculate	  using	  R	  command	  
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Let X11, X12, p , X1n1
be a random sample from a normal population with mean !1 and

variance "2
1, and let X21, X22, p , X2n2

be a random sample from a second normal pop-
ulation with mean !2 and variance "2

2. Assume that both normal populations are
independent. Let and be the sample variances. Then the ratio

has an F distribution with n1 # 1 numerator degrees of freedom and n2 # 1 denom-
inator degrees of freedom.
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2
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This result is based on the fact that (n1 # 1)S 2
1/"2

1 is a chi-square random variable with n1 # 1
degrees of freedom, that (n2 # 1)S 2

2!"2
2 is a chi-square random variable with n2 # 1 degrees

of freedom, and that the two normal populations are independent. Clearly under the null
hypothesis H0: "2

1 $ "2
2 the ratio has an distribution. This is the basis of

the following test procedure.
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1%S 
2
2

Null hypothesis: 

Test statistic: (10-31)
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The critical regions for these fixed-significance-level tests are shown in Figure 10-6.
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Figure 10-6 The F distribution for the test of with critical region values for (a) , (b) ,
and (c) .H1: "2
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EXAMPLE 10-12 Semiconductor Etch Variability
Oxide layers on semiconductor wafers are etched in a mixture
of gases to achieve the proper thickness. The variability in the
thickness of these oxide layers is a critical characteristic of the
wafer, and low variability is desirable for subsequent process-
ing steps. Two different mixtures of gases are being studied to
determine whether one is superior in reducing the variability

of the oxide thickness. Sixteen wafers are etched in each gas.
The sample standard deviations of oxide thickness are s1 $
1.96 angstroms and s2 $ 2.13 angstroms, respectively. Is there
any evidence to indicate that either gas is preferable? Use a
fixed-level test with ' $ 0.05.
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The seven-step hypothesis-testing procedure may be applied
to this problem as follows:

1. Parameter of interest: The parameter of interest are the
variances of oxide thickness !2

1 and !2
2. We will assume

that oxide thickness is a normal random variable for both
gas mixtures.

2. Null hypothesis:
3. Alternative hypothesis:
4. Test statistic: The test statistic is given by equation 10-31:

6. Reject H0 if : Because n1 " n2 " 16 and # " 0.05, we
will reject or ifH0: !2

1 " !2
2 if f0 $ f0.025,15,15 " 2.86

f0 "
s2

1

s2
2

H1: !2
1 % !2

2

H0: !2
1 " !2

2

. Refer to
Figure 10-6(a).

7. Computations: Because s2
1 " (1.96)2 " 3.84 and s2

2 "
(2.13)2 " 4.54, the test statistic is

8. Conclusions: Because f0.975,15,15 " 0.35 & 0.85 &
f0.025,15,15 " 2.86, we cannot reject the null hypothesis H0:
!2

1 " !2
2 at the 0.05 level of significance. 

Practical Interpretation: There is no strong evidence to
indicate that either gas results in a smaller variance of oxide
thickness.

f0 "
s2

1

s2
2

"
3.84
4.54

" 0.85

f0 & f0.975,15,15 " 1'f0.025,15,15 " 1'2.86 " 0.35

P-Values for the F-Test
The P-value approach can also be used with F-tests. To show how to do this, consider the
upper-tailed one-tailed test. The P-value is the area (probability) under the F distribution with
n1 ( 1 and n2 ( 1 degrees of freedom that lies beyond the computed value of the test statistic
f0. Appendix A Table IV can be used to obtain upper and lower bounds on the P-value. For
example, consider an F-test with 9 numerator and 14 denominator degrees of freedom for
which f0 " 3.05. From Appendix A Table IV we find that f0.05,9,14 " 2.65 and f0.025,9,14 " 3.21,
so because f0 = 3.05 lies between these two values, the P-value is between 0.05 and 0.025; that
is, 0.025 & P & 0.05. The P-value for a lower-tailed test would be found similarly, although
since Appendix A Table IV contains only upper-tail points of the F distribution, equation 10-30
would have to be used to find the necessary lower-tail points. For a two-tailed test, the bounds
obtained from a one-tail test would be doubled to obtain the P-value.

To illustrate calculating bounds on the P-value for a two-tailed F-test, reconsider
Example 10-12. The computed value of the test statistic in this example is f0 " 0.85. This
value falls in the lower tail of the F15,15 distribution. The lower-tail point that has 0.25 proba-
bility to the left of it is f0.75,15,15 " 1/ f0.25,15,15 " 1/1.43 " 0.70 and since 0.70 & 0.85, the prob-
ability that lies to the left of 0.85 exceeds 0.25. Therefore, we would conclude that the P-value
for f0 " 0.85 is greater than 2(0.25) " 0.5, so there is insufficient evidence to reject the null
hypothesis. This is consistent with the original conclusions from Example 10-12. The actual
P-value is 0.7570. This value was obtained from a calculator from which we found that
P(F15,15 ) 0.85) " 0.3785 and 2(0.3785) " 0.7570. Minitab can also be used to calculate the
required probabilities.

Minitab will perform the F-test on the equality of two variances of independent normal
distributions. The Minitab output is shown below.

Test for Equal Variances

95% Bonferroni confidence intervals for standard deviations

Sample N Lower StDev Upper
1 16 1.38928 1.95959 3.24891
2 16 1.51061 2.13073 3.53265

F-Test (Normal Distribution)
Test statistic " 0.85, P-value " 0.750

Finding the 
P-Value for 

Example 10-12
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so because f0 = 3.05 lies between these two values, the P-value is between 0.05 and 0.025; that
is, 0.025 & P & 0.05. The P-value for a lower-tailed test would be found similarly, although
since Appendix A Table IV contains only upper-tail points of the F distribution, equation 10-30
would have to be used to find the necessary lower-tail points. For a two-tailed test, the bounds
obtained from a one-tail test would be doubled to obtain the P-value.

To illustrate calculating bounds on the P-value for a two-tailed F-test, reconsider
Example 10-12. The computed value of the test statistic in this example is f0 " 0.85. This
value falls in the lower tail of the F15,15 distribution. The lower-tail point that has 0.25 proba-
bility to the left of it is f0.75,15,15 " 1/ f0.25,15,15 " 1/1.43 " 0.70 and since 0.70 & 0.85, the prob-
ability that lies to the left of 0.85 exceeds 0.25. Therefore, we would conclude that the P-value
for f0 " 0.85 is greater than 2(0.25) " 0.5, so there is insufficient evidence to reject the null
hypothesis. This is consistent with the original conclusions from Example 10-12. The actual
P-value is 0.7570. This value was obtained from a calculator from which we found that
P(F15,15 ) 0.85) " 0.3785 and 2(0.3785) " 0.7570. Minitab can also be used to calculate the
required probabilities.

Minitab will perform the F-test on the equality of two variances of independent normal
distributions. The Minitab output is shown below.

Test for Equal Variances

95% Bonferroni confidence intervals for standard deviations

Sample N Lower StDev Upper
1 16 1.38928 1.95959 3.24891
2 16 1.51061 2.13073 3.53265

F-Test (Normal Distribution)
Test statistic " 0.85, P-value " 0.750

Finding the 
P-Value for 

Example 10-12

JWCL232_c10_351-400.qxd  1/15/10  2:14 PM  Page 386

386 CHAPTER 10 STATISTICAL INFERENCE FOR TWO SAMPLES

The seven-step hypothesis-testing procedure may be applied
to this problem as follows:

1. Parameter of interest: The parameter of interest are the
variances of oxide thickness !2

1 and !2
2. We will assume

that oxide thickness is a normal random variable for both
gas mixtures.

2. Null hypothesis:
3. Alternative hypothesis:
4. Test statistic: The test statistic is given by equation 10-31:

6. Reject H0 if : Because n1 " n2 " 16 and # " 0.05, we
will reject or ifH0: !2

1 " !2
2 if f0 $ f0.025,15,15 " 2.86

f0 "
s2

1

s2
2

H1: !2
1 % !2

2

H0: !2
1 " !2

2

. Refer to
Figure 10-6(a).

7. Computations: Because s2
1 " (1.96)2 " 3.84 and s2

2 "
(2.13)2 " 4.54, the test statistic is
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f0.025,15,15 " 2.86, we cannot reject the null hypothesis H0:
!2

1 " !2
2 at the 0.05 level of significance. 

Practical Interpretation: There is no strong evidence to
indicate that either gas results in a smaller variance of oxide
thickness.

f0 "
s2

1

s2
2

"
3.84
4.54

" 0.85

f0 & f0.975,15,15 " 1'f0.025,15,15 " 1'2.86 " 0.35

P-Values for the F-Test
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hypothesis. This is consistent with the original conclusions from Example 10-12. The actual
P-value is 0.7570. This value was obtained from a calculator from which we found that
P(F15,15 ) 0.85) " 0.3785 and 2(0.3785) " 0.7570. Minitab can also be used to calculate the
required probabilities.

Minitab will perform the F-test on the equality of two variances of independent normal
distributions. The Minitab output is shown below.
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p-‐value

• calculate	  using	  R	  command	  


