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Methods of Point Estimation

* Method of Moments (MoM)
« Method of Maximum Likelihood
« Bayesian methods



Methods of Moments

Population and samples moments

Let X, X5, ..., X, bearandom sample from the probability distribution f{x), where
fix) can be a discrete probability mass function or a continuous probability density
function. The kth population moment (or distribution moment) is E(X*), k =
l,2,....The corresponding kth sample moment is (1 /n) EL | .‘ff-", k=1,2,....

jxkf(x)dx If x is continuous
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2 x*f(x)  If xis discrete
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Methods of Moments

Let X|,X,,....X, be a random sample from either a probability mass function
or probability density function with m unknown parameters 6,,6,.....0,. The
moment estimators ®,,®,, ..., @, are found by equating the first m population

moments to the first m sample moments and solving the resulting equations for the
unknown parameters.
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Example

1) What is the point estimator of A in the exponential
distribution?

2) What is the point estimator of p in the Binomial distribution?

3) What is the point estimator for mean and variance in normal
distribution?



Methods of Point Estimation

* Method of Moments (MoM)
* Method of Maximum Likelihood
« Bayesian methods



Method of Maximum Likelihood

Suppose that X is a random variable with probability distribution f(x; 6), where 0 1s
a single unknown parameter. Let x|, x5, ..., x, be the observed values in a random
sample of size n. Then the likelihood function of the sample 1s

L(0) = f(x20) « flx2: 0) ===« fx,30) (7-9)

Note that the likelihood function is now a function of only the unknown parameter 6.

The maximum likelihood estimator (MLE) of 0 is the value of 6 that maximizes
the likelithood function L(9).
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Example

Let X be a Bernoulli random variable. The probability mass function 1s

, A=) x=0.1
e

0, otherwise

where p 1s the parameter to be estimated. The likelihood function of a random sample of size
nis
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Example

- . . . . o) )
Let X be normally distributed with mean w and variance o, where both w and o~ are
unknown. The likelthood function for a random sample of size n 1s
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Example (Continued)

dIn L(p. o)
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The solutions to the above equation yield the maximum likelihood estimators
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Once again, the maximum likelithood estimators are equal to the moment estimators.



Exponential MLE

Let X be a exponential random variable with parameter A.
The likelihood function of a random sample of size n is:

n —lixi
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MLE Properties

Under very general and not restrictive conditions, when the sample size » 1s large and
if ® is the maximum likelihood estimator of the parameter 6,
(1) @ is an approximately unbiased estimator for § [E(®) = 0],

(2) the variance of ® is nearly as small as the variance that could be obtained
with any other estimator, and

(3) ® has an approximate normal distribution.

Example:
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Invariance Property

Let &, &, ..., ®; be the maximum likelihood estimators of the parameters 8,.

f5. ..., Bz Then the maximum likelihood estimator of any function (8, 85, ..., 8;)
of these parameters is the same function A(®, ®,, ..., ®;) of the estimators

&), 0, . .0,

Example:
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[n the normal distribution case, the maximum likelithood estimators of w and o~ were L = X
A0 n 2V, . . . . . . - .

and 6 = X;-(X; — X )/n. To obtain the maximum likelihood estimator of the function

) /."' 2 . . A ~D . ~ . . .
hip, 0°) = Vo~ = o, substitute the estimators . and o into the function 4, which yields

~ a0 | < . —7 /2
&= \V§ = [; 3 (- X )-}

Thus, the maximum likelthood estimator of the standard deviation o is not the sample
standard deviation S.




Complications in Using MLE

* |t is not always easy to maximize the likelihood
function because the equation(s) obtained from setting
derivative to be 0 may be difficult to solve.

* It may not always be possible to use calculus methods
directly to determine the maximum of the likelihood

function.



Example: Uniform Distribution MLE

Let X be uniformly distributed on the interval 0 to a.

L(a)

f(x) l/a for0<x<a

1 _
L(a) —=a " for0<x <a
=1 Cl Cl
dL(Cl) (n+1)
+1 —hna
an 0 Max (x;) a
_ Figure 7-8 The likelihood function for this
a = max (x,-) uniform distribution

Calculus methods don’t work here because L(a) is maximized at the
discontinuity.
Clearly, a cannot be smaller than max(x;), thus the MLE is max(x;).



