Lecture 8 Hypothesis Testing

Fall 2013

Prof. Yao Xie, yao.xie@isye.gatech.edu

H. Milton Stewart School of Industrial Systems & Engineering

Georgia Tech

Midterm 1 Score

• 46 students

• Highest score: 98

Lowest score: 34

• Mean: 70.2

• Median: 72

Outline

- General concept
- Type of errors and power
- z-test for the mean, variance known
- t-test for the mean, variance unknown
- test for sample proportion
- Confidence interval and hypothesis test
- P-value

Hypotheses Testing

The **hypothesis test** has **two** possible but contradictory truths, written in terms of <u>Hypotheses</u>:

H₀ **Null Hypothesis**

The prior belief with the data.

H₁ Alternative Hypothesis

- The alternative belief we have with the data
- Varies from problem to problem

Goal of hypothesis testing is to use data to tell which hypothesis is true.

Mathematical formulation

 For example, comparing the mean and variance of samples from normal distribution

Null Hypothesis
Alternative Hypothesis

$$\begin{cases} H_0: \mu = \mu_0 \\ H_1: \mu \neq \mu_0 \end{cases} \begin{cases} H_0: \sigma^2 = \sigma_0^2 \\ H_1: \sigma^2 \neq \sigma_0^2 \end{cases}$$

Example

• Example: measure the diameter of a batch of screws

 H_0 : $\mu = 50$ centimeters

 H_1 : $\mu \neq 50$ centimeters

Examples of Hypotheses Test

(1) Is the coin fair? Prior assumption: coin is fair. Let p = P(heads),

$$\begin{cases} H_0: & p = \frac{1}{2} \text{ (our prior belief)} \\ H_1: & p \neq \frac{1}{2} \end{cases} \text{ (the opposite of our prior belief)}$$

(2) Apple produces a batch of iPhones, with battery life (X) with mean μ , variance = σ^2

Is the variability of battery under control? Here the variability is under control when it is smaller than a known value σ_0^2 $\begin{cases} H_0: & \sigma^2 \leq \sigma_0^2 \\ H_1: & \sigma^2 > \sigma_0^2 \end{cases}$

(3) Does this batch of iPhones have sufficient battery life?

$$\begin{cases} H_0: & \mu > \mu_0 \\ H_1: & \mu \le \mu_0 \end{cases}$$

Class Activity

(1) Is the coin fair? P=P(heads)

A.
$$H_0$$
: $P = \frac{1}{2}$ B. H_A : $P = \frac{1}{2}$ C. H_0 : $P \neq \frac{1}{2}$

(2) A machine produces product (X) with mean μ , variance σ^2

Is the variability under control?

A.
$$H_A$$
: $\sigma^2 \le \sigma_0^2$ B. H_0 : $\sigma^2 > \sigma_0^2$ C. H_0 : $\sigma^2 \le \sigma_0^2$

Do we support the hypothesis that the machine produce an item of a size larger than a known μ_0 ?

A.
$$H_A: \mu \le \mu_0$$
 B. $H_0: \mu > \mu_0$ **C.** $H_0: \mu \le \mu_0$

Two-sided versus one-sided

Two-sided Alternative Hypothesis

X: inner-diameter of screws

$$H_0$$
: $\mu = 50$

$$H_1: \mu \neq 50$$

null hypothesis

alternative hypothesis

One-sided Alternative Hypotheses

$$H_0: \mu = 10$$

$$H_1: \mu < 10$$

$$H_0: \mu = 100$$

$$H_1: \mu > 100$$

X: time to failure of machines

Simple versus composite

Simple Hypothesis

Testing two possible values of the parameter

$$H_0: \mu = 12$$

$$H_1: \mu = 24$$

null hypothesis

alternative hypothesis

Remaining quantity in a vending machine, 1 dozen or 2 dozens

Composite Hypotheses

Testing a range of values

$$H_0: \mu = 10$$

$$H_1: \mu < 10$$

$$H_0$$
: $\mu = 50$

$$H_1: \mu \neq 50$$

Average diameter of screw

Outline

- General concept
- Type of errors and power
- z-test for the mean, variance known
- t-test for the mean, variance unknown
- test for sample proportion
- Confidence interval and hypothesis test
- P-value

Errors in Hypothesis Testing

 $\alpha = P(type \ I \ error) = P(Reject \ H_0, when \ H_0 \ is \ true)$

This error rate can be <u>set</u> low enough to ensure the test is "safe".

 $\beta = P(type \ II \ error) = P(Accept \ H_0, \ when \ H_1 \ is \ true)$

truth

		H ₀ is True	H ₀ is False
decision	Accept H ₀	Correct	Type II Error
	Accept 11 ₀	Decision	J 1
	Reject H ₀	Type I Error	Correct
	Reject Π_0		Decision

Court room

Suppose you are the prosecutor in a courtroom trial. The defendant is either guilty or not. The jury will either convict or not.

truth

		Not Guilty	Guilty
decision	Free-of-guilt	Right decision	Wrong decision
	Convict	Wrong decision	Right decision

Significant level

The classic hypothesis test

- fixes α (type I error) to be some small (tolerable)
 value
- accept the corresponding β (type II error)
 that results from this.

The level fixed for α is called **significance level.**

Typical value for α: 0.1, 0.05, 0.001

Statistical power

Power = $1 - \beta = P(\text{reject H}_0 \text{ when H}_1 \text{ is true})$

Example: power function for the test $H_0: \mu = 0$

$$H_1: \mu \neq 0$$

At $\mu = 0$, H_0 is true, so this point is equal to α , the type I error

Y-axis shows power, X-axis is the value of μ .

Class Activity 2

In 1990, a study on the weight of students at GT provided an average weight of $\mu = 160$ lbs. We would like to test our belief that the GT student weight average did not decrease in the past 15 years.

1. What is the alternative hypothesis?

A.
$$H_1$$
: $\mu = 160$ **B.** H_1 : $\mu > 160$ **C.** H_1 : $\mu < 160$

- 2. Test H_0 : $\mu = 160$ vs. H_1 : $\mu < 160$. What is $P(\text{Reject } H_0 | \mu = 160)$?
 - A. Type I error B. Type II error C. Power
- 3. Test H_0 : $\mu = 160$ vs. H_1 : $\mu < 160$. What is $P(\text{Reject } H_0 \mid \mu < 160)$?

A. Type I error B. Type II error C. Power

Outline

- General concept
- Type of errors and power
- z-test for the mean, variance known
- t-test for the mean, variance unknown
- test for sample proportion
- P-value

One-sided z-test

For the GT student average example, we want to test

$$H_0: \mu = 160$$

$$H_1: \mu < 160$$

The conventional way to test this hypothesis is to find the test for which the type-I error is fixed at a particular value (e.g., $\alpha = 0.01$, 0.05, 0.10).

Sample mean \overline{x} is a good estimator for μ , so here we use

 \overline{x} as the test statistic.

We should reject the null hypothesis when \overline{x} is small

Determine threshold from significance level

The test is to reject H_0 if $\overline{\chi}$ < b.

To determine the threshold b,

$$\alpha = P(\bar{X} < b | \mu = 160) = P(Z < \frac{b-160}{\sigma/\sqrt{n}})$$

This determines b because $\frac{b-160}{\sigma/\sqrt{n}} \equiv \Phi^{-1}(\alpha)$

$$b = \left(\sigma/\sqrt{n}\right)\Phi^{-1}(\alpha) + 160$$

Numerical values

$$b = (\sigma/\sqrt{n})\Phi^{-1}(\alpha) + 160$$
If $\alpha = 0.05$, $\sigma = 10$, $n = 100$,

 $\Phi^{-1}(0.05) = -1.645$

We reject H₀ when

$$\overline{\mathbf{x}} < (\sigma/\sqrt{\mathbf{n}})z_{\alpha} + 160 = -10/\sqrt{100} \times 1.645 + 160 = 158.355$$

Note that even when $158.355 \le \overline{x} < 160$

we still accept $H_0 =>$ we take into account data variability.

Power

- Suppose $\mu = 150$ (so H₁ is true)
- Power when $\mu = 150$

$$P\{\overline{x} < 158.355\} = P\left\{\frac{\overline{x}-150}{10/\sqrt{100}} < \frac{158.355-150}{10/\sqrt{100}}\right\} = \Phi(8.355) \approx 1$$

Entire Power Function = $\Phi(158.355-\mu)$

Two-sided z-test

For the GT student average example, suppose now we want to test that the average weight has not changed in the past 15 years $\mu_{1} \cdot \mu_{-160}$

$$H_0: \mu = 160$$

$$H_1: \mu \neq 160$$

$$\bar{x} \notin [160 - k, 160 + k]$$

Reject H₀ when

$$\alpha = P(|\bar{x}-160| > k|\mu = 160) = P(|Z| > \frac{k}{\sigma/\sqrt{n}})$$

$$\frac{k}{\sigma/\sqrt{n}} = z_{\alpha/2}$$
 $\alpha = 0.05, z_{0.025} = 1.96$ $\sigma = 10, n = 100, k = z_{\alpha/2} \sigma/\sqrt{n} = 1.96$

Reject H₀ when $\bar{x} \notin [158.04, 161.96]$

Outline

- General concept
- Type of errors and power
- z-test for the mean, variance known
- t-test for the mean, variance unknown
- test for sample proportion
- Confidence interval and hypothesis test
- P-value

t-test, two-sided

For the GT student average example, we want to test

$$H_0: \mu = 160$$

$$H_1: \mu \neq 160$$

We do not know the true variance, but just the sample variance s.

Note that before we test using standardized test statistics

Known variance

Unknown variance

z-test

t-test

$$\left| \frac{\overline{x} - 160}{\sigma / \sqrt{n}} \right| > k$$

$$\left| \frac{\overline{x} - 160}{s / \sqrt{n}} \right| > k$$

Determine threshold for t-test

The test is to reject H_0 if $\left| \frac{\overline{x} - 160}{s / \sqrt{n}} \right| > k$

To determine the threshold b,

$$\alpha = P(\left|\frac{\overline{x} - 160}{s / \sqrt{n}}\right| > k | \mu = 160) = P(|T| > k) \implies k = t_{\alpha/2, n-1}$$

 $\tilde{\Phi}(x)$ CDF of t-random variable

We reject
$$H_0$$
 when $\left| \frac{\overline{x} - 160}{s / \sqrt{n}} \right| > t_{\alpha/2, n-1}$

In comparison, when variance is known, we reject H₀ when

$$\left| \frac{\overline{x} - 160}{\sigma / \sqrt{n}} \right| > z_{\alpha/2}$$

					α					
v	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0025	0.001	0.0005
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318.31	636.62
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	14.089	23.326	31.598
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	7.453	10.213	12.924
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	0.265	0.727	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	0.263	0.711	1.415	1.895	2.365	2.998	3.49	4.019	4.785	5.408
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587
11	0.260	0.697	1.363	1.796	2.20	2.718	3.106	3.497	4.025	4.437
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.318
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.221
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.140
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.073
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.015
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.965
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.992
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.883
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.850
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.819
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.792
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.767
24	0.256	0.685	1.318	1.711	2.064	2.492	2.797	3.091	3.467	3.745
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787	3.078	3.450	3.725
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.707
27	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.057	3.421	3.690
28	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.674
29	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.038	3.396	3.659
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.646

Example: coke machine two-side t-test

A soft-drink machine at a steak house is regulated so that the amount of drink dispensed is approximately normally distributed with a mean of 200 ml.

The machine is checked periodically by taking a sample of 9 drinks and computing the average content. If for one batch of samples variance s = 30 ml, and mean is $\overline{X} = 215$ ml, do we believe the machine is operating running OK, for a significant level $\alpha = 0.05$?

Formulation: coke machine

$$H_0: \mu = 200$$

$$H_1: \mu \neq 200$$

Test statistics
$$\left| \frac{\overline{x} - 200}{s / \sqrt{n}} \right|$$

Threshold
$$k = t_{0.025,8} = 2.306$$

Reject H₀ when
$$\left| \frac{\overline{x} - 200}{s/3} \right| > 2.306$$

With our data,
$$\left| \frac{\overline{x} - 200}{s / \sqrt{n}} \right| = \left| \frac{210 - 200}{30 / 3} \right| = 1 < 2.306$$

So machine is running OK.

Outline

- General concept
- Type of errors and power
- z-test for the mean, variance known
- t-test for the mean, variance unknown
- test for sample proportion
- Confidence interval and hypothesis test
- P-value

Test on population proportion

Sample proportion, X ~ BIN(n, p) $\begin{cases} H_0: p = p_0 \\ H_1: p \neq p_0 \end{cases}$

$$\begin{cases} H_0 : p = p_0 \\ H_1 : p \neq p_0 \end{cases}$$

Based on CLT approximation, n > 30

Under H₀, X approximately normal random variable

$$X \sim \mathrm{N}\bigg(np_0, \quad np_0 \left(1-p_0\right)\bigg)$$
 standardized test statistics
$$\frac{X-np_0}{\sqrt{np_0 \left(1-p_0\right)}} \sim \mathrm{N}\bigg(0, \quad 1\bigg)$$

Test with significance level: α

$$| \frac{\hat{p} - p_0}{\sqrt{p_0 \left(1 - p_0\right)/n}} | > z_{\alpha/2}, \hat{p} = X/n$$

Example: obesity

The Associated Press (October 9, 2002) reported that 1276 individuals in a sample of 4115 adults were found to be obese.

A 1998 survey based on people's own assessment revealed that 20% of adult Americans considered themselves obese.

Does the recent data suggest that the true proportion of adults who are obese is consistent with the self-assessment survey, with significance level 0.05?

Example continued

$$\begin{cases} H_0: p = 0.2 \\ H_1: p \neq 0.2 \end{cases}$$

Data from 2002 study: 1276 of 4115 were reported with obesity

$$\hat{p} = 1276 / 4115 = 0.31$$

$$\alpha = 0.05$$

$$z_{0.025} = 1.96$$

$$\left| \frac{\hat{p} - p_0}{\sqrt{p_0 (1 - p_0)/n}} \right| = \left| \frac{0.31 - 0.2}{\sqrt{0.2 (1 - 0.2)/4115}} \right| = 17.74 > 1.96$$

Reject the null hypothesis: the proportion is not 0.2 (very likely to be greater than 0.2)

Summary of Tests

Summary: test for mean

Null Hypothesis

Test Statistic

$$H_0: \mu = \mu_0$$

$$\overline{\chi}$$

Significance level: α

Alternative Hypothesis	Known Variance H0 is rejected if	Unknown Variance H0 is rejected if
$H_1: \mu \neq \mu_0$	$\left \overline{x}-\mu_0\right > z_{\alpha/2}\sigma / \sqrt{n}$	$\left \overline{x} - \mu_0 \right > t_{\alpha/2, n-1} s / \sqrt{n}$
$H_1: \mu > \mu_0$	$\overline{x} > \mu_0 + z_\alpha \sigma / \sqrt{n}$	$\overline{x} > \mu_0 + t_{\alpha, n-1} s / \sqrt{n}$
$H_1: \mu < \mu_0$	$\overline{x} < \mu_0 - z_\alpha \sigma / \sqrt{n}$	$\overline{x} < \mu_0 - t_{\alpha, n-1} s / \sqrt{n}$

Summary: test for sample proportion

Null Hypothesis

Test Statistic

$$H_0: p = p_0$$

$$\frac{\hat{p} - p_0}{\sqrt{p_0 \left(1 - p_0\right)/n}}$$

Significance level: α

Alternative Hypothesis	H0 is rejected if	
$H_1: p \neq p_0$	$\left \frac{\hat{p} - p_0}{\sqrt{p_0 \left(1 - p_0 \right) / n}} \right > z_{\alpha/2}$	

Outline

- General concept
- Type of errors and power
- z-test for the mean, variance known
- t-test for the mean, variance unknown
- test for sample proportion
- p-value
- Confidence interval and hypothesis test

Motivation for p-value

Think about the GT student average weight example.

Assume average weight is 160lb. Based on the test, we reject H_0 if sample average is less than 158.35, and this gives significance level 0.05 (i.e. chance of making type I error = 0.05)

Consider

case1: sample average = 150lb

case2: sample average = 155lb

In both cases we reject H₀

However, if sample sample average = 150lb, we should **reject** H_0 with more confidence than if sample average = 155lb.

In other words, when sample average = 150 lb, the chance for H_0 to happen is smaller.

p-value

- p-value = probability of observing some data even more "extreme" than the given data
- It is a measure of the null hypothesis plausibility based on the samples
- The smaller the p-value is, the less likely H_0 is true Reject H_0 when p-value is small

Test can also be performed as rejecting H₀ when p-value is less than prescribed significant level

Convention: decisions based on P-value

- If P-value < 0.01
 - H₀ is not plausible/ H₁ is supported

- If P-value > 0.1
 - H₀ is plausible

- If 0.01 < P-value < 0.1
 - we have some evidence that H₀ is not plausible but we need further investigation

1. p-value for one-sided Test

$$H_0: \mu = \mu_0$$

$$H_1: \mu > \mu_0$$

Test statistic:
$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

observed value of test statistic: \bar{x}

p-value:
$$P(\overline{X} > \overline{x}) = P(Z > \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}})$$

$$=1-\Phi\left(\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}\right)$$

Example: p-value for one-sided Test

Claim: mean battery life of a cellphone is 9 hours.

Observed mean battery life: 8.5 hours, from 44 observations,

 $\sigma = 1 \text{ hour}$

Test: the mean battery life of a cellphone exceeds 10 hours

$$H_0: \mu = 9$$
 Test statistic: $Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$

 $H_1: \mu < 9$ observed value of test statistic: $\bar{x} = 8.5$

p-value:
$$P(\overline{X} < \overline{x}) = P(Z < \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}})$$

$$= \Phi\left(\frac{8.5-9}{1/\sqrt{44}}\right) = 0.0095$$

Example: p-value nicotine content

A cigarette manufacturer claims that the average nicotine content of a brand of cigarettes is at most 1.5.

1. What is the alternative hypothesis?

A.
$$H_A: m \neq 1.5$$
 B. $H_A: m < 1.5$ C. $H_A: m > 1.5$

2. What is the p-value? Denote

A. P(Z \ge z) B. P(Z \le z) C. P(|Z| \ge |z|)
$$Z = \sqrt{n}(\overline{X} - \mu_0) / S \text{ and } z = \sqrt{100}(1.7 - 1.5) / 1.3$$

Calculation for nicotine example

- We observe the nicotine content for 100 cigarettes with a sample mean 1.7 and sample standard error 1.3.
- Observing data more extreme:

$$P(\overline{X} > \sqrt{100}(1.7 - 1.5)/1.3)$$

$$= P(\sqrt{n}(\overline{X} - \mu_0)/S > \sqrt{100}(1.7 - 1.5)/1.3)$$

$$= P(t_{n-1} > 1.5385) = 0.0620$$

Not a very small p-value

2. p-value for two-sided Test

$$H_0: \mu = \mu_0$$

$$H_1: \mu \neq \mu_0$$

Test statistic:
$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

observed value of test statistic: \bar{x}

p-value: P(
$$\left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| > \left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right|$$
)

$$= P(|Z| > \left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right|)$$

$$=1-2\Phi\left(\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}\right)$$

Example: compute p-value

$$n = 13, \overline{x} = 2.879, \sigma = 0.325$$

$$H_0: \mu = 3$$

$$H_1: \mu \neq 3$$

p-value

= $P(\text{getting } \overline{x} \text{ even further away from 3 than } \overline{x} = 2.879)$

$$=P(|\overline{X}-3|>|3-2.879|)$$

$$= P(|Z| > \frac{.121}{.325/\sqrt{13}})$$

$$= P(|Z| > 1.34)$$

$$=2\Phi(-1.34)=0.18$$

Example: p-value for two-sided test

Test to see if the mean is significantly far from 90. The sample mean is 87.9 with known standard deviation of 5.9 for a sample of size 44.

1. What is the alternative hypothesis?

A.
$$H_A : m \neq 90$$
 B. $H_A : m < 90$ C. $H_A : m > 90$

2. At a significance level α =0.1, what is your decision?

A. strongly suggest H_A B. H₀ is plausible C. strongly support H₀

3. What is the p-value? Denote $Z = \sqrt{n}(\bar{X} - \mu_0)/S$ and $z = \sqrt{44}(87.9 - 90)/5.9$

A.
$$P(Z \ge z)$$
 B. $P(Z \le z)$ C. $P(|Z| \ge |z|)$

Comparison of significance level and p-values

- Two ways of reporting results of a hypothesis test
- 1: report the results of a hypothesis test is to state that the null hypothesis was or was not rejected at a specified level of significance. This is called **fixed** significance level testing.
- 2: The p-value is the probability that the test statistic will take on a value that is **at least as extreme** as the observed value of the statistic when the null hypothesis H_0 is true.

Relate p-value and significance level: example

$$H_0: \mu = 90$$
 $H_1: \mu \neq 90$
reject if $|z| > z_{\frac{\alpha}{2}}$ where $z = \frac{\overline{x}-90}{90/\sqrt{n}}$

Note: if we have an α = 0.10 level test, then $Z_{.05}$ = 1.645 and we would reject H₀ when |Z| > 1.645.

That means the actual p-value < 0.10.

Outline

- General concept
- Type of errors and power
- z-test for the mean, variance known
- t-test for the mean, variance unknown
- test for sample proportion
- P-value
- Confidence interval and hypothesis test

Connection between confidence Intervals and Hypothesis Test

We believe the true parameter $\mu_0 \in [\overline{X} - k, \overline{X} + k]$

Test:

If we wish to test $H_0: \mu = \mu_0$ $H_1: \mu \neq \mu_0$

If $\overline{\mathbf{X}}$ not in $[\mu_0 - k, \, \mu_0 + k]$, reject \mathbf{H}_{o} Under \mathbf{H}_{o} , making error with probability $1 - \alpha$

More Examples

Two types of approaches to hypothesis testing

Fixed significance level	p-value
Decide decision statistics	Calculate p-value:
Reject H0, when	what is the probability to
Decision statistic ><	observe a statistic more
threshold	"extreme" than data
	The smaller p-value is, the
	more likely H1 is true ->
	reject H0

Procedure of hypothesis test (sec. 9.1.6)

- 1. Set the significance level (.01, .05, .1)
- 2. Set null and alternative hypothesis
- Determine other parameters
- 4. Decide type of the test
 - test for mean with known variance (z-test)
 - test for mean with unknown variance (t-test)
 - test for sample proportion parameter
- Use data available:
 - perform test to reach a decision
 - and report p-value

Example 1: change of average height? z-test

The average height of females in the freshman class at GT has been 162.5 cm with a a standard deviation of 6.9 cm.

change in the average height if a random sample of 50 females in the present freshman class has an average height of 165.2cm? Assume the standard deviation remains the same, and significance level 0.05.

Solution to example 1

- 1. Significance level: $\alpha = 0.05$
- 2. Set null and the alternative

$$H_0: \mu = 162.5$$

$$H_1: \mu \neq 162.5$$

- 3. Determine other parameters:
- 4. Decide type of test: $n = 50, \sigma = 6.9$

known variance, test for mean, use z-test

Reject
$$H_0$$
 if $|\overline{x} - \mu_0| > z_{\alpha/2} \sigma / \sqrt{n}$

Plug in values: $z_{0.025} = 1.96$

Reject H₀ if
$$|\overline{x} - 162.5| > 1.96 \times 6.9 / \sqrt{50} = 1.9126$$

5. Use data to perform test:

$$\overline{x} = 165.2, |\overline{x} - 162.5| = 2.7 > 1.9126$$
 Reject H₀

6. Report p-value:

p-value = $P(|Z| > |165.2 - 162.5|/(6.9/\sqrt{50}))$ = P(|Z| > 2.7669)

 $= 2(1 - \Phi(2.7669)) = 0.0056$

Example 2: effective hours of drug t-test

In a study for the effective hours of certain drug, the sample average time for n = 9 individual was 6.32 hours and the sample standard deviation was 1.65 hours.

It has previously been assumed that the average adaptation time was at least 7 hours.

Assuming effective hours to be normally distributed, does the data contradict the prior belief?

Solution to example 2

- 1. Significance level: $\alpha = 0.05$
- 2. Set null and the alternative

$$H_0: \mu = 7$$

$$H_1: \mu \neq 7$$

- 3. Determine other parameters: n = 9, s = 1.65
- 4. Decide type of test:

unknown variance, test for mean, use t-test

Reject
$$H_0$$
 if $\left| \overline{x} - \mu_0 \right| > t_{\alpha/2, n-1} s / \sqrt{n}$

Plug in values: $t_{0.025.8} = 2.306$

Reject H₀ if
$$|\bar{x} - 7| > 2.306 \times 1.65 / \sqrt{9} = 1.2683$$

5. Use data to perform test:

$$\overline{x} = 6.32, |\overline{x} - 7| = 0.68 < 1.2683$$
 Accept H₀

6. Report p-value:

6. Report p-value:

=
$$P(|T_8| > |6.2 - 7|/(1.65/\sqrt{9}))$$

= $P(|T_8| > 1.4545)$

$$= 2 \times 0.0562 = 0.1124$$

Table V Percentage Points $t_{\alpha,\nu}$ of the t Distribution

να	.40	.25	.10	.05	.025	.01	.005	.0025	.001	.0005
1	.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318.31	636.62
2	.289	.816	1.886	2.920	4.303	6.965	9.925	14.089	23.326	31.598
3	.277	.765	1.638	2.353	3.182	4.541	5.841	7.453	10.213	12.924
4	.271	.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	.267	.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	.265	.718	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	.263	.711	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408
8	.262	.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041
-										

Example 3: sample proportion

In a survey from 2000, it has been found that 33% of the adults favored paying traffic ticket rather than attending traffic school.

Now we did a online survey and found out from a sample of 85 adults, 26 favor paying traffic ticket.

Do we have reason to believe that the proportion of adults favoring paying traffic tickets has decreased today with a significant level 0.05?

Summary: test for sample proportion

Null Hypothesis

Test Statistic

$$H_0: p = p_0$$

$$\frac{\hat{p} - p_0}{\sqrt{p_0 \left(1 - p_0\right)/n}}$$

Significance level: α

Alternative Hypothesis	H0 is rejected if		
$H_1: p \neq p_0$	$\left \frac{\hat{p} - p_0}{\sqrt{p_0 \left(1 - p_0 \right) / n}} \right > z_{\alpha/2}$		

Solution to example 3

- Significance level: $\alpha = 0.05$
- Set null and the alternative

$$H_0: p = 0.33$$

$$H_1: p \neq 0.33$$

- 3. Determine other parameters: n = 85
- Decide type of test: 4. sample proportion test

$$\left| \frac{\hat{p} - p_0}{\sqrt{p_0 \left(1 - p_0\right)/n}} \right| > z_{\alpha/2}$$

Plug in values: $z_{0.025} = 1.96$

Reject H₀ if
$$\frac{\hat{p} - 0.33}{\sqrt{0.33(1 - 0.33)/85}} > 1.96$$

Solution to example 3

5. Use data to perform test:

$$\hat{p} = 26 / 85 = 0.3059$$

$$\left| \frac{0.3059 - 0.33}{\sqrt{0.33(1 - 0.33)/85}} \right| = 0.4725 < 1.96 Accept H0$$

6. Report p-value:

p-value =
$$P(|Z| > \frac{0.3059 - 0.33}{\sqrt{0.33(1 - 0.33)/85}})$$

= $P(|Z| > 0.4725)$
= $2(1 - \Phi(0.4725)) = 0.6366$

Summary for performing hypothesis test

Follow the procedure

Examples:

- Test for normal mean, variance known, use z-test
- Test for normal mean, variance unknown, use t-test
- Test for sample proportion, using normal approximation and z-test