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Simple linear regression
Based on the scatter diagram, it is probably reasonable to assume that the mean of the 
random variable Y is related to X by the following simple linear regression model:
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where the slope and intercept of the line are called regression coefficients. 

• The case of simple linear regression considers a single regressor or predictor x and a 
dependent or response variable Y. 



Multiple linear regression

• Simple	
  linear	
  regression:	
  one	
  predictor	
  variable	
  x	
  
• Multiple	
  linear	
  regression:	
  multiple	
  predictor	
  
variables	
  x1,	
  x2,	
  …,	
  xk	
  

• Example:	
  	
  
• simple	
  linear	
  regression	
  

	
   	
   property	
  tax	
  =	
  a*house	
  price	
  +	
  b	
  
• multiple	
  linear	
  regression	
  

	
   	
   property	
  tax	
  =	
  a1*house	
  price	
  +	
  a2*house	
  size	
  +	
  b	
  
• Question:	
  how	
  to	
  fit	
  multiple	
  linear	
  regression	
  model?
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Multiple linear regression model
• Multiple	
  linear	
  regression	
  model	
  with	
  two	
  regressors	
  
(predictor	
  variables)
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450 CHAPTER 12 MULTIPLE LINEAR REGRESSION

LEARNING OBJECTIVES

After careful study of this chapter you should be able to do the following:
1. Use multiple regression techniques to build empirical models to engineering and scientific 

data
2. Understand how the method of least squares extends to fitting multiple regression models
3. Assess regression model adequacy
4. Test hypotheses and construct confidence intervals on the regression coefficients
5. Use the regression model to estimate the mean response and to make predictions and to construct

confidence intervals and prediction intervals
6. Build regression models with polynomial terms
7. Use indicator variables to model categorical regressors
8. Use stepwise regression and other model building techniques to select the appropriate set of vari-

ables for a regression model

12-1 MULTIPLE LINEAR REGRESSION MODEL

12-1.1 Introduction

Many applications of regression analysis involve situations in which there are more than one
regressor or predictor variable. A regression model that contains more than one regressor vari-
able is called a multiple regression model.

As an example, suppose that the effective life of a cutting tool depends on the cutting speed
and the tool angle. A multiple regression model that might describe this relationship is

(12-1)

where Y represents the tool life, x1 represents the cutting speed, x2 represents the tool angle,
and ! is a random error term. This is a multiple linear regression model with two regressors.
The term linear is used because Equation 12-1 is a linear function of the unknown parameters
"0, "1, and "2.

Y # "0 $ "1x1 $ "2x2 $ !

12-2 HYPOTHESIS TESTS IN MULTIPLE
LINEAR REGRESSION

12-2.1 Test for Significance of
Regression

12-2.2 Tests on Individual Regression
Coefficients and Subsets of
Coefficients

12-3 CONFIDENCE INTERVALS 
IN MULTIPLE LINEAR
REGRESSION

12-3.1 Confidence Intervals on
Individual Regression
Coefficients

12-3.2 Confidence Interval on 
the Mean Response

12-4 PREDICTION OF NEW
OBSERVATIONS

12-5 MODEL ADEQUACY CHECKING

12-5.1 Residual Analysis

12-5.2 Influential Observations

12-6 ASPECTS OF MULTIPLE
REGRESSION MODELING

12-6.1 Polynomial Regression Models

12-6.2 Categorical Regressors and
Indicator Variables

12-6.3 Selection of Variables and
Model Building

12-6.4 Multicollinearity
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The regression model in Equation 12-1 describes a plane in the three-dimensional space
of Y, x1, and x2. Figure 12-1(a) shows this plane for the regression model

where we have assumed that the expected value of the error term is zero; that is E(!) " 0. The
parameter #0 is the intercept of the plane. We sometimes call #1 and #2 partial regression
coefficients, because #1 measures the expected change in Y per unit change in x1 when x2 is
held constant, and #2 measures the expected change in Y per unit change in x2 when x1 is held
constant. Figure 12-1(b) shows a contour plot of the regression model—that is, lines of con-
stant E(Y ) as a function of x1 and x2. Notice that the contour lines in this plot are straight lines.

In general, the dependent variable or response Y may be related to k independent or
regressor variables. The model

(12-2)

is called a multiple linear regression model with k regressor variables. The parameters #j,
j " 0, 1, p , k, are called the regression coefficients. This model describes a hyperplane in 
the k-dimensional space of the regressor variables {xj}. The parameter #j represents the
expected change in response Y per unit change in xj when all the remaining regressors xi (i $ j)
are held constant.

Multiple linear regression models are often used as approximating functions. That is, the
true functional relationship between Y and x1, x2, p , xk is unknown, but over certain ranges
of the independent variables the linear regression model is an adequate approximation.

Models that are more complex in structure than Equation 12-2 may often still be analyzed
by multiple linear regression techniques. For example, consider the cubic polynomial model
in one regressor variable.

(12-3)

If we let x1 " x, x2 " x2, x3 " x3, Equation 12-3 can be written as

(12-4)

which is a multiple linear regression model with three regressor variables.

Y " #0 % #1x1 % #2x2 % #3x3 % !

Y " #0 % #1x % #2x2 % #3x3 % !

Y " #0 % #1x1 % #2x2 % p % #˛kx˛k % !

E1Y 2 " 50 % 10x1 % 7x2

Figure 12-1 (a) The regression plane for the model E(Y ) " 50 % 10x1 % 7x2. (b) The contour plot.
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More complex models can still be 
analyzed using multiple linear regression
• Cubic	
  polynomial	
  
!
!
!

• Interaction	
  effect
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Models that include interaction effects may also be analyzed by multiple linear regres-
sion methods. An interaction between two variables can be represented by a cross-product
term in the model, such as

(12-5)

If we let x3 ! x1x2 and "3 ! "12, Equation 12-5 can be written as

which is a linear regression model.
Figure 12-2(a) and (b) shows the three-dimensional plot of the regression model 

and the corresponding two-dimensional contour plot. Notice that, although this model is a
linear regression model, the shape of the surface that is generated by the model is not linear.
In general, any regression model that is linear in parameters (the "’s) is a linear regression
model, regardless of the shape of the surface that it generates.

Figure 12-2 provides a nice graphical interpretation of an interaction. Generally, interaction
implies that the effect produced by changing one variable (x1, say) depends on the level of the
other variable (x2). For example, Fig. 12-2 shows that changing x1 from 2 to 8 produces a much
smaller change in E(Y ) when x2 ! 2 than when x2 ! 10. Interaction effects occur frequently in
the study and analysis of real-world systems, and regression methods are one of the techniques
that we can use to describe them.

As a final example, consider the second-order model with interaction

(12-6)

If we let x3 ! x2
1, x4 ! x2

2, x5 ! x1x2, "3 ! "11, "4 ! "22, and "5 ! "12, Equation 12-6 can be
written as a multiple linear regression model as follows:

Figure 12-3(a) and (b) show the three-dimensional plot and the corresponding contour plot for

These plots indicate that the expected change in Y when x1 is changed by one unit (say) is a
function of both x1 and x2. The quadratic and interaction terms in this model produce a mound-
shaped function. Depending  on the values of the regression coefficients, the second-order
model with interaction is capable of assuming a wide variety of shapes; thus, it is a very
flexible regression model.

12-1.2 Least Squares Estimation of the Parameters

The method of least squares may be used to estimate the regression coefficients in the mul-
tiple regression model, Equation 12-2. Suppose that n # k observations are available, and let
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Models that include interaction effects may also be analyzed by multiple linear regres-
sion methods. An interaction between two variables can be represented by a cross-product
term in the model, such as

(12-5)

If we let x3 ! x1x2 and "3 ! "12, Equation 12-5 can be written as

which is a linear regression model.
Figure 12-2(a) and (b) shows the three-dimensional plot of the regression model 

and the corresponding two-dimensional contour plot. Notice that, although this model is a
linear regression model, the shape of the surface that is generated by the model is not linear.
In general, any regression model that is linear in parameters (the "’s) is a linear regression
model, regardless of the shape of the surface that it generates.

Figure 12-2 provides a nice graphical interpretation of an interaction. Generally, interaction
implies that the effect produced by changing one variable (x1, say) depends on the level of the
other variable (x2). For example, Fig. 12-2 shows that changing x1 from 2 to 8 produces a much
smaller change in E(Y ) when x2 ! 2 than when x2 ! 10. Interaction effects occur frequently in
the study and analysis of real-world systems, and regression methods are one of the techniques
that we can use to describe them.

As a final example, consider the second-order model with interaction

(12-6)

If we let x3 ! x2
1, x4 ! x2

2, x5 ! x1x2, "3 ! "11, "4 ! "22, and "5 ! "12, Equation 12-6 can be
written as a multiple linear regression model as follows:

Figure 12-3(a) and (b) show the three-dimensional plot and the corresponding contour plot for

These plots indicate that the expected change in Y when x1 is changed by one unit (say) is a
function of both x1 and x2. The quadratic and interaction terms in this model produce a mound-
shaped function. Depending  on the values of the regression coefficients, the second-order
model with interaction is capable of assuming a wide variety of shapes; thus, it is a very
flexible regression model.
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xij denote the ith observation or level of variable xj. The observations are

It is customary to present the data for multiple regression in a table such as Table 12-1.
Each observation (xi1, xi2, p , xik, yi), satisfies the model in Equation 12-2, or

(12-7) ! "0 #a
k

j!1
 "j xij # $i  i ! 1,˛ 2, p , ˛n

 y˛i ! "0 # "1xi1 # "2xi2 # p # "k xik # $i

1xi1, ˛xi2, p , xik, ˛yi2,  i ! 1, 2, p , ˛n and n % k

Figure 12-2 (a) Three-dimensional plot of the regression model
E(Y ) ! 50 # 10x1 # 7x2 # 5x1x2. (b) The contour plot.

Figure 12-3 (a) Three-dimensional plot of the regression
model E(Y ) ! 800 # 10x1 # 7x2 & 8.5x2

1 & 5x2
2 # 4x1x2. 

(b) The contour plot.
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Table 12-1 Data for Multiple Linear Regression

y x1 x2 . . . xk
y1 x11 x12 . . . x1k

y2 x21 x22 . . . x2k

yn xn1 xn2 . . . xnk
oooo
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Least square estimate of coefficients

�9

The least squares function is

(12-8)

We want to minimize  L with respect to !0, !1, p , !k. The least squares estimates of !0, 
!1, p , !k must satisfy

(12-9a)

and

(12-9b)

Simplifying Equation 12-9, we obtain the least squares normal equations

(12-10)

Note that there are p " k # 1 normal equations, one for each of the unknown regression
coefficients. The solution to the normal equations will be the least squares estimators of the
regression coefficients, The normal equations can be solved by any method
appropriate for solving a system of linear equations.
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454 CHAPTER 12 MULTIPLE LINEAR REGRESSION

EXAMPLE 12-1 Wire Bond Strength
In Chapter 1, we used data on pull strength of a wire bond in a
semiconductor manufacturing process, wire length, and die
height to illustrate building an empirical model. We will use
the same data, repeated for convenience in Table 12-2, and
show the details of estimating the model parameters. A three-
dimensional scatter plot of the data is presented in Fig. 1-15.
Figure 12-4 shows a matrix of two-dimensional scatter plots of
the data. These displays can be helpful in visualizing the
relationships among variables in a multivariable data set. For
example, the plot indicates that there is a strong linear
relationship between strength and wire length.

Specifically, we will fit the multiple linear regression
model

where Y " pull strength, x1 " wire length, and x2 " die
height. From the data in Table 12-2 we calculate

Y " !0 # !1x1 # !2x2 # &
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dimensional scatter plot of the data is presented in Fig. 1-15.
Figure 12-4 shows a matrix of two-dimensional scatter plots of
the data. These displays can be helpful in visualizing the
relationships among variables in a multivariable data set. For
example, the plot indicates that there is a strong linear
relationship between strength and wire length.

Specifically, we will fit the multiple linear regression
model

where Y " pull strength, x1 " wire length, and x2 " die
height. From the data in Table 12-2 we calculate

Y " !0 # !1x1 # !2x2 # &
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The least squares function is

(12-8)

We want to minimize  L with respect to !0, !1, p , !k. The least squares estimates of !0, 
!1, p , !k must satisfy

(12-9a)

and

(12-9b)

Simplifying Equation 12-9, we obtain the least squares normal equations

(12-10)

Note that there are p " k # 1 normal equations, one for each of the unknown regression
coefficients. The solution to the normal equations will be the least squares estimators of the
regression coefficients, The normal equations can be solved by any method
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12-1.3 Matrix Approach to Multiple Linear Regression

In fitting a multiple regression model, it is much more convenient to express the mathemati-
cal operations using matrix notation. Suppose that there are k regressor variables and n ob-
servations, (xi1, xi2, p , xik, yi), i ! 1, 2, p , n and that the model relating the regressors to the
response is

This model is a system of n equations that can be expressed in matrix notation as

y ! X" # $ (12-11)
where

and $

In general, y is an (n " 1) vector of the observations, X is an (n " p) matrix of the levels
of the independent variables (assuming that the intercept is always multiplied by a constant
value—unity), " is a (p " 1) vector of the regression coefficients, and $ is a (n " 1) vector
of random errors. The X matrix is often called the model matrix.

We wish to find the vector of least squares estimators, "̂, that minimizes

The least squares estimator "̂ is the solution for " in the equations

We will not give the details of taking the derivatives above; however, the resulting equations
that must be solved are
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The solution to this set of equations is

Therefore, the fitted regression equation is

ŷ ! 2.26379 ' 2.74427x1 ' 0.01253x2

 &̂0 ! 2.26379, &̂1 ! 2.74427, &̂2 ! 0.01253

Practical Interpretation: This equation can be used to
predict pull strength for pairs of values of the regressor vari-
ables wire length (x1) and die height (x2). This is essentially
the same regression model given in Section 1-3. Figure 1-16
shows a three-dimensional plot of the plane of predicted val-
ues generated from this equation.ŷ

X%X"̂ ! X%y (12-12)
Normal

Equations
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The solution to this set of equations is

Therefore, the fitted regression equation is
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shows a three-dimensional plot of the plane of predicted val-
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Note that there are p ! k " 1 normal equations in p ! k " 1 unknowns (the values of
Furthermore, the matrix X!X is always nonsingular, as was assumed above,

so the methods described in textbooks on determinants and matrices for inverting these ma-
trices can be used to find . In practice, multiple regression calculations are almost 
always performed using a computer.

It is easy to see that the matrix form of the normal equations is identical to the scalar form.
Writing out Equation 12-12 in detail, we obtain

If the indicated matrix multiplication is performed, the scalar form of the normal equations
(that is, Equation 12-10) will result. In this form it is easy to see that is a (p # p) sym-
metric matrix and is a (p # 1) column vector. Note the special structure of the ma-
trix. The diagonal elements of are the sums of squares of the elements in the columns of
X, and the off-diagonal elements are the sums of cross-products of the elements in the
columns of X. Furthermore, note that the elements of are the sums of cross-products of
the columns of X and the observations 

The fitted regression model is

(12-14)

In matrix notation, the fitted model is

The difference between the observation yi and the fitted value is a residual, say,
The (n # 1) vector of residuals is denoted by
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Equations 12-12 are the least squares normal equations in matrix form. They are identical to
the scalar form of the normal equations given earlier in Equations 12-10. To solve the normal
equations, multiply both sides of Equations 12-12 by the inverse of Therefore, the least
squares estimate of " is

X¿X.

"̂ # (X!X)!1 X!y (12-13)
Least Square
Estimate of "
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12-1.3 Matrix Approach to Multiple Linear Regression

In fitting a multiple regression model, it is much more convenient to express the mathemati-
cal operations using matrix notation. Suppose that there are k regressor variables and n ob-
servations, (xi1, xi2, p , xik, yi), i ! 1, 2, p , n and that the model relating the regressors to the
response is

This model is a system of n equations that can be expressed in matrix notation as

y ! X" # $ (12-11)
where

and $

In general, y is an (n " 1) vector of the observations, X is an (n " p) matrix of the levels
of the independent variables (assuming that the intercept is always multiplied by a constant
value—unity), " is a (p " 1) vector of the regression coefficients, and $ is a (n " 1) vector
of random errors. The X matrix is often called the model matrix.

We wish to find the vector of least squares estimators, "̂, that minimizes

The least squares estimator "̂ is the solution for " in the equations

We will not give the details of taking the derivatives above; however, the resulting equations
that must be solved are
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The solution to this set of equations is

Therefore, the fitted regression equation is

ŷ ! 2.26379 ' 2.74427x1 ' 0.01253x2

 &̂0 ! 2.26379, &̂1 ! 2.74427, &̂2 ! 0.01253

Practical Interpretation: This equation can be used to
predict pull strength for pairs of values of the regressor vari-
ables wire length (x1) and die height (x2). This is essentially
the same regression model given in Section 1-3. Figure 1-16
shows a three-dimensional plot of the plane of predicted val-
ues generated from this equation.ŷ

X%X"̂ ! X%y (12-12)
Normal

Equations
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Note that there are p ! k " 1 normal equations in p ! k " 1 unknowns (the values of
Furthermore, the matrix X!X is always nonsingular, as was assumed above,

so the methods described in textbooks on determinants and matrices for inverting these ma-
trices can be used to find . In practice, multiple regression calculations are almost 
always performed using a computer.

It is easy to see that the matrix form of the normal equations is identical to the scalar form.
Writing out Equation 12-12 in detail, we obtain

If the indicated matrix multiplication is performed, the scalar form of the normal equations
(that is, Equation 12-10) will result. In this form it is easy to see that is a (p # p) sym-
metric matrix and is a (p # 1) column vector. Note the special structure of the ma-
trix. The diagonal elements of are the sums of squares of the elements in the columns of
X, and the off-diagonal elements are the sums of cross-products of the elements in the
columns of X. Furthermore, note that the elements of are the sums of cross-products of
the columns of X and the observations 

The fitted regression model is

(12-14)

In matrix notation, the fitted model is

The difference between the observation yi and the fitted value is a residual, say,
The (n # 1) vector of residuals is denoted by

(12-15)e ! y $ ŷ
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Equations 12-12 are the least squares normal equations in matrix form. They are identical to
the scalar form of the normal equations given earlier in Equations 12-10. To solve the normal
equations, multiply both sides of Equations 12-12 by the inverse of Therefore, the least
squares estimate of " is

X¿X.

"̂ # (X!X)!1 X!y (12-13)
Least Square
Estimate of "
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Equations 12-12 are the least squares normal equations in matrix form. They are identical to
the scalar form of the normal equations given earlier in Equations 12-10. To solve the normal
equations, multiply both sides of Equations 12-12 by the inverse of Therefore, the least
squares estimate of " is

X¿X.

"̂ # (X!X)!1 X!y (12-13)
Least Square
Estimate of "
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Computers are almost always used in fitting multiple regression models. Table 12-4 pre-
sents some annotated output from Minitab for the least squares regression model for wire bond
pull strength data. The upper part of the table contains the numerical estimates of the regres-
sion coefficients. The computer also calculates several other quantities that reflect important
information about the regression model. In subsequent sections, we will define and explain the
quantities in this output.

Estimating !2

Just as in simple linear regression, it is important to estimate !2, the variance of the error term
", in a multiple regression model. Recall that in simple linear regression the estimate of !2 was
obtained by dividing the sum of the squared residuals by n # 2. Now there are two parame-
ters in the simple linear regression model, so in multiple linear regression with p parameters a
logical estimator for !2 is

This is an unbiased estimator of !2. Just as in simple linear regression, the estimate of !2 is usu-
ally obtained from the analysis of variance for the regression model. The numerator of Equation
12-16 is called the error or residual sum of squares, and the denominator n # p is called the 
error or residual degrees of freedom.

We can find a computing formula for SSE as follows:

Substituting into the above, we obtain

(12-17) $ 27,178.5316 # 27,063.3581 $ 115.174
SSE $ y¿y # "̂¿X¿y
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Table 12-3 Observations, Fitted Values, and Residuals for Example 12-2

Observation 
Number

1 9.95 8.38 1.57
2 24.45 25.60 #1.15
3 31.75 33.95 #2.20
4 35.00 36.60 #1.60
5 25.02 27.91 #2.89
6 16.86 15.75 1.11
7 14.38 12.45 1.93
8 9.60 8.40 1.20
9 24.35 28.21 #3.86

10 27.50 27.98 #0.48
11 17.08 18.40 #1.32
12 37.00 37.46 #0.46
13 41.95 41.46 0.49

ei $ yi # ŷiŷiyi
14 11.66 12.26 #0.60
15 21.65 15.81 5.84
16 17.89 18.25 #0.36
17 69.00 64.67 4.33
18 10.30 12.34 #2.04
19 34.93 36.47 #1.54
20 46.59 46.56 0.03
21 44.88 47.06 #2.18
22 54.12 52.56 1.56
23 56.63 56.31 0.32
24 22.13 19.98 2.15
25 21.15 21.00 0.15

Observation 
Number ei $ yi # ŷiŷiyi
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Estimator 
of Variance
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Multiple Linear Regression 
 
A regression with two or more explanatory variables is called a multiple 
regression. Rather than modeling the mean response as a straight line, as in 
simple regression, it is now modeled as a function of several explanatory 
variables. The function lm can be used to perform multiple linear regression in R 
and much of the syntax is the same as that used for fitting simple linear 
regression models. To perform multiple linear regression with p explanatory 
variables use the command: 
 
 lm(response  ~  explanatory_1  +  explanatory_2    +  …  +  explanatory_p) 
 
Here the terms response and explanatory_i in the function should be replaced by 
the names of the response and explanatory variables, respectively, used in the 
analysis. 
 
Ex.  Data was collected on 100 houses recently sold in a city. It consisted of the 
sales price (in $), house size (in square feet), the number of bedrooms, the 
number of bathrooms, the lot size (in square feet) and the annual real estate tax 
(in $). 
 
The following program reads in the data. 
 
> Housing = read.table("C:/Users/Martin/Documents/W2024/housing.txt", 
header=TRUE) 
> Housing 
    Taxes Bedrooms Baths  Price Size   Lot 
1     1360        3   2.0 145000 1240 18000 
2     1050        1   1.0  68000  370 25000 
….. 
99    1770        3   2.0  88400 1560 12000 
100  1430        3   2.0 127200 1340 18000 
 
Suppose we are only interested in working with a subset of the variables (e.g., 
“Price”,  “Size”  and  “Lot”). It is possible (but not necessary) to construct a new 
data frame consisting solely of these values using the commands: 
 
> myvars = c("Price", "Size", "Lot") 
> Housing2 = Housing[myvars] 
> Housing2 
     Price Size   Lot 
1   145000 1240 18000 
2    68000  370 25000 
…….. 
99   88400 1560 12000 
100 127200 1340 18000 
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Before fitting our regression model we want to investigate how the variables are 
related to one another. We can do this graphically by constructing scatter plots of 
all pair-wise combinations of variables in the data frame. This can be done by 
typing: 
 
> plot(Housing2) 

 
 
To fit a multiple linear regression model with price as the response variable and 
size and lot as the explanatory variables, use the command: 
  
> results = lm(Price ~ Size + Lot, data=Housing) 
> results 
 
Call: 
lm(formula = Price ~ Size + Lot, data = Housing) 
Coefficients: 
(Intercept)         Size          Lot   
 -10535.951       53.779        2.840  

 
 
This output indicates that the fitted value is given by  21 8.28.5310536ˆ xxy
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Inference in the multiple regression setting is typically performed in a number of 
steps. We begin by testing whether the explanatory variables collectively have an 
effect on the response variable, i.e. 
 
 
 
If we can reject this hypothesis, we continue by testing whether the individual 
regression coefficients are significant while controlling for the other variables in 
the model. 
 
We can access the results of each test by typing: 
 
> summary(results) 
 
Call: 
lm(formula = Price ~ Size + Lot, data = Housing) 
Residuals: 
   Min      1Q     Median   3Q     Max  
-81681 -19926   2530  17972  84978  
Coefficients: 
                  Estimate       Std. Error     t value    Pr(>|t|)     
(Intercept) -1.054e+04   9.436e+03   -1.117     0.267     
Size            5.378e+01   6.529e+00    8.237     8.39e-13 *** 
Lot              2.840e+00   4.267e-01     6.656    1.68e-09 *** 
--- 
Signif.  codes:    0  ‘***’  0.001  ‘**’  0.01  ‘*’  0.05  ‘.’  0.1  ‘  ’  1   
Residual standard error: 30590 on 97 degrees of freedom 
Multiple R-squared: 0.7114,     Adjusted R-squared: 0.7054  
F-statistic: 119.5 on 2 and 97 DF,  p-value: < 2.2e-16                       
 
The output shows that F = 119.5 (p < 2.2e-16), indicating that we should clearly 
reject the null hypothesis that the variables Size and Lot collectively have no 
effect on Price. The results also show that the variable Size is significant 
controlling for the variable Lot (p = 8.39e-13), as is Lot controlling for the variable 
Size (p=1.68e-09). In addition, the output also shows that R2 = 0.7114 and 
R2

adjusted = 0.7054. 
 
 
B. Testing a subset of variables using a partial F-test 
 
Sometimes we are interested in simultaneously testing whether a certain subset 
of the coefficients are equal to 0 (e.g. 3 = 4 = 0). We can do this using a partial 
F-test. This test involves comparing the SSE from a reduced model (excluding 
the parameters we hypothesis are equal to zero) with the SSE from the full model 
(including all of the parameters). 
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440 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

Customer x y Customer x y
11 1818 5.84 36 463 0.51
12 1700 5.21 37 770 1.74
13 747 3.25 38 724 4.10
14 2030 4.43 39 808 3.94
15 1643 3.16 40 790 0.96
16 414 0.50 41 783 3.29
17 354 0.17 42 406 0.44
18 1276 1.88 43 1242 3.24
19 745 0.77 44 658 2.14
20 795 3.70 45 1746 5.71
21 540 0.56 46 895 4.12
22 874 1.56 47 1114 1.90
23 1543 5.28 48 413 0.51
24 1029 0.64 49 1787 8.33
25 710 4.00 50 3560 14.94

(a) Draw a scatter diagram of y versus x.
(b) Fit the simple linear regression model.
(c) Test for significance of regression using ! " 0.05.
(d) Plot the residuals versus and comment on the underly-

ing regression assumptions. Specifically, does it seem that
the equality of variance assumption is satisfied?

(e) Find a simple linear regression model using as the
response. Does this transformation on y stabilize the in-
equality of variance problem noted in part (d) above?

1y
ŷi

11-10 LOGISTIC REGRESSION

Linear regression often works very well when the response variable is quantitative. We now
consider the situation where the response variable takes on only two possible values, 0 and
1. These could be arbitrary assignments resulting from observing a qualitative response.
For example, the response could be the outcome of a functional electrical test on a semi-
conductor device for which the results are either a “success,” which means the device works
properly, or a “failure,” which could be due to a short, an open, or some other functional
problem.

Suppose that the model has the form

(11-51)

and the response variable Yi takes on the values either 0 or 1. We will assume that the response
variable Yi is a Bernoulli random variable with probability distribution as follows:

Yi " #0 $ #1xi $ %i

Yi Probability
1
0 P1Yi " 02 " 1 & 'i

P1Yi " 12 " 'i

Now since the expected value of the response variable is

This implies that

E 1Yi2 " #0 $ #1xi " 'i

 " 'i

E 1Yi2 " 1 1'i2 $ 0 11 & 'i2E 1%i2 " 0,
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Customer x y Customer x y
11 1818 5.84 36 463 0.51
12 1700 5.21 37 770 1.74
13 747 3.25 38 724 4.10
14 2030 4.43 39 808 3.94
15 1643 3.16 40 790 0.96
16 414 0.50 41 783 3.29
17 354 0.17 42 406 0.44
18 1276 1.88 43 1242 3.24
19 745 0.77 44 658 2.14
20 795 3.70 45 1746 5.71
21 540 0.56 46 895 4.12
22 874 1.56 47 1114 1.90
23 1543 5.28 48 413 0.51
24 1029 0.64 49 1787 8.33
25 710 4.00 50 3560 14.94

(a) Draw a scatter diagram of y versus x.
(b) Fit the simple linear regression model.
(c) Test for significance of regression using ! " 0.05.
(d) Plot the residuals versus and comment on the underly-

ing regression assumptions. Specifically, does it seem that
the equality of variance assumption is satisfied?

(e) Find a simple linear regression model using as the
response. Does this transformation on y stabilize the in-
equality of variance problem noted in part (d) above?

1y
ŷi

11-10 LOGISTIC REGRESSION

Linear regression often works very well when the response variable is quantitative. We now
consider the situation where the response variable takes on only two possible values, 0 and
1. These could be arbitrary assignments resulting from observing a qualitative response.
For example, the response could be the outcome of a functional electrical test on a semi-
conductor device for which the results are either a “success,” which means the device works
properly, or a “failure,” which could be due to a short, an open, or some other functional
problem.

Suppose that the model has the form

(11-51)

and the response variable Yi takes on the values either 0 or 1. We will assume that the response
variable Yi is a Bernoulli random variable with probability distribution as follows:

Yi " #0 $ #1xi $ %i

Yi Probability
1
0 P1Yi " 02 " 1 & 'i

P1Yi " 12 " 'i

Now since the expected value of the response variable is

This implies that

E 1Yi2 " #0 $ #1xi " 'i

 " 'i

E 1Yi2 " 1 1'i2 $ 0 11 & 'i2E 1%i2 " 0,
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This means that the expected response given by the response function E(Yi) ! "0 # "1xi is
just the probability that the response variable takes on the value 1.

There are some substantive problems with the regression model in Equation 11-51. First,
note that if the response is binary, the error terms $i can only take on two values, namely,

Consequently, the errors in this model cannot possibly be normal. Second, the error variance
is not constant, since

Notice that this last expression is just

since . This indicates that the variance of the observations (which isE1Yi2 ! "0 # "1xi ! %i

&2
yi ! E1Yi2 31 ' E1Yi2 4

 ! %i11 ' %i2 ! 11 ' %i22%i # 10 ' %i2211 ' %i2 &2
Yi ! E5Yi ' E1Yi2 62

 $i ! '1"0 # "1 xi2    when Yi ! 0
 $i ! 1 ' 1"0 # "1 xi2   when Yi ! 1
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Figure 11-19 Examples of the logistic response function. (a) (b) .E1Y 2 ! 1( 11 # e'6.0#1.0x2E1Y 2 ! 1( 11 # e'6.0'1.0x2,

the same as the variance of the errors because !Yi ' %i, and %i is a constant) is a function
of the mean. Finally, there is a constraint on the response function, because

This restriction can cause serious problems with the choice of a linear response function, as
we have initially assumed in Equation 11-51. It would be possible to fit a model to the data for
which the predicted values of the response lie outside the 0, 1 interval.

Generally, when the response variable is binary, there is considerable empirical evidence
indicating that the shape of the response function should be nonlinear. A monotonically
increasing (or decreasing) S-shaped (or reverse S-shaped) function, such as shown in Figure 11-19,
is usually employed. This function is called the logit response function, and has the form

(11-52)E1Y 2 !
exp 1"0 # "1x2

1 # exp 1"0 # "1x2

0 ) E 1Yi2 ! %i ) 1

$i
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the same as the variance of the errors because !Yi ' %i, and %i is a constant) is a function
of the mean. Finally, there is a constraint on the response function, because

This restriction can cause serious problems with the choice of a linear response function, as
we have initially assumed in Equation 11-51. It would be possible to fit a model to the data for
which the predicted values of the response lie outside the 0, 1 interval.

Generally, when the response variable is binary, there is considerable empirical evidence
indicating that the shape of the response function should be nonlinear. A monotonically
increasing (or decreasing) S-shaped (or reverse S-shaped) function, such as shown in Figure 11-19,
is usually employed. This function is called the logit response function, and has the form

(11-52)E1Y 2 !
exp 1"0 # "1x2

1 # exp 1"0 # "1x2

0 ) E 1Yi2 ! %i ) 1
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or equivalently,

(11-53)

In logistic regression we assume that E(Y) is related to x by the logit function. It is easy to
show that

(11-54)

The quantity exp( ) on the right-hand side of Equation 11-54 is called the odds ratio.
It has a straightforward interpretation: If the odds ratio is 2 for a particular value of x, it means
that a success is twice as likely as a failure at that value of the regressor x. Notice that the
natural logarithm of the odds ratio is a linear function of the regressor variable. Therefore the
slope is the change in the log odds that results from a one-unit increase in x. This means that
the odds ratio changes by when x increases by one unit.

The parameters in this logistic regression model are usually estimated by the method of
maximum likelihood. For details of the procedure, see Montgomery, Peck, and Vining
(2006). Minitab will fit logistic regression models and provide useful information on the
quality of the fit.

We will illustrate logistic regression using the data on launch temperature and O-ring fail-
ure for the 24 space shuttle launches prior to the Challenger disaster of January 1986. There
are six O-rings used to seal field joints on the rocket motor assembly. The table below presents
the launch temperatures. A 1 in the “O-Ring Failure” column indicates that at least one O-ring
failure had occurred on that launch.

e!1

!1

 !0 " !1x

E1Y 2
1 # E1Y 2 $ exp1!0 " !1x2

E1Y 2 $
1

1 " exp 3#1!0 " !1x2 4
442 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

O-Ring O-Ring O-Ring 
Temperature Failure Temperature Failure Temperature Failure

53 1 68 0 75 0
56 1 69 0 75 1
57 1 70 0 76 0
63 0 70 1 76 0
66 0 70 1 78 0
67 0 70 1 79 0
67 0 72 0 80 0
67 0 73 0 81 0

Figure 11-20 is a scatter plot of the data. Note that failures tend to occur at lower temperatures.
The logistic regression model fit to this data from Minitab is shown in the following boxed
display.

The fitted logistic regression model is

ŷ $
1

1 " exp 3#110.875 # 0.17132x2 4
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Binary Logistic Regression: O-Ring Failure versus Temperature

Link Function: Logit
Response Information

Variable Value Count
O-Ring F 1 7 (Event)

0 17
Total 24

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 10.875 5.703 1.91 0.057
Temperat !0.17132 0.08344 !2.05 0.040 0.84 0.72 0.99

Log-Likelihood " !11.515
Test that all slopes are zero: G " 5.944, DF " 1, P-Value " 0.015

Figure 11-20 Scatter plot of O-ring failures 
versus launch temperature for 24 space shuttle
flights.

Figure 11-21 Probability of O-ring failure versus
launch temperature (based on a logistic regression
model).
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The standard error of the slope #̂1 is se(#̂1) " 0.08344. For large samples, #̂1 has an
approximate normal distribution, and so #̂1!se(#̂1) can be compared to the standard normal
distribution to test H0: #1 " 0. Minitab performs this test. The P-value is 0.04, indicating that
temperature has a significant effect on the probability of O-ring failure. The odds ratio is 0.84,
so every one degree increase in temperature reduces the odds of failure by 0.84. Figure 11-21
shows the fitted logistic regression model. The sharp increase in the probability of O-ring
failure is very evident in this graph. The actual temperature at the Challenger launch was .
This is well outside the range of other launch temperatures, so our logistic regression model is
not likely to provide highly accurate predictions at that temperature, but it is clear that a launch
at is almost certainly going to result in O-ring failure.

It is interesting to note that all of these data were available prior to launch. However,
engineers were unable to effectively analyze the data and use them to provide a convincing
argument against launching Challenger to NASA managers. Yet a simple regression analysis

31$F

31$F
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not likely to provide highly accurate predictions at that temperature, but it is clear that a launch
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or equivalently,
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