Lecture 6 Methods for Point Estimator

Fall 2013

Prof. Yao Xie, yao.xie@isye.gatech.edu

H. Milton Stewart School of Industrial Systems & Engineering

Georgia Tech

Methods of Point Estimation

- Method of Moments (MoM)
- Method of Maximum Likelihood
- Bayesian methods
- •

Methods of Moments

Population and samples moments

Let X_1, X_2, \ldots, X_n be a random sample from the probability distribution f(x), where f(x) can be a discrete probability mass function or a continuous probability density function. The kth population moment (or distribution moment) is $E(X^k)$, k = $1, 2, \ldots$ The corresponding kth sample moment is $(1/n) \sum_{i=1}^{n} X_i^k$, $k = 1, 2, \ldots$

Population moments
$$\mu'_{k} = \begin{cases} \int_{x}^{x} x^{k} f(x) dx & \text{If } x \text{ is continuous} \\ \sum_{x} x^{k} f(x) & \text{If } x \text{ is discrete} \end{cases}$$

$$m_k' = \frac{\sum_{i=1}^n X_i^k}{n}$$

Sample moments

Methods of Moments

Let X_1, X_2, \ldots, X_n be a random sample from either a probability mass function or probability density function with m unknown parameters $\theta_1, \theta_2, \ldots, \theta_m$. The **moment estimators** $\hat{\Theta}_1, \hat{\Theta}_2, \ldots, \hat{\Theta}_m$ are found by equating the first m population moments to the first m sample moments and solving the resulting equations for the unknown parameters.

m equations for *m* parameters

$$\begin{cases} m'_1 = \mu'_1 \\ m'_2 = \mu'_2 \\ \vdots \\ m'_m = \mu'_m \end{cases}$$

Example

1) What is the point estimator of λ in the exponential distribution?

2) What is the point estimator of *p* in the Binomial distribution?

3) What is the point estimator for mean and variance in normal distribution?

Methods of Point Estimation

- Method of Moments (MoM)
- Method of Maximum Likelihood
- Bayesian methods
- •

Method of Maximum Likelihood

Suppose that X is a random variable with probability distribution $f(x; \theta)$, where θ is a single unknown parameter. Let x_1, x_2, \ldots, x_n be the observed values in a random sample of size n. Then the likelihood function of the sample is

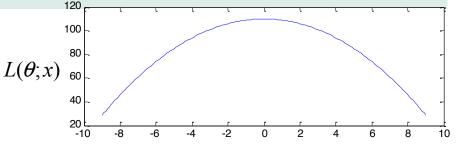
$$L(\theta) = f(x_1; \theta) \cdot f(x_2; \theta) \cdot \dots \cdot f(x_n; \theta)$$
 (7-9)

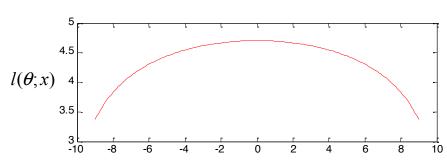
Note that the likelihood function is now a function of only the unknown parameter θ . The maximum likelihood estimator (MLE) of θ is the value of θ that maximizes the likelihood function $L(\theta)$.

$$L(\theta; x) = \prod_{i=1}^{n} f(x_i; \theta) = f(x_1; \theta) ... f(x_n; \theta)$$

$$l(\theta; x) = \sum_{i=1}^{n} \log[f(x_i; \theta)]$$

$$\hat{\Theta}(x) = \underset{\theta}{\operatorname{arg\,max}} L(\theta; x) = \underset{\theta}{\operatorname{arg\,max}} l(\theta; x)$$





Example

Let X be a Bernoulli random variable. The probability mass function is

$$f(x;p) = \begin{cases} p^{x}(1-p)^{1-x}, & x = 0, 1\\ 0, & \text{otherwise} \end{cases}$$

where p is the parameter to be estimated. The likelihood function of a random sample of size n is

$$L(p) = p^{x_1} (1 - p)^{1 - x_1} p^{x_2} (1 - p)^{1 - x_2} \cdots p^{x_n} (1 - p)^{1 - x_n}$$

$$= \prod_{i=1}^n p^{x_i} (1 - p)^{1 - x_i} = p^{\sum_{i=1}^n x_i} (1 - p)^{n - \sum_{i=1}^n x_i}$$

$$\ln L(p) = \left(\sum_{i=1}^n x_i\right) \ln p + \left(n - \sum_{i=1}^n x_i\right) \ln (1 - p)$$

$$\frac{d \ln L(p)}{dp} = \frac{\sum_{i=1}^n x_i}{p} - \frac{\left(n - \sum_{i=1}^n x_i\right)}{1 - p} \longrightarrow \hat{P} = \frac{1}{n} \sum_{i=1}^n X_i$$

Example

Let X be normally distributed with mean μ and variance σ^2 , where both μ and σ^2 are unknown. The likelihood function for a random sample of size n is

$$L(\mu, \sigma^2) = \prod_{i=1}^n \frac{1}{\sigma \sqrt{2\pi}} e^{-(x_i - \mu)^2/(2\sigma^2)} = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-(1/2\sigma^2)} \sum_{i=1}^n (x_i - \mu)^2$$

and

$$\ln L(\mu, \sigma^2) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

Example (Continued)

$$\frac{\partial \ln L(\mu, \sigma^2)}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu) = 0$$

$$\frac{\partial \ln L(\mu, \sigma^2)}{\partial (\sigma^2)} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0$$

The solutions to the above equation yield the maximum likelihood estimators

$$\hat{\mu} = \overline{X} \qquad \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

Once again, the maximum likelihood estimators are equal to the moment estimators.

Exponential MLE

Let X be a exponential random variable with parameter λ . The likelihood function of a random sample of size n is:

MLE Properties

Under very general and not restrictive conditions, when the sample size n is large and if $\hat{\Theta}$ is the maximum likelihood estimator of the parameter θ ,

- (1) $\hat{\Theta}$ is an approximately unbiased estimator for $\theta [E(\hat{\Theta}) \simeq \theta]$,
- (2) the variance of Θ̂ is nearly as small as the variance that could be obtained with any other estimator, and
- Θ has an approximate normal distribution.

Example:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

Invariance Property

Let $\hat{\Theta}_1, \hat{\Theta}_2, \dots, \hat{\Theta}_k$ be the maximum likelihood estimators of the parameters $\theta_1, \theta_2, \dots, \theta_k$. Then the maximum likelihood estimator of any function $h(\theta_1, \theta_2, \dots, \theta_k)$ of these parameters is the same function $h(\hat{\Theta}_1, \hat{\Theta}_2, \dots, \hat{\Theta}_k)$ of the estimators $\hat{\Theta}_1, \hat{\Theta}_2, \dots, \hat{\Theta}_k$.

Example:

In the normal distribution case, the maximum likelihood estimators of μ and σ^2 were $\hat{\mu} = \overline{X}$ and $\hat{\sigma}^2 = \sum_{i=1}^n (X_i - \overline{X})^2/n$. To obtain the maximum likelihood estimator of the function $h(\mu, \sigma^2) = \sqrt{\sigma^2} = \sigma$, substitute the estimators $\hat{\mu}$ and $\hat{\sigma}^2$ into the function h, which yields

$$\hat{\sigma} = \sqrt{\hat{\sigma}^2} = \left[\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2\right]^{1/2}$$

Thus, the maximum likelihood estimator of the standard deviation σ is *not* the sample standard deviation S.

Complications in Using MLE

- It is not always easy to maximize the likelihood function because the equation(s) obtained from setting derivative to be 0 may be difficult to solve.
- It may not always be possible to use calculus methods directly to determine the maximum of the likelihood function.

Example: Uniform Distribution MLE

Let X be uniformly distributed on the interval 0 to a.

$$f(x) = 1/a \text{ for } 0 \le x \le a$$

$$L(a) = \prod_{i=1}^{n} \frac{1}{a} = \frac{1}{a^n} = a^{-n} \text{ for } 0 \le x_i \le a$$

$$\frac{dL(a)}{da} = \frac{-n}{a^{n+1}} = -na^{-(n+1)}$$

$$\hat{a} = \max(x_i)$$

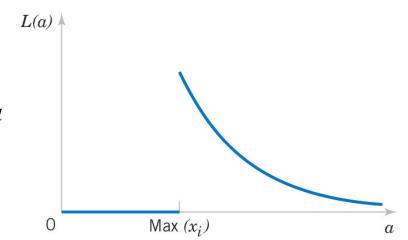


Figure 7-8 The likelihood function for this uniform distribution

Calculus methods don't work here because L(a) is maximized at the discontinuity.

Clearly, a cannot be smaller than $\max(x_i)$, thus the MLE is $\max(x_i)$.