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Simple linear regression
Based on the scatter diagram, it is probably reasonable to assume that the mean of the 
random variable Y is related to X by the following simple linear regression model:
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where the slope and intercept of the line are called regression coefficients. 

• The case of simple linear regression considers a single regressor or predictor x and a 
dependent or response variable Y. 



Regression coefficients
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Simplifying these two equations yields

(11-6)

Equations 11-6 are called the least squares normal equations. The solution to the normal
equations results in the least squares estimators and !̂1.!̂0
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The least squares estimates of the intercept and slope in the simple linear regression
model are
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The fitted or estimated regression line is therefore

(11-9)

Note that each pair of observations satisfies the relationship

where ei " yi % is called the residual. The residual describes the error in the fit of the
model to the ith observation yi. Later in this chapter we will use the residuals to provide
information about the adequacy of the fitted model.

Notationally, it is occasionally convenient to give special symbols to the numerator and
denominator of Equation 11-8. Given data (x1, y1), (x2, y2), p , (xn, yn), let
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Caveat:	
  regression	
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  are	
  valid	
  only	
  for	
  values	
  of	
  the	
  regressor	
  variable	
  
within	
  the	
  range	
  the	
  original	
  data.	
  Be	
  careful	
  with	
  extrapolation.



Test for slope - method 1: Use t-test for 
slope
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independent normal random variables, and consequently, is N(!1, "2!Sxx), using the bias!̂1
and variance properties of the slope discussed in Section 11-3. In addition, has
a chi-square distribution with n # 2 degrees of freedom, and is independent of . As a
result of those properties, the statistic

(11-19)

follows the t distribution with n # 2 degrees of freedom under H0: !1 $ !1,0. We would reject
H0: !1 $ !1,0 if

(11-20)

where t0 is computed from Equation 11-19. The denominator of Equation 11-19 is the standard
error of the slope, so we could write the test statistic as

A similar procedure can be used to test hypotheses about the intercept. To test

(11-21)

we would use the statistic

(11-22)

and reject the null hypothesis if the computed value of this test statistic, t0, is such that
. Note that the denominator of the test statistic in Equation 11-22 is just the stan-

dard error of the intercept.
A very important special case of the hypotheses of Equation 11-18 is

(11-23)

These hypotheses relate to the significance of regression. Failure to reject H0: !1 $ 0 is
equivalent to concluding that there is no linear relationship between x and Y. This situation is
illustrated in Fig. 11-5. Note that this may imply either that x is of little value in explaining the
variation in Y and that the best estimator of Y for any x is [Fig. 11-5(a)] or that the trueŷ $ Y
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relationship between x and Y is not linear [Fig. 11-5(b)]. Alternatively, if H0: !1 $ 0 is re-
jected, this implies that x is of value in explaining the variability in Y (see Fig. 11-6). Rejecting
H0: !1 $ 0 could mean either that the straight-line model is adequate [Fig. 11-6(a)] or that,
although there is a linear effect of x, better results could be obtained with the addition of
higher order polynomial terms in x [Fig. 11-6(b)].
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Test for slope - method 2: Analysis of 
variance (ANOVA)
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• Analysis	
  of	
  variance	
  identity
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Figure 11-5 The
hypothesis H0: !1 " 0
is not rejected.

Figure 11-6 The
hypothesis H0: !1 " 0
is rejected.
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EXAMPLE 11-2 Oxygen Purity Tests of Coefficients 
We will test for significance of regression using the model for
the oxygen purity data from Example 11-1. The hypotheses are

and we will use # " 0.01. From Example 11-1 and Table 11-2
we have

so the t-statistic in Equation 10-20 becomes

t0 "
!̂12$̂2%Sxx

"
!̂1

se1!̂12 "
14.94721.18%0.68088

" 11.35

!̂1 " 14.947 n " 20, Sxx " 0.68088, $̂2 " 1.18

H1: !1 & 0
H0: !1 " 0

Practical Interpretation: Since the reference value of t is
t0.005,18 " 2.88, the value of the test statistic is very far into the
critical region, implying that H0: !1 " 0 should be rejected.
There is strong evidence to support this claim. The P-value for
this test is . This was obtained manually
with a calculator.

Table 11-2 presents the Minitab output for this problem.
Notice that the t-statistic value for the slope is computed as
11.35 and that the reported P-value is P " 0.000. Minitab also
reports the t-statistic for testing the hypothesis H0: !0 " 0.
This statistic is computed from Equation 11-22, with !0,0 " 0,
as t0 " 46.62. Clearly, then, the hypothesis that the intercept is
zero is rejected.

P ! 1.23 ' 10(9

11-4.2 Analysis of Variance Approach to Test Significance of Regression

A method called the analysis of variance can be used to test for significance of regression.
The procedure partitions the total variability in the response variable into meaningful compo-
nents as the basis for the test. The analysis of variance identity is as follows:
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(11-25)SST ! SSR " SSE

(11-26)F0 !
SSR#1

SSE# 1n $ 22 !
MSR
MSE

Test for
Significance of

Regression

The two components on the right-hand-side of Equation 11-24 measure, respectively, the
amount of variability in yi accounted for by the regression line and the residual variation left
unexplained by the regression line. We usually call the error sum of 
squares and the regression sum of squares. Symbolically, Equation
11-24 may be written as

SSR ! g n
i!1 1 ŷi $ y 22 SSE ! g n

i!1 1yi $ ŷ i22

where SST ! gn
i!1 is the total corrected sum of squares of y. In Section 11-2 we1 yi $ y22

noted that SSE ! SST $ %1Sxy (see Equation 11-14), so since SST ! %1Sxy " SSE, we note that the
regression sum of squares in Equation 11-25 is SSR ! %1Sxy. The total sum of squares SST has 
n $ 1 degrees of freedom, and SSR and SSE have 1 and n $ 2 degrees of freedom, respectively.

ˆ
ˆˆ

We may show that and that andSSE#&2E 3SSE# 1n $ 22 4 ! &2, E1SSR2 ! &2 " %2
1Sx x

are independent chi-square random variables with n $ 2 and 1 degrees of freedom, re-SSR#&2

spectively. Thus, if the null hypothesis H0: %1 ! 0 is true, the statistic

follows the F1,n$2 distribution, and we would reject H0 if f0 ' f(,1,n$2. The quantities MSR !
SSR!1 and MSE ! SSE!(n $ 2) are called mean squares. In general, a mean square is always
computed by dividing a sum of squares by its number of degrees of freedom. The test proce-
dure is usually arranged in an analysis of variance table, such as Table 11-3.

Table 11-3 Analysis of Variance for Testing Significance of Regression

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0

Regression 1 MSR MSR!MSE
Error SSE ! SST $  Sxy n $ 2 MSE
Total SST n $ 1

Note that MSE ! .&̂2

%̂1

SSR ! %̂1Sx y

EXAMPLE 11-3 Oxygen Purity ANOVA
We will use the analysis of variance approach to test for signifi-
cance of regression using the oxygen purity data model from
Example 11-1. Recall that SST ! 173.38, Sxy !
10.17744, and n ! 20. The regression sum of squares is

and the error sum of squares is

! 21.25! 173.38 $ 152.13SSE ! SST $ SSR

SSR ! %̂1Sx y ! 114.947210.17744 ! 152.13

%̂1 ! 14.947,

The analysis of variance for testing H0: %1 ! 0 is sum-
marized in the Minitab output in Table 11-2. The test statistic
is f0 ! MSR!MSE ! 152.13!1.18 ! 128.86, for which we
find that the P-value is P " 1.23 ) 10$9, so we conclude that
%1 is not zero.

There are frequently minor differences in terminology
among computer packages. For example, sometimes the re-
gression sum of squares is called the “model” sum of squares,
and the error sum of squares is called the “residual” sum of
squares.
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There are frequently minor differences in terminology
among computer packages. For example, sometimes the re-
gression sum of squares is called the “model” sum of squares,
and the error sum of squares is called the “residual” sum of
squares.
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(11-25)SST ! SSR " SSE

(11-26)F0 !
SSR#1

SSE# 1n $ 22 !
MSR
MSE

Test for
Significance of

Regression

The two components on the right-hand-side of Equation 11-24 measure, respectively, the
amount of variability in yi accounted for by the regression line and the residual variation left
unexplained by the regression line. We usually call the error sum of 
squares and the regression sum of squares. Symbolically, Equation
11-24 may be written as

SSR ! g n
i!1 1 ŷi $ y 22 SSE ! g n

i!1 1yi $ ŷ i22

where SST ! gn
i!1 is the total corrected sum of squares of y. In Section 11-2 we1 yi $ y22

noted that SSE ! SST $ %1Sxy (see Equation 11-14), so since SST ! %1Sxy " SSE, we note that the
regression sum of squares in Equation 11-25 is SSR ! %1Sxy. The total sum of squares SST has 
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ˆ
ˆˆ

We may show that and that andSSE#&2E 3SSE# 1n $ 22 4 ! &2, E1SSR2 ! &2 " %2
1Sx x

are independent chi-square random variables with n $ 2 and 1 degrees of freedom, re-SSR#&2

spectively. Thus, if the null hypothesis H0: %1 ! 0 is true, the statistic

follows the F1,n$2 distribution, and we would reject H0 if f0 ' f(,1,n$2. The quantities MSR !
SSR!1 and MSE ! SSE!(n $ 2) are called mean squares. In general, a mean square is always
computed by dividing a sum of squares by its number of degrees of freedom. The test proce-
dure is usually arranged in an analysis of variance table, such as Table 11-3.
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%̂1
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previously, the expected value of Y for each value of x is

where the intercept !0 and the slope !1 are unknown regression coefficients. We assume that
each observation, Y, can be described by the model

(11-2)

where " is a random error with mean zero and (unknown) variance #2. The random errors cor-
responding to different observations are also assumed to be uncorrelated random variables.

Suppose that we have n pairs of observations (x1, y1), (x2, y2), p , (xn, yn). Figure 11-3
shows a typical scatter plot of observed data and a candidate for the estimated regression
line. The estimates of !0 and !1 should result in a line that is (in some sense) a “best fit” to
the data. The German scientist Karl Gauss (1777–1855) proposed estimating the parameters
!0 and !1 in Equation 11-2 to minimize the sum of the squares of the vertical deviations in
Fig. 11-3.

We call this criterion for estimating the regression coefficients the method of least
squares. Using Equation 11-2, we may express the n observations in the sample as

(11-3)

and the sum of the squares of the deviations of the observations from the true regression 
line is

(11-4)

The least squares estimators of !0 and !1, say, and must satisfy

(11-5) 
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Figure 11-3 Deviations of the data from the
estimated regression model.
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is not rejected.

Figure 11-6 The
hypothesis H0: !1 " 0
is rejected.
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EXAMPLE 11-2 Oxygen Purity Tests of Coefficients 
We will test for significance of regression using the model for
the oxygen purity data from Example 11-1. The hypotheses are

and we will use # " 0.01. From Example 11-1 and Table 11-2
we have

so the t-statistic in Equation 10-20 becomes

t0 "
!̂12$̂2%Sxx

"
!̂1

se1!̂12 "
14.94721.18%0.68088

" 11.35

!̂1 " 14.947 n " 20, Sxx " 0.68088, $̂2 " 1.18

H1: !1 & 0
H0: !1 " 0

Practical Interpretation: Since the reference value of t is
t0.005,18 " 2.88, the value of the test statistic is very far into the
critical region, implying that H0: !1 " 0 should be rejected.
There is strong evidence to support this claim. The P-value for
this test is . This was obtained manually
with a calculator.

Table 11-2 presents the Minitab output for this problem.
Notice that the t-statistic value for the slope is computed as
11.35 and that the reported P-value is P " 0.000. Minitab also
reports the t-statistic for testing the hypothesis H0: !0 " 0.
This statistic is computed from Equation 11-22, with !0,0 " 0,
as t0 " 46.62. Clearly, then, the hypothesis that the intercept is
zero is rejected.

P ! 1.23 ' 10(9

11-4.2 Analysis of Variance Approach to Test Significance of Regression

A method called the analysis of variance can be used to test for significance of regression.
The procedure partitions the total variability in the response variable into meaningful compo-
nents as the basis for the test. The analysis of variance identity is as follows:

(11-24)a
n

i"1
1 yi ( y 22 " a

n

i"1
1 ŷi ( y 22 ) a

n

i"1
1 yi ( ŷi22Analysis of

Variance
Identity
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(11-25)SST ! SSR " SSE

(11-26)F0 !
SSR#1

SSE# 1n $ 22 !
MSR
MSE

Test for
Significance of

Regression

The two components on the right-hand-side of Equation 11-24 measure, respectively, the
amount of variability in yi accounted for by the regression line and the residual variation left
unexplained by the regression line. We usually call the error sum of 
squares and the regression sum of squares. Symbolically, Equation
11-24 may be written as

SSR ! g n
i!1 1 ŷi $ y 22 SSE ! g n

i!1 1yi $ ŷ i22

where SST ! gn
i!1 is the total corrected sum of squares of y. In Section 11-2 we1 yi $ y22

noted that SSE ! SST $ %1Sxy (see Equation 11-14), so since SST ! %1Sxy " SSE, we note that the
regression sum of squares in Equation 11-25 is SSR ! %1Sxy. The total sum of squares SST has 
n $ 1 degrees of freedom, and SSR and SSE have 1 and n $ 2 degrees of freedom, respectively.

ˆ
ˆˆ

We may show that and that andSSE#&2E 3SSE# 1n $ 22 4 ! &2, E1SSR2 ! &2 " %2
1Sx x

are independent chi-square random variables with n $ 2 and 1 degrees of freedom, re-SSR#&2

spectively. Thus, if the null hypothesis H0: %1 ! 0 is true, the statistic

follows the F1,n$2 distribution, and we would reject H0 if f0 ' f(,1,n$2. The quantities MSR !
SSR!1 and MSE ! SSE!(n $ 2) are called mean squares. In general, a mean square is always
computed by dividing a sum of squares by its number of degrees of freedom. The test proce-
dure is usually arranged in an analysis of variance table, such as Table 11-3.

Table 11-3 Analysis of Variance for Testing Significance of Regression

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0

Regression 1 MSR MSR!MSE
Error SSE ! SST $  Sxy n $ 2 MSE
Total SST n $ 1

Note that MSE ! .&̂2

%̂1

SSR ! %̂1Sx y

EXAMPLE 11-3 Oxygen Purity ANOVA
We will use the analysis of variance approach to test for signifi-
cance of regression using the oxygen purity data model from
Example 11-1. Recall that SST ! 173.38, Sxy !
10.17744, and n ! 20. The regression sum of squares is

and the error sum of squares is

! 21.25! 173.38 $ 152.13SSE ! SST $ SSR

SSR ! %̂1Sx y ! 114.947210.17744 ! 152.13

%̂1 ! 14.947,

The analysis of variance for testing H0: %1 ! 0 is sum-
marized in the Minitab output in Table 11-2. The test statistic
is f0 ! MSR!MSE ! 152.13!1.18 ! 128.86, for which we
find that the P-value is P " 1.23 ) 10$9, so we conclude that
%1 is not zero.

There are frequently minor differences in terminology
among computer packages. For example, sometimes the re-
gression sum of squares is called the “model” sum of squares,
and the error sum of squares is called the “residual” sum of
squares.

JWCL232_c11_401-448.qxd  1/14/10  8:02 PM  Page 418

418 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

(11-25)SST ! SSR " SSE

(11-26)F0 !
SSR#1

SSE# 1n $ 22 !
MSR
MSE

Test for
Significance of

Regression

The two components on the right-hand-side of Equation 11-24 measure, respectively, the
amount of variability in yi accounted for by the regression line and the residual variation left
unexplained by the regression line. We usually call the error sum of 
squares and the regression sum of squares. Symbolically, Equation
11-24 may be written as

SSR ! g n
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squares and the regression sum of squares. Symbolically, Equation
11-24 may be written as

SSR ! g n
i!1 1 ŷi $ y 22 SSE ! g n

i!1 1yi $ ŷ i22

where SST ! gn
i!1 is the total corrected sum of squares of y. In Section 11-2 we1 yi $ y22

noted that SSE ! SST $ %1Sxy (see Equation 11-14), so since SST ! %1Sxy " SSE, we note that the
regression sum of squares in Equation 11-25 is SSR ! %1Sxy. The total sum of squares SST has 
n $ 1 degrees of freedom, and SSR and SSE have 1 and n $ 2 degrees of freedom, respectively.

ˆ
ˆˆ

We may show that and that andSSE#&2E 3SSE# 1n $ 22 4 ! &2, E1SSR2 ! &2 " %2
1Sx x

are independent chi-square random variables with n $ 2 and 1 degrees of freedom, re-SSR#&2

spectively. Thus, if the null hypothesis H0: %1 ! 0 is true, the statistic

follows the F1,n$2 distribution, and we would reject H0 if f0 ' f(,1,n$2. The quantities MSR !
SSR!1 and MSE ! SSE!(n $ 2) are called mean squares. In general, a mean square is always
computed by dividing a sum of squares by its number of degrees of freedom. The test proce-
dure is usually arranged in an analysis of variance table, such as Table 11-3.

Table 11-3 Analysis of Variance for Testing Significance of Regression

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0

Regression 1 MSR MSR!MSE
Error SSE ! SST $  Sxy n $ 2 MSE
Total SST n $ 1

Note that MSE ! .&̂2

%̂1

SSR ! %̂1Sx y

EXAMPLE 11-3 Oxygen Purity ANOVA
We will use the analysis of variance approach to test for signifi-
cance of regression using the oxygen purity data model from
Example 11-1. Recall that SST ! 173.38, Sxy !
10.17744, and n ! 20. The regression sum of squares is

and the error sum of squares is

! 21.25! 173.38 $ 152.13SSE ! SST $ SSR

SSR ! %̂1Sx y ! 114.947210.17744 ! 152.13

%̂1 ! 14.947,

The analysis of variance for testing H0: %1 ! 0 is sum-
marized in the Minitab output in Table 11-2. The test statistic
is f0 ! MSR!MSE ! 152.13!1.18 ! 128.86, for which we
find that the P-value is P " 1.23 ) 10$9, so we conclude that
%1 is not zero.

There are frequently minor differences in terminology
among computer packages. For example, sometimes the re-
gression sum of squares is called the “model” sum of squares,
and the error sum of squares is called the “residual” sum of
squares.
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Computer software programs are widely used in regression modeling. These programs
typically carry more decimal places in the calculations. Table 11-2 shows a portion of the
output from Minitab for this problem. The estimates and are highlighted. In subse-
quent sections we will provide explanations for the information provided in this computer
output.

!̂1!̂0

EXAMPLE 11-1 Oxygen Purity
We will fit a simple linear regression model to the oxygen
purity data in Table 11-1. The following quantities may be
computed:

Sx x " a
20

i"1
x i

2 #

aa20

i"1
xib2

20
" 29.2892 #

123.9222
20

a
20

i"1
xi yi " 2,214.6566

a
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i"1
 yi2 " 170,044.5321 a
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i"1
xi2 " 29.2892

x " 1.1960 y " 92.1605

n " 20 a
20

i"1
xi " 23.92 a

20

i"1
 yi " 1,843.21

Therefore, the least squares estimates of the slope and inter-
cept are

and

The fitted simple linear regression model (with the coefficients
reported to three decimal places) is

This model is plotted in Fig. 11-4, along with the sample data.
Practical Interpretation: Using the regression model, we

would predict oxygen purity of " 89.23% when the
hydrocarbon level is x " 1.00%. The purity 89.23% may be
interpreted as  an estimate of the true population mean purity
when x " 1.00%, or as an estimate of a new observation
when x = 1.00%. These estimates are, of course, subject to
error; that is, it is unlikely that a future observation on purity
would be exactly 89.23% when the hydrocarbon level is
1.00%. In subsequent sections we will see how to use confi-
dence intervals and prediction intervals to describe the error
in estimation from a regression model.
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and regression model
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(11-26)F0 !
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SSE# 1n $ 22 !
MSR
MSE
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Significance of

Regression

The two components on the right-hand-side of Equation 11-24 measure, respectively, the
amount of variability in yi accounted for by the regression line and the residual variation left
unexplained by the regression line. We usually call the error sum of 
squares and the regression sum of squares. Symbolically, Equation
11-24 may be written as

SSR ! g n
i!1 1 ŷi $ y 22 SSE ! g n

i!1 1yi $ ŷ i22

where SST ! gn
i!1 is the total corrected sum of squares of y. In Section 11-2 we1 yi $ y22

noted that SSE ! SST $ %1Sxy (see Equation 11-14), so since SST ! %1Sxy " SSE, we note that the
regression sum of squares in Equation 11-25 is SSR ! %1Sxy. The total sum of squares SST has 
n $ 1 degrees of freedom, and SSR and SSE have 1 and n $ 2 degrees of freedom, respectively.

ˆ
ˆˆ

We may show that and that andSSE#&2E 3SSE# 1n $ 22 4 ! &2, E1SSR2 ! &2 " %2
1Sx x

are independent chi-square random variables with n $ 2 and 1 degrees of freedom, re-SSR#&2

spectively. Thus, if the null hypothesis H0: %1 ! 0 is true, the statistic

follows the F1,n$2 distribution, and we would reject H0 if f0 ' f(,1,n$2. The quantities MSR !
SSR!1 and MSE ! SSE!(n $ 2) are called mean squares. In general, a mean square is always
computed by dividing a sum of squares by its number of degrees of freedom. The test proce-
dure is usually arranged in an analysis of variance table, such as Table 11-3.

Table 11-3 Analysis of Variance for Testing Significance of Regression

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0

Regression 1 MSR MSR!MSE
Error SSE ! SST $  Sxy n $ 2 MSE
Total SST n $ 1

Note that MSE ! .&̂2

%̂1

SSR ! %̂1Sx y

EXAMPLE 11-3 Oxygen Purity ANOVA
We will use the analysis of variance approach to test for signifi-
cance of regression using the oxygen purity data model from
Example 11-1. Recall that SST ! 173.38, Sxy !
10.17744, and n ! 20. The regression sum of squares is

and the error sum of squares is

! 21.25! 173.38 $ 152.13SSE ! SST $ SSR

SSR ! %̂1Sx y ! 114.947210.17744 ! 152.13

%̂1 ! 14.947,

The analysis of variance for testing H0: %1 ! 0 is sum-
marized in the Minitab output in Table 11-2. The test statistic
is f0 ! MSR!MSE ! 152.13!1.18 ! 128.86, for which we
find that the P-value is P " 1.23 ) 10$9, so we conclude that
%1 is not zero.

There are frequently minor differences in terminology
among computer packages. For example, sometimes the re-
gression sum of squares is called the “model” sum of squares,
and the error sum of squares is called the “residual” sum of
squares.
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Figure 11-5 The
hypothesis H0: !1 " 0
is not rejected.

Figure 11-6 The
hypothesis H0: !1 " 0
is rejected.
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EXAMPLE 11-2 Oxygen Purity Tests of Coefficients 
We will test for significance of regression using the model for
the oxygen purity data from Example 11-1. The hypotheses are

and we will use # " 0.01. From Example 11-1 and Table 11-2
we have

so the t-statistic in Equation 10-20 becomes

t0 "
!̂12$̂2%Sxx

"
!̂1

se1!̂12 "
14.94721.18%0.68088

" 11.35

!̂1 " 14.947 n " 20, Sxx " 0.68088, $̂2 " 1.18

H1: !1 & 0
H0: !1 " 0

Practical Interpretation: Since the reference value of t is
t0.005,18 " 2.88, the value of the test statistic is very far into the
critical region, implying that H0: !1 " 0 should be rejected.
There is strong evidence to support this claim. The P-value for
this test is . This was obtained manually
with a calculator.

Table 11-2 presents the Minitab output for this problem.
Notice that the t-statistic value for the slope is computed as
11.35 and that the reported P-value is P " 0.000. Minitab also
reports the t-statistic for testing the hypothesis H0: !0 " 0.
This statistic is computed from Equation 11-22, with !0,0 " 0,
as t0 " 46.62. Clearly, then, the hypothesis that the intercept is
zero is rejected.

P ! 1.23 ' 10(9

11-4.2 Analysis of Variance Approach to Test Significance of Regression

A method called the analysis of variance can be used to test for significance of regression.
The procedure partitions the total variability in the response variable into meaningful compo-
nents as the basis for the test. The analysis of variance identity is as follows:

(11-24)a
n

i"1
1 yi ( y 22 " a

n

i"1
1 ŷi ( y 22 ) a

n

i"1
1 yi ( ŷi22Analysis of

Variance
Identity
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(11-25)SST ! SSR " SSE

(11-26)F0 !
SSR#1

SSE# 1n $ 22 !
MSR
MSE

Test for
Significance of

Regression

The two components on the right-hand-side of Equation 11-24 measure, respectively, the
amount of variability in yi accounted for by the regression line and the residual variation left
unexplained by the regression line. We usually call the error sum of 
squares and the regression sum of squares. Symbolically, Equation
11-24 may be written as

SSR ! g n
i!1 1 ŷi $ y 22 SSE ! g n

i!1 1yi $ ŷ i22

where SST ! gn
i!1 is the total corrected sum of squares of y. In Section 11-2 we1 yi $ y22

noted that SSE ! SST $ %1Sxy (see Equation 11-14), so since SST ! %1Sxy " SSE, we note that the
regression sum of squares in Equation 11-25 is SSR ! %1Sxy. The total sum of squares SST has 
n $ 1 degrees of freedom, and SSR and SSE have 1 and n $ 2 degrees of freedom, respectively.

ˆ
ˆˆ

We may show that and that andSSE#&2E 3SSE# 1n $ 22 4 ! &2, E1SSR2 ! &2 " %2
1Sx x

are independent chi-square random variables with n $ 2 and 1 degrees of freedom, re-SSR#&2

spectively. Thus, if the null hypothesis H0: %1 ! 0 is true, the statistic

follows the F1,n$2 distribution, and we would reject H0 if f0 ' f(,1,n$2. The quantities MSR !
SSR!1 and MSE ! SSE!(n $ 2) are called mean squares. In general, a mean square is always
computed by dividing a sum of squares by its number of degrees of freedom. The test proce-
dure is usually arranged in an analysis of variance table, such as Table 11-3.

Table 11-3 Analysis of Variance for Testing Significance of Regression

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0

Regression 1 MSR MSR!MSE
Error SSE ! SST $  Sxy n $ 2 MSE
Total SST n $ 1

Note that MSE ! .&̂2

%̂1

SSR ! %̂1Sx y

EXAMPLE 11-3 Oxygen Purity ANOVA
We will use the analysis of variance approach to test for signifi-
cance of regression using the oxygen purity data model from
Example 11-1. Recall that SST ! 173.38, Sxy !
10.17744, and n ! 20. The regression sum of squares is

and the error sum of squares is

! 21.25! 173.38 $ 152.13SSE ! SST $ SSR

SSR ! %̂1Sx y ! 114.947210.17744 ! 152.13

%̂1 ! 14.947,

The analysis of variance for testing H0: %1 ! 0 is sum-
marized in the Minitab output in Table 11-2. The test statistic
is f0 ! MSR!MSE ! 152.13!1.18 ! 128.86, for which we
find that the P-value is P " 1.23 ) 10$9, so we conclude that
%1 is not zero.

There are frequently minor differences in terminology
among computer packages. For example, sometimes the re-
gression sum of squares is called the “model” sum of squares,
and the error sum of squares is called the “residual” sum of
squares.
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The two components on the right-hand-side of Equation 11-24 measure, respectively, the
amount of variability in yi accounted for by the regression line and the residual variation left
unexplained by the regression line. We usually call the error sum of 
squares and the regression sum of squares. Symbolically, Equation
11-24 may be written as
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where SST ! gn
i!1 is the total corrected sum of squares of y. In Section 11-2 we1 yi $ y22

noted that SSE ! SST $ %1Sxy (see Equation 11-14), so since SST ! %1Sxy " SSE, we note that the
regression sum of squares in Equation 11-25 is SSR ! %1Sxy. The total sum of squares SST has 
n $ 1 degrees of freedom, and SSR and SSE have 1 and n $ 2 degrees of freedom, respectively.
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are independent chi-square random variables with n $ 2 and 1 degrees of freedom, re-SSR#&2

spectively. Thus, if the null hypothesis H0: %1 ! 0 is true, the statistic

follows the F1,n$2 distribution, and we would reject H0 if f0 ' f(,1,n$2. The quantities MSR !
SSR!1 and MSE ! SSE!(n $ 2) are called mean squares. In general, a mean square is always
computed by dividing a sum of squares by its number of degrees of freedom. The test proce-
dure is usually arranged in an analysis of variance table, such as Table 11-3.

Table 11-3 Analysis of Variance for Testing Significance of Regression

Source of Sum of Degrees of Mean
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Regression 1 MSR MSR!MSE
Error SSE ! SST $  Sxy n $ 2 MSE
Total SST n $ 1

Note that MSE ! .&̂2

%̂1

SSR ! %̂1Sx y

EXAMPLE 11-3 Oxygen Purity ANOVA
We will use the analysis of variance approach to test for signifi-
cance of regression using the oxygen purity data model from
Example 11-1. Recall that SST ! 173.38, Sxy !
10.17744, and n ! 20. The regression sum of squares is

and the error sum of squares is

! 21.25! 173.38 $ 152.13SSE ! SST $ SSR

SSR ! %̂1Sx y ! 114.947210.17744 ! 152.13

%̂1 ! 14.947,

The analysis of variance for testing H0: %1 ! 0 is sum-
marized in the Minitab output in Table 11-2. The test statistic
is f0 ! MSR!MSE ! 152.13!1.18 ! 128.86, for which we
find that the P-value is P " 1.23 ) 10$9, so we conclude that
%1 is not zero.

There are frequently minor differences in terminology
among computer packages. For example, sometimes the re-
gression sum of squares is called the “model” sum of squares,
and the error sum of squares is called the “residual” sum of
squares.
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11-24 may be written as
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noted that SSE ! SST $ %1Sxy (see Equation 11-14), so since SST ! %1Sxy " SSE, we note that the
regression sum of squares in Equation 11-25 is SSR ! %1Sxy. The total sum of squares SST has 
n $ 1 degrees of freedom, and SSR and SSE have 1 and n $ 2 degrees of freedom, respectively.
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are independent chi-square random variables with n $ 2 and 1 degrees of freedom, re-SSR#&2
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follows the F1,n$2 distribution, and we would reject H0 if f0 ' f(,1,n$2. The quantities MSR !
SSR!1 and MSE ! SSE!(n $ 2) are called mean squares. In general, a mean square is always
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We will use the analysis of variance approach to test for signifi-
cance of regression using the oxygen purity data model from
Example 11-1. Recall that SST ! 173.38, Sxy !
10.17744, and n ! 20. The regression sum of squares is

and the error sum of squares is

! 21.25! 173.38 $ 152.13SSE ! SST $ SSR

SSR ! %̂1Sx y ! 114.947210.17744 ! 152.13

%̂1 ! 14.947,

The analysis of variance for testing H0: %1 ! 0 is sum-
marized in the Minitab output in Table 11-2. The test statistic
is f0 ! MSR!MSE ! 152.13!1.18 ! 128.86, for which we
find that the P-value is P " 1.23 ) 10$9, so we conclude that
%1 is not zero.

There are frequently minor differences in terminology
among computer packages. For example, sometimes the re-
gression sum of squares is called the “model” sum of squares,
and the error sum of squares is called the “residual” sum of
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The two components on the right-hand-side of Equation 11-24 measure, respectively, the
amount of variability in yi accounted for by the regression line and the residual variation left
unexplained by the regression line. We usually call the error sum of 
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11-24 may be written as
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where SST ! gn
i!1 is the total corrected sum of squares of y. In Section 11-2 we1 yi $ y22

noted that SSE ! SST $ %1Sxy (see Equation 11-14), so since SST ! %1Sxy " SSE, we note that the
regression sum of squares in Equation 11-25 is SSR ! %1Sxy. The total sum of squares SST has 
n $ 1 degrees of freedom, and SSR and SSE have 1 and n $ 2 degrees of freedom, respectively.
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are independent chi-square random variables with n $ 2 and 1 degrees of freedom, re-SSR#&2

spectively. Thus, if the null hypothesis H0: %1 ! 0 is true, the statistic

follows the F1,n$2 distribution, and we would reject H0 if f0 ' f(,1,n$2. The quantities MSR !
SSR!1 and MSE ! SSE!(n $ 2) are called mean squares. In general, a mean square is always
computed by dividing a sum of squares by its number of degrees of freedom. The test proce-
dure is usually arranged in an analysis of variance table, such as Table 11-3.
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EXAMPLE 11-3 Oxygen Purity ANOVA
We will use the analysis of variance approach to test for signifi-
cance of regression using the oxygen purity data model from
Example 11-1. Recall that SST ! 173.38, Sxy !
10.17744, and n ! 20. The regression sum of squares is

and the error sum of squares is

! 21.25! 173.38 $ 152.13SSE ! SST $ SSR

SSR ! %̂1Sx y ! 114.947210.17744 ! 152.13

%̂1 ! 14.947,

The analysis of variance for testing H0: %1 ! 0 is sum-
marized in the Minitab output in Table 11-2. The test statistic
is f0 ! MSR!MSE ! 152.13!1.18 ! 128.86, for which we
find that the P-value is P " 1.23 ) 10$9, so we conclude that
%1 is not zero.

There are frequently minor differences in terminology
among computer packages. For example, sometimes the re-
gression sum of squares is called the “model” sum of squares,
and the error sum of squares is called the “residual” sum of
squares.
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The two components on the right-hand-side of Equation 11-24 measure, respectively, the
amount of variability in yi accounted for by the regression line and the residual variation left
unexplained by the regression line. We usually call the error sum of 
squares and the regression sum of squares. Symbolically, Equation
11-24 may be written as
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where SST ! gn
i!1 is the total corrected sum of squares of y. In Section 11-2 we1 yi $ y22

noted that SSE ! SST $ %1Sxy (see Equation 11-14), so since SST ! %1Sxy " SSE, we note that the
regression sum of squares in Equation 11-25 is SSR ! %1Sxy. The total sum of squares SST has 
n $ 1 degrees of freedom, and SSR and SSE have 1 and n $ 2 degrees of freedom, respectively.
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We may show that and that andSSE#&2E 3SSE# 1n $ 22 4 ! &2, E1SSR2 ! &2 " %2
1Sx x

are independent chi-square random variables with n $ 2 and 1 degrees of freedom, re-SSR#&2

spectively. Thus, if the null hypothesis H0: %1 ! 0 is true, the statistic

follows the F1,n$2 distribution, and we would reject H0 if f0 ' f(,1,n$2. The quantities MSR !
SSR!1 and MSE ! SSE!(n $ 2) are called mean squares. In general, a mean square is always
computed by dividing a sum of squares by its number of degrees of freedom. The test proce-
dure is usually arranged in an analysis of variance table, such as Table 11-3.

Table 11-3 Analysis of Variance for Testing Significance of Regression

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0

Regression 1 MSR MSR!MSE
Error SSE ! SST $  Sxy n $ 2 MSE
Total SST n $ 1

Note that MSE ! .&̂2
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EXAMPLE 11-3 Oxygen Purity ANOVA
We will use the analysis of variance approach to test for signifi-
cance of regression using the oxygen purity data model from
Example 11-1. Recall that SST ! 173.38, Sxy !
10.17744, and n ! 20. The regression sum of squares is

and the error sum of squares is

! 21.25! 173.38 $ 152.13SSE ! SST $ SSR

SSR ! %̂1Sx y ! 114.947210.17744 ! 152.13

%̂1 ! 14.947,

The analysis of variance for testing H0: %1 ! 0 is sum-
marized in the Minitab output in Table 11-2. The test statistic
is f0 ! MSR!MSE ! 152.13!1.18 ! 128.86, for which we
find that the P-value is P " 1.23 ) 10$9, so we conclude that
%1 is not zero.

There are frequently minor differences in terminology
among computer packages. For example, sometimes the re-
gression sum of squares is called the “model” sum of squares,
and the error sum of squares is called the “residual” sum of
squares.
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11-1 EMPIRICAL MODELS 403

As an illustration, consider the data in Table 11-1. In this table y is the purity of oxygen
produced in a chemical distillation process, and x is the percentage of hydrocarbons that are
present in the main condenser of the distillation unit. Figure 11-1 presents a scatter diagram
of the data in Table 11-1. This is just a graph on which each (xi, yi) pair is represented as a point
plotted in a two-dimensional coordinate system. This scatter diagram was produced by
Minitab, and we selected an option that shows dot diagrams of the x and y variables along the
top and right margins of the graph, respectively, making it easy to see the distributions of the
individual variables (box plots or histograms could also be selected). Inspection of this scatter
diagram indicates that, although no simple curve will pass exactly through all the points, there
is a strong indication that the points lie scattered randomly around a straight line. Therefore, it
is probably reasonable to assume that the mean of the random variable Y is related to x by the
following straight-line relationship:

where the slope and intercept of the line are called regression coefficients. While the mean of
Y is a linear function of x, the actual observed value y does not fall exactly on a straight line.
The appropriate way to generalize this to a probabilistic linear model is to assume that the
expected value of Y is a linear function of x, but that for a fixed value of x the actual value of Y
is determined by the mean value function (the linear model) plus a random error term, say,

(11-1)Y ! "0 # "1x # $

E1Y 0  x2 ! %Y 
 0  x ! "0 # "1x

Table 11-1 Oxygen and Hydrocarbon Levels

Observation Hydrocarbon Level Purity
Number x (%) y (%)

1 0.99 90.01
2 1.02 89.05
3 1.15 91.43
4 1.29 93.74
5 1.46 96.73
6 1.36 94.45
7 0.87 87.59
8 1.23 91.77
9 1.55 99.42

10 1.40 93.65
11 1.19 93.54
12 1.15 92.52
13 0.98 90.56
14 1.01 89.54
15 1.11 89.85
16 1.20 90.39
17 1.26 93.25
18 1.32 93.41
19 1.43 94.98
20 0.95 87.33 Figure 11-1 Scatter diagram of oxygen purity versus hydrocarbon

level from Table 11-1.
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Figure 11-2 The distribution of Y for a given value of x for the
oxygen purity–hydrocarbon data.
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where ! is the random error term. We will call this model the simple linear regression model,
because it has only one independent variable or regressor. Sometimes a model like this will
arise from a theoretical relationship. At other times, we will have no theoretical knowledge of
the relationship between x and y, and the choice of the model is based on inspection of a scatter
diagram, such as we did with the oxygen purity data. We then think of the regression model as
an empirical model.

To gain more insight into this model, suppose that we can fix the value of x and observe
the value of the random variable Y. Now if x is fixed, the random component ! on the right-
hand side of the model in Equation 11-1 determines the properties of Y. Suppose that the mean
and variance of ! are 0 and "2, respectively. Then,

Notice that this is the same relationship that we initially wrote down empirically from inspection
of the scatter diagram in Fig. 11-1. The variance of Y given x is

Thus, the true regression model is a line of mean values; that is, the height
of the regression line at any value of x is just the expected value of Y for that x. The slope, 
can be interpreted as the change in the mean of Y for a unit change in x. Furthermore, the
variability of Y at a particular value of x is determined by the error variance "2. This implies
that there is a distribution of Y-values at each x and that the variance of this distribution is the
same at each x.

For example, suppose that the true regression model relating oxygen purity to hydrocarbon
level is and suppose that the variance is "2 # 2. Figure 11-2 illustrates this 
situation. Notice that we have used a normal distribution to describe the random variation
in !. Since Y is the sum of a constant $0 % $1x (the mean) and a normally distributed
random variable, Y is a normally distributed random variable. The variance "2 determines
the variability in the observations Y on oxygen purity. Thus, when "2 is small, the observed
values of Y will fall close to the line, and when "2 is large, the observed values of Y may
deviate considerably from the line. Because "2 is constant, the variability in Y at any value
of x is the same.

The regression model describes the relationship between oxygen purity Y and hydrocar-
bon level x. Thus, for any value of hydrocarbon level, oxygen purity has a normal distribution

&Y  0  x # 75 % 15x,

$1,
&Y  0  x # $0 % $1x

V 1Y 0  x2 # V 1$0 % $1x % !2 # V 1$0 % $1x2 % V 1!2 # 0 % "2 # "2

E1Y 0  x2 # E1$0 % $1x % !2 # $0 % $1x % E1!2 # $0 % $1x
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&Y  0  x # 75 % 15x,

$1,
&Y  0  x # $0 % $1x

V 1Y 0  x2 # V 1$0 % $1x % !2 # V 1$0 % $1x2 % V 1!2 # 0 % "2 # "2

E1Y 0  x2 # E1$0 % $1x % !2 # $0 % $1x % E1!2 # $0 % $1x
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with mean 75 ! 15x and variance 2. For example, if x " 1.25, Y has mean value #Y ! x " 75 !
15(1.25) " 93.75 and variance 2.

In most real-world problems, the values of the intercept and slope ($0, $1) and the error
variance %2 will not be known, and they must be estimated from sample data. Then this fitted
regression equation or model is typically used in prediction of future observations of Y, or for
estimating the mean response at a particular level of x. To illustrate, a chemical engineer might
be interested in estimating the mean purity of oxygen produced when the hydrocarbon level is
x " 1.25%. This chapter discusses such procedures and applications for the simple linear
regression model. Chapter 12 will discuss multiple linear regression models that involve more
than one regressor.

Historical Note
Sir Francis Galton first used the term regression analysis in a study of the heights of fathers (x)
and sons ( y). Galton fit a least squares line and used it to predict the son’s height from the
father’s height. He found that if a father’s height was above average, the son’s height would also
be above average, but not by as much as the father’s height was. A similar effect was observed
for below average heights. That is, the son’s height “regressed” toward the average. Consequently,
Galton referred to the least squares line as a regression line.

Abuses of Regression
Regression is widely used and frequently misused; several common abuses of regression are
briefly mentioned here. Care should be taken in selecting variables with which to construct
regression equations and in determining the form of the model. It is possible to develop sta-
tistically significant relationships among variables that are completely unrelated in a causal
sense. For example, we might attempt to relate the shear strength of spot welds with the num-
ber of empty parking spaces in the visitor parking lot. A straight line may even appear to pro-
vide a good fit to the data, but the relationship is an unreasonable one on which to rely. You
can’t increase the weld strength by blocking off parking spaces. A strong observed association
between variables does not necessarily imply that a causal relationship exists between those
variables. This type of effect is encountered fairly often in retrospective data analysis, and
even in observational studies. Designed experiments are the only way to determine cause-
and-effect relationships.

Regression relationships are valid only for values of the regressor variable within the
range of the original data. The linear relationship that we have tentatively assumed may be
valid over the original range of x, but it may be unlikely to remain so as we extrapolate—that
is, if we use values of x beyond that range. In other words, as we move beyond the range of
values of x for which data were collected, we become less certain about the validity of the
assumed model. Regression models are not necessarily valid for extrapolation purposes.

Now this does not mean don’t ever extrapolate. There are many problem situations in
science and engineering where extrapolation of a regression model is the only way to even
approach the problem. However, there is a strong warning to be careful. A modest extrapola-
tion may be perfectly all right in many cases, but a large extrapolation will almost never
produce acceptable results.

11-2 SIMPLE LINEAR REGRESSION

The case of simple linear regression considers a single regressor variable or predictor variable
x and a dependent or response variable Y. Suppose that the true relationship between Y and x
is a straight line and that the observation Y at each level of x is a random variable. As noted

11-2 SIMPLE LINEAR REGRESSION 405
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11-5 CONFIDENCE INTERVALS

11-5.1 Confidence Intervals on the Slope and Intercept

In addition to point estimates of the slope and intercept, it is possible to obtain confidence
interval estimates of these parameters. The width of these confidence intervals is a measure of
the overall quality of the regression line. If the error terms, !i, in the regression model are
normally and independently distributed,

are both distributed as t random variables with n " 2 degrees of freedom. This leads to the
following definition of 100(1 " #)% confidence intervals on the slope and intercept.

1$̂1 " $12%2&̂2%Sx x and 1$̂0 " $02%B&̂2 c 1n '
x2

Sx x
d

Under the assumption that the observations are normally and independently distributed,
a 100(1 " #)% confidence interval on the slope $1 in simple linear regression is

(11-29)

Similarly, a 100(1 " #)% confidence interval on the intercept $0 is

(11-30)( $0 ( $̂0 ' t#%2, n"2 B&̂2 c 1n '
x 

2

Sx x
d

$̂0 " t#%2, n"2  B&̂2 c 1n '
x2

Sx x
d

$̂1 " t#%2, n"2  B &̂2

Sx x
( $1 ( $̂1 ' t#%2, n"2  B &̂2

Sx x

Confidence
Intervals on
Parameters

EXAMPLE 11-4 Oxygen Purity Confidence Interval on the Slope
We will find a 95% confidence interval on the slope of the re-
gression line using the data in Example 11-1. Recall that

Sxx ) 0.68088, and (see Table 11-2).
Then, from Equation 11-29 we find

or

' 2.101 A 1.18
0.68088

14.947 " 2.101 A 1.18
0.68088

( $1 ( 14.947

$̂1 " t0.025,18  B &̂2

Sxx
( $1 ( $̂1 ' t0.025,18  B &̂2

Sxx

&̂2 ) 1.18$̂1 ) 14.947,

This simplifies to

Practical Interpretation: This CI does not include zero, so
there is strong evidence (at # ) 0.05) that the slope is not zero.
The CI is reasonably narrow ( 2.766) because the error vari-
ance is fairly small. 

*

12.181 ( $1 ( 17.713

11-5.2 Confidence Interval on the Mean Response

A confidence interval may be constructed on the mean response at a specified value of x, say,
x0. This is a confidence interval about E(Y !x0) ) +Y !x0

and is often called a confidence interval
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about the regression line. Since E(Y !x0) ! "Y !x0
! #0 $ #1x0, we may obtain a point estimate

of the mean of Y at x ! x0("Y !x0
) from the fitted model as

Now is an unbiased point estimator of "Y !x0
, since and are unbiased estimators of

#0 and #1. The variance of is

This last result follows from the fact that and cov The zero
covariance result is left as a mind-expanding exercise. Also, is normally distributed, because

1 and 0 are normally distributed, and if we use as an estimate of %2, it is easy to show that
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#0 and #1. The variance of is

This last result follows from the fact that and cov The zero
covariance result is left as a mind-expanding exercise. Also, is normally distributed, because
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This is a reasonable narrow CI.
Minitab will also perform these calculations. Refer to

Table 11-2. The predicted value of y at x ! 1.00 is shown
along with the 95% CI on the mean of y at this level of x.

By repeating these calculations for several different val-
ues for x0, we can obtain confidence limits for each correspon-
ding value of . Figure 11-7 displays the scatter diagram"Y 0  x0

with the fitted model and the corresponding 95% confidence
limits plotted as the upper and lower lines. The 95% confi-
dence level applies only to the interval obtained at one value
of x and not to the entire set of x-levels. Notice that the width
of the confidence interval on increases as
increases.
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11-6 PREDICTION OF NEW OBSERVATIONS

An important application of a regression model is predicting new or future observations Y
corresponding to a specified level of the regressor variable x. If x0 is the value of the regressor
variable of interest,

(11-32)

is the point estimator of the new or future value of the response Y0.
Now consider obtaining an interval estimate for this future observation Y0. This new

observation is independent of the observations used to develop the regression model.
Therefore, the confidence interval for in Equation 11-31 is inappropriate, since it is based
only on the data used to fit the regression model. The confidence interval about refers to
the true mean response at x ! x0 (that is, a population parameter), not to future observations.

Let Y0 be the future observation at x ! x0, and let given by Equation 11-32 be the
estimator of Y0. Note that the error in prediction

is a normally distributed random variable with mean zero and variance
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Ŷ0
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about the regression line. Since E(Y !x0) ! "Y !x0
! #0 $ #1x0, we may obtain a point estimate

of the mean of Y at x ! x0("Y !x0
) from the fitted model as

Now is an unbiased point estimator of "Y !x0
, since and are unbiased estimators of

#0 and #1. The variance of is

This last result follows from the fact that and cov The zero
covariance result is left as a mind-expanding exercise. Also, is normally distributed, because

1 and 0 are normally distributed, and if we use as an estimate of %2, it is easy to show that

has a t distribution with n & 2 degrees of freedom. This leads to the following confidence
interval definition.
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A 100(1 & ')% confidence interval about the mean response at the value of 
x ! x0, say , is given by

(11-31)

where is computed from the fitted regression model."̂Y  0  x0
! #̂0 $ #̂1x0
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Interval on the
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Note that the width of the CI for is a function of the value specified for x0. The interval
width is a minimum for and widens as increases.0 x0 & x 0x0 ! x

"Y 0  x0

EXAMPLE 11-5 Oxygen Purity Confidence Interval on the Mean Response
We will construct a 95% confidence interval about the mean
response for the data in Example 11-1. The fitted model is

and the 95% confidence interval
on is found from Equation 11-31 as

Suppose that we are interested in predicting mean oxygen 
purity when x0 ! 1.00%. Then
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A 100(1 " $) % prediction interval on a future observation at the value x0 is
given by

(11-33)

The value is computed from the regression model ŷ0 % &̂0 # &̂1x0.ŷ0

' Y0 ' ŷ0 # t$( 2, n"2 B!̂2 c 1 #
1
n #
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d
ŷ0 " t$(2, n"2 B!̂2 c 1 #

1
n #

1x0 " x 22
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Prediction
Interval

Notice that the prediction interval is of minimum width at and widens as 
increases. By comparing Equation 11-33 with Equation 11-31, we observe that the prediction
interval at the point x0 is always wider than the confidence interval at x0. This results because
the prediction interval depends on both the error from the fitted model and the error associated
with future observations.

0  x0 " x 0x0 % x

EXAMPLE 11-6 Oxygen Purity Prediction Interval
To illustrate the construction of a prediction interval, suppose
we use the data in Example 11-1 and find a 95% prediction in-
terval on the next observation of oxygen purity at x0 % 1.00%.
Using Equation 11-33 and recalling from Example 11-5 that

, we find that the prediction interval is

which simplifies to 

86.83 ' y0 ' 91.63

 B1.18 c1 #
1

20
#
11.00 "1.196022

0.68088
d' Y0 ' 89.23 # 2.101 

89.23 " 2.101B1.18 c1 #
1

20
#
11.00 " 1.196022

0.68088
d

ŷ0 % 89.23

This is a reasonably narrow prediction interval.
Minitab will also calculate prediction intervals. Refer to

the output in Table 11-2. The 95% PI on the future observation
at x0 % 1.00 is shown in the display.

By repeating the foregoing calculations at different levels
of x0, we may obtain the 95% prediction intervals shown
graphically as the lower and upper lines about the fitted re-
gression model in Fig. 11-8. Notice that this graph also shows
the 95% confidence limits on calculated in Example 11-5.
It illustrates that the prediction limits are always wider than
the confidence limits.

)Y  0  x0
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Notice that the prediction interval is of minimum width at and widens as 
increases. By comparing Equation 11-33 with Equation 11-31, we observe that the prediction
interval at the point x0 is always wider than the confidence interval at x0. This results because
the prediction interval depends on both the error from the fitted model and the error associated
with future observations.
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we use the data in Example 11-1 and find a 95% prediction in-
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This is a reasonably narrow prediction interval.
Minitab will also calculate prediction intervals. Refer to

the output in Table 11-2. The 95% PI on the future observation
at x0 % 1.00 is shown in the display.

By repeating the foregoing calculations at different levels
of x0, we may obtain the 95% prediction intervals shown
graphically as the lower and upper lines about the fitted re-
gression model in Fig. 11-8. Notice that this graph also shows
the 95% confidence limits on calculated in Example 11-5.
It illustrates that the prediction limits are always wider than
the confidence limits.
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Notice that the prediction interval is of minimum width at and widens as 
increases. By comparing Equation 11-33 with Equation 11-31, we observe that the prediction
interval at the point x0 is always wider than the confidence interval at x0. This results because
the prediction interval depends on both the error from the fitted model and the error associated
with future observations.
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EXAMPLE 11-6 Oxygen Purity Prediction Interval
To illustrate the construction of a prediction interval, suppose
we use the data in Example 11-1 and find a 95% prediction in-
terval on the next observation of oxygen purity at x0 % 1.00%.
Using Equation 11-33 and recalling from Example 11-5 that

, we find that the prediction interval is

which simplifies to 
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This is a reasonably narrow prediction interval.
Minitab will also calculate prediction intervals. Refer to

the output in Table 11-2. The 95% PI on the future observation
at x0 % 1.00 is shown in the display.

By repeating the foregoing calculations at different levels
of x0, we may obtain the 95% prediction intervals shown
graphically as the lower and upper lines about the fitted re-
gression model in Fig. 11-8. Notice that this graph also shows
the 95% confidence limits on calculated in Example 11-5.
It illustrates that the prediction limits are always wider than
the confidence limits.
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Y0 " Ŷ0B!̂2 c1 #
1
n #

1x0 " x 22
Sx x

d
!̂2Ŷ0.
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Notice that the prediction interval is of minimum width at and widens as 
increases. By comparing Equation 11-33 with Equation 11-31, we observe that the prediction
interval at the point x0 is always wider than the confidence interval at x0. This results because
the prediction interval depends on both the error from the fitted model and the error associated
with future observations.
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we use the data in Example 11-1 and find a 95% prediction in-
terval on the next observation of oxygen purity at x0 % 1.00%.
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Minitab will also calculate prediction intervals. Refer to

the output in Table 11-2. The 95% PI on the future observation
at x0 % 1.00 is shown in the display.

By repeating the foregoing calculations at different levels
of x0, we may obtain the 95% prediction intervals shown
graphically as the lower and upper lines about the fitted re-
gression model in Fig. 11-8. Notice that this graph also shows
the 95% confidence limits on calculated in Example 11-5.
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Notice that the prediction interval is of minimum width at and widens as 
increases. By comparing Equation 11-33 with Equation 11-31, we observe that the prediction
interval at the point x0 is always wider than the confidence interval at x0. This results because
the prediction interval depends on both the error from the fitted model and the error associated
with future observations.
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To illustrate the construction of a prediction interval, suppose
we use the data in Example 11-1 and find a 95% prediction in-
terval on the next observation of oxygen purity at x0 % 1.00%.
Using Equation 11-33 and recalling from Example 11-5 that
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This is a reasonably narrow prediction interval.
Minitab will also calculate prediction intervals. Refer to

the output in Table 11-2. The 95% PI on the future observation
at x0 % 1.00 is shown in the display.

By repeating the foregoing calculations at different levels
of x0, we may obtain the 95% prediction intervals shown
graphically as the lower and upper lines about the fitted re-
gression model in Fig. 11-8. Notice that this graph also shows
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Figure 11-8 Scatter
diagram of oxygen
purity data from
Example 11-1 with
fitted regression line,
95% prediction limits
(outer lines) and 95%
confidence limits on
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EXERCISES FOR SECTIONS 11-5 AND 11-6

11-39. Refer to the data in Exercise 11-1 on y " intrinsic
permeability of concrete and x " compressive strength. Find
a 95% confidence interval on each of the following:
(a) Slope (b) Intercept
(c) Mean permeability when x " 2.5
(d) Find a 95% prediction interval on permeability when 

x " 2.5. Explain why this interval is wider than the
interval in part (c).

11-40. Exercise 11-2 presented data on roadway surface
temperature x and pavement deflection y. Find a 99% confi-
dence interval on each of the following:
(a) Slope (b) Intercept
(c) Mean deflection when temperature 
(d) Find a 99% prediction interval on pavement deflection

when the temperature is .
11-41. Refer to the NFL quarterback ratings data in
Exercise 11-3. Find a 95% confidence interval on each of the
following:
(a) Slope
(b) Intercept
(c) Mean rating when the average yards per attempt is 8.0
(d) Find a 95% prediction interval on the rating when the

average yards per attempt is 8.0.
11-42. Refer to the data on y " house selling price and 
x " taxes paid in Exercise 11-4. Find a 95% confidence inter-
val on each of the following:
(a) #1 (b) #0
(c) Mean selling price when the taxes paid are x " 7.50
(d) Compute the 95% prediction interval for selling price

when the taxes paid are x " 7.50.
11-43. Exercise 11-5 presented data on y " steam usage
and x " monthly average temperature.

90$F

x " 85$F

(a) Find a 99% confidence interval for #1.
(b) Find a 99% confidence interval for #0.
(c) Find a 95% confidence interval on mean steam usage

when the average temperature is .
(d) Find a 95% prediction interval on steam usage when tem-

perature is . Explain why this interval is wider than
the interval in part (c).

11-44. Exercise 11-6 presented gasoline mileage perfor-
mance for 21 cars, along with information about the engine
displacement. Find a 95% confidence interval on each of the
following:
(a) Slope (b) Intercept
(c) Mean highway gasoline mileage when the engine dis-

placement is x " 150 in3

(d) Construct a 95% prediction interval on highway gasoline
mileage when the engine displacement is x " 150 in3.

11-45. Consider the data in Exercise 11-7 on y " green
liquor Na2S concentration and x " production in a paper
mill. Find a 99% confidence interval on each of the following:
(a) #1 (b) #0
(c) Mean Na2S concentration when production x " 910 

tons !day
(d) Find a 99% prediction interval on Na2S concentration

when x " 910 tons!day.
11-46. Exercise 11-8 presented data on y " blood pressure
rise and x " sound pressure level. Find a 95% confidence
interval on each of the following:
(a) #1 (b) #0
(c) Mean blood pressure rise when the sound pressure level is

85 decibels
(d) Find a 95% prediction interval on blood pressure rise

when the sound pressure level is 85 decibels.

55$F

55$F
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11-47. Refer to the data in Exercise 11-9 on y ! wear
volume of mild steel and x ! oil viscosity. Find a 95% confi-
dence interval on each of the following:
(a) Intercept (b) Slope
(c) Mean wear when oil viscosity x ! 30
11-48. Exercise 11-10 presented data on chloride concentra-
tion y and roadway area x on watersheds in central Rhode
Island. Find a 99% confidence interval on each of the following:
(a) "1 (b) "0
(c) Mean chloride concentration when roadway area x ! 1.0%
(d) Find a 99% prediction interval on chloride concentration

when roadway area x ! 1.0%.
11-49. Refer to the data in Exercise 11-11 on rocket motor
shear strength y and propellant age x. Find a 95% confidence
interval on each of the following:
(a) Slope "1 (b) Intercept "0
(c) Mean shear strength when age x ! 20 weeks

(d) Find a 95% prediction interval on shear strength when age
x ! 20 weeks.

11-50. Refer to the data in Exercise 11-12 on the mi-
crostructure of zirconia. Find a 95% confidence interval on
each of the following:
(a) Slope (b) Intercept
(c) Mean length when 
(d) Find a 95% prediction interval on length when 

Explain why this interval is wider than the interval in
part (c).

11-51. Refer to the data in Exercise 11-13 on oxygen de-
mand. Find a 99% confidence interval on each of the
following:
(a)
(b)
(c) Find a 95% confidence interval on mean BOD when the

time is 8 days.

"0

"1

x ! 1500.
x ! 1500

11-7 ADEQUACY OF THE REGRESSION MODEL

Fitting a regression model requires several assumptions. Estimation of the model parameters
requires the assumption that the errors are uncorrelated random variables with mean zero and
constant variance. Tests of hypotheses and interval estimation require that the errors be nor-
mally distributed. In addition, we assume that the order of the model is correct; that is, if we
fit a simple linear regression model, we are assuming that the phenomenon actually behaves in
a linear or first-order manner.

The analyst should always consider the validity of these assumptions to be doubtful and
conduct analyses to examine the adequacy of the model that has been tentatively entertained.
In this section we discuss methods useful in this respect.

11-7.1 Residual Analysis

The residuals from a regression model are where yi is an actual
observation and is the corresponding fitted value from the regression model. Analysis of the
residuals is frequently helpful in checking the assumption that the errors are approximately
normally distributed with constant variance, and in determining whether additional terms in
the model would be useful.

As an approximate check of normality, the experimenter can construct a frequency his-
togram of the residuals or a normal probability plot of residuals. Many computer programs
will produce a normal probability plot of residuals, and since the sample sizes in regression
are often too small for a histogram to be meaningful, the normal probability plotting method
is preferred. It requires judgment to assess the abnormality of such plots. (Refer to the discus-
sion of the “fat pencil” method in Section 6-6).

We may also standardize the residuals by computing , . If
the errors are normally distributed, approximately 95% of the standardized residuals should
fall in the interval (#2, $2). Residuals that are far outside this interval may indicate the
presence of an outlier, that is, an observation that is not typical of the rest of the data. Various
rules have been proposed for discarding outliers. However, outliers sometimes provide

i ! 1,  2, p , ndi ! ei%2&̂2

ŷi
ei ! yi # ŷi, i ! 1, 2, p , n,
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important information about unusual circumstances of interest to experimenters and should
not be automatically discarded. For further discussion of outliers, see Montgomery, Peck, and
Vining (2006).

It is frequently helpful to plot the residuals (1) in time sequence (if known), (2), against
the , and (3) against the independent variable x. These graphs will usually look like one of
the four general patterns shown in Fig. 11-9. Pattern (a) in Fig. 11-9 represents the ideal situ-
ation, while patterns (b), (c), and (d ) represent anomalies. If the residuals appear as in (b), the
variance of the observations may be increasing with time or with the magnitude of yi or xi. Data
transformation on the response y is often used to eliminate this problem. Widely used vari-
ance-stabilizing transformations include the use of , ln y, or 1!y as the response. See
Montgomery, Peck, and Vining (2006) for more details regarding methods for selecting an ap-
propriate transformation. Plots of residuals against and xi that look like (c) also indicate in-
equality of variance. Residual plots that look like (d) indicate model inadequacy; that is,
higher order terms should be added to the model, a transformation on the x-variable or the 
y-variable (or both) should be considered, or other regressors should be considered.

ŷi

1y

ŷi

Figure 11-9 Patterns for residual plots. (a) Satisfactory, (b) Funnel,
(c) Double bow, (d) Nonlinear. [Adapted from Montgomery, Peck, and
Vining (2006).]
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EXAMPLE 11-7 Oxygen Purity Residuals
The regression model for the oxygen purity data in Example
11-1 is ! 74.283 " 14.947x. Table 11-4 presents the ob-
served and predicted values of y at each value of x from this
data set, along with the corresponding residual. These values
were computed using Minitab and show the number of deci-
mal places typical of computer output. A normal probability

ŷ
plot of the residuals is shown in Fig. 11-10. Since the residu-
als fall approximately along a straight line in the figure, we
conclude that there is no severe departure from normality. The
residuals are also plotted against the predicted value in Fig.
11-11 and against the hydrocarbon levels xi in Fig. 11-12.
These plots do not indicate any serious model inadequacies.

ŷi
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important information about unusual circumstances of interest to experimenters and should
not be automatically discarded. For further discussion of outliers, see Montgomery, Peck, and
Vining (2006).

It is frequently helpful to plot the residuals (1) in time sequence (if known), (2), against
the , and (3) against the independent variable x. These graphs will usually look like one of
the four general patterns shown in Fig. 11-9. Pattern (a) in Fig. 11-9 represents the ideal situ-
ation, while patterns (b), (c), and (d ) represent anomalies. If the residuals appear as in (b), the
variance of the observations may be increasing with time or with the magnitude of yi or xi. Data
transformation on the response y is often used to eliminate this problem. Widely used vari-
ance-stabilizing transformations include the use of , ln y, or 1!y as the response. See
Montgomery, Peck, and Vining (2006) for more details regarding methods for selecting an ap-
propriate transformation. Plots of residuals against and xi that look like (c) also indicate in-
equality of variance. Residual plots that look like (d) indicate model inadequacy; that is,
higher order terms should be added to the model, a transformation on the x-variable or the 
y-variable (or both) should be considered, or other regressors should be considered.
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Figure 11-9 Patterns for residual plots. (a) Satisfactory, (b) Funnel,
(c) Double bow, (d) Nonlinear. [Adapted from Montgomery, Peck, and
Vining (2006).]
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EXAMPLE 11-7 Oxygen Purity Residuals
The regression model for the oxygen purity data in Example
11-1 is ! 74.283 " 14.947x. Table 11-4 presents the ob-
served and predicted values of y at each value of x from this
data set, along with the corresponding residual. These values
were computed using Minitab and show the number of deci-
mal places typical of computer output. A normal probability

ŷ
plot of the residuals is shown in Fig. 11-10. Since the residu-
als fall approximately along a straight line in the figure, we
conclude that there is no severe departure from normality. The
residuals are also plotted against the predicted value in Fig.
11-11 and against the hydrocarbon levels xi in Fig. 11-12.
These plots do not indicate any serious model inadequacies.
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Montgomery, Peck, and Vining (2006) for more details regarding methods for selecting an ap-
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EXAMPLE 11-7 Oxygen Purity Residuals
The regression model for the oxygen purity data in Example
11-1 is ! 74.283 " 14.947x. Table 11-4 presents the ob-
served and predicted values of y at each value of x from this
data set, along with the corresponding residual. These values
were computed using Minitab and show the number of deci-
mal places typical of computer output. A normal probability

ŷ
plot of the residuals is shown in Fig. 11-10. Since the residu-
als fall approximately along a straight line in the figure, we
conclude that there is no severe departure from normality. The
residuals are also plotted against the predicted value in Fig.
11-11 and against the hydrocarbon levels xi in Fig. 11-12.
These plots do not indicate any serious model inadequacies.

ŷi

JWCL232_c11_401-448.qxd  1/14/10  8:03 PM  Page 427



Some other abnormal residual plots

�29

11-7 ADEQUACY OF THE REGRESSION MODEL 427

important information about unusual circumstances of interest to experimenters and should
not be automatically discarded. For further discussion of outliers, see Montgomery, Peck, and
Vining (2006).

It is frequently helpful to plot the residuals (1) in time sequence (if known), (2), against
the , and (3) against the independent variable x. These graphs will usually look like one of
the four general patterns shown in Fig. 11-9. Pattern (a) in Fig. 11-9 represents the ideal situ-
ation, while patterns (b), (c), and (d ) represent anomalies. If the residuals appear as in (b), the
variance of the observations may be increasing with time or with the magnitude of yi or xi. Data
transformation on the response y is often used to eliminate this problem. Widely used vari-
ance-stabilizing transformations include the use of , ln y, or 1!y as the response. See
Montgomery, Peck, and Vining (2006) for more details regarding methods for selecting an ap-
propriate transformation. Plots of residuals against and xi that look like (c) also indicate in-
equality of variance. Residual plots that look like (d) indicate model inadequacy; that is,
higher order terms should be added to the model, a transformation on the x-variable or the 
y-variable (or both) should be considered, or other regressors should be considered.
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Figure 11-9 Patterns for residual plots. (a) Satisfactory, (b) Funnel,
(c) Double bow, (d) Nonlinear. [Adapted from Montgomery, Peck, and
Vining (2006).]
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EXAMPLE 11-7 Oxygen Purity Residuals
The regression model for the oxygen purity data in Example
11-1 is ! 74.283 " 14.947x. Table 11-4 presents the ob-
served and predicted values of y at each value of x from this
data set, along with the corresponding residual. These values
were computed using Minitab and show the number of deci-
mal places typical of computer output. A normal probability

ŷ
plot of the residuals is shown in Fig. 11-10. Since the residu-
als fall approximately along a straight line in the figure, we
conclude that there is no severe departure from normality. The
residuals are also plotted against the predicted value in Fig.
11-11 and against the hydrocarbon levels xi in Fig. 11-12.
These plots do not indicate any serious model inadequacies.

ŷi

JWCL232_c11_401-448.qxd  1/14/10  8:03 PM  Page 427

11-7 ADEQUACY OF THE REGRESSION MODEL 427

important information about unusual circumstances of interest to experimenters and should
not be automatically discarded. For further discussion of outliers, see Montgomery, Peck, and
Vining (2006).

It is frequently helpful to plot the residuals (1) in time sequence (if known), (2), against
the , and (3) against the independent variable x. These graphs will usually look like one of
the four general patterns shown in Fig. 11-9. Pattern (a) in Fig. 11-9 represents the ideal situ-
ation, while patterns (b), (c), and (d ) represent anomalies. If the residuals appear as in (b), the
variance of the observations may be increasing with time or with the magnitude of yi or xi. Data
transformation on the response y is often used to eliminate this problem. Widely used vari-
ance-stabilizing transformations include the use of , ln y, or 1!y as the response. See
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EXAMPLE 11-7 Oxygen Purity Residuals
The regression model for the oxygen purity data in Example
11-1 is ! 74.283 " 14.947x. Table 11-4 presents the ob-
served and predicted values of y at each value of x from this
data set, along with the corresponding residual. These values
were computed using Minitab and show the number of deci-
mal places typical of computer output. A normal probability

ŷ
plot of the residuals is shown in Fig. 11-10. Since the residu-
als fall approximately along a straight line in the figure, we
conclude that there is no severe departure from normality. The
residuals are also plotted against the predicted value in Fig.
11-11 and against the hydrocarbon levels xi in Fig. 11-12.
These plots do not indicate any serious model inadequacies.
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426 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

11-47. Refer to the data in Exercise 11-9 on y ! wear
volume of mild steel and x ! oil viscosity. Find a 95% confi-
dence interval on each of the following:
(a) Intercept (b) Slope
(c) Mean wear when oil viscosity x ! 30
11-48. Exercise 11-10 presented data on chloride concentra-
tion y and roadway area x on watersheds in central Rhode
Island. Find a 99% confidence interval on each of the following:
(a) "1 (b) "0
(c) Mean chloride concentration when roadway area x ! 1.0%
(d) Find a 99% prediction interval on chloride concentration

when roadway area x ! 1.0%.
11-49. Refer to the data in Exercise 11-11 on rocket motor
shear strength y and propellant age x. Find a 95% confidence
interval on each of the following:
(a) Slope "1 (b) Intercept "0
(c) Mean shear strength when age x ! 20 weeks

(d) Find a 95% prediction interval on shear strength when age
x ! 20 weeks.

11-50. Refer to the data in Exercise 11-12 on the mi-
crostructure of zirconia. Find a 95% confidence interval on
each of the following:
(a) Slope (b) Intercept
(c) Mean length when 
(d) Find a 95% prediction interval on length when 

Explain why this interval is wider than the interval in
part (c).

11-51. Refer to the data in Exercise 11-13 on oxygen de-
mand. Find a 99% confidence interval on each of the
following:
(a)
(b)
(c) Find a 95% confidence interval on mean BOD when the

time is 8 days.

"0

"1

x ! 1500.
x ! 1500

11-7 ADEQUACY OF THE REGRESSION MODEL

Fitting a regression model requires several assumptions. Estimation of the model parameters
requires the assumption that the errors are uncorrelated random variables with mean zero and
constant variance. Tests of hypotheses and interval estimation require that the errors be nor-
mally distributed. In addition, we assume that the order of the model is correct; that is, if we
fit a simple linear regression model, we are assuming that the phenomenon actually behaves in
a linear or first-order manner.

The analyst should always consider the validity of these assumptions to be doubtful and
conduct analyses to examine the adequacy of the model that has been tentatively entertained.
In this section we discuss methods useful in this respect.

11-7.1 Residual Analysis

The residuals from a regression model are where yi is an actual
observation and is the corresponding fitted value from the regression model. Analysis of the
residuals is frequently helpful in checking the assumption that the errors are approximately
normally distributed with constant variance, and in determining whether additional terms in
the model would be useful.

As an approximate check of normality, the experimenter can construct a frequency his-
togram of the residuals or a normal probability plot of residuals. Many computer programs
will produce a normal probability plot of residuals, and since the sample sizes in regression
are often too small for a histogram to be meaningful, the normal probability plotting method
is preferred. It requires judgment to assess the abnormality of such plots. (Refer to the discus-
sion of the “fat pencil” method in Section 6-6).

We may also standardize the residuals by computing , . If
the errors are normally distributed, approximately 95% of the standardized residuals should
fall in the interval (#2, $2). Residuals that are far outside this interval may indicate the
presence of an outlier, that is, an observation that is not typical of the rest of the data. Various
rules have been proposed for discarding outliers. However, outliers sometimes provide

i ! 1,  2, p , ndi ! ei%2&̂2

ŷi
ei ! yi # ŷi, i ! 1, 2, p , n,
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6-6 PROBABILITY PLOTS 215

Some of the visual displays we have used earlier, such as the histogram, can provide
insight about the form of the underlying distribution. However, histograms are usually not
really reliable indicators of the distribution form unless the sample size is very large. A
probability plot is a graphical method for determining whether sample data conform to a
hypothesized distribution based on a subjective visual examination of the data. The general
procedure is very simple and can be performed quickly. It is also more reliable than the his-
togram for small- to moderate-size samples. Probability plotting typically uses special axes
that have been scaled for the hypothesized distribution. Software is widely available for the
normal, lognormal, Weibull, and various chi-square and gamma distributions. We focus pri-
marily on normal probability plots because many statistical techniques are appropriate only
when the population is (at least approximately) normal.

To construct a probability plot, the observations in the sample are first ranked from small-
est to largest. That is, the sample is arranged as where 

is the smallest observation, x(2) is the second-smallest observation, and so forth, with x(n)
the largest. The ordered observations x( j) are then plotted against their observed cumulative
frequency ( j ! 0.5)!n on the appropriate probability paper. If the hypothesized distribution
adequately describes the data, the plotted points will fall approximately along a straight line;
if the plotted points deviate significantly from a straight line, the hypothesized model is not ap-
propriate. Usually, the determination of whether or not the data plot as a straight line is sub-
jective. The procedure is illustrated in the following example.

x112 x112, x122, p , x1n2,x1, x2, p , xn

Table 6-6 Calculation for Constructing a Normal 
Probability Plot

j zj

1 176 0.05 !1.64
2 183 0.15 !1.04
3 185 0.25 !0.67
4 190 0.35 !0.39
5 191 0.45 !0.13
6 192 0.55 0.13
7 201 0.65 0.39
8 205 0.75 0.67
9 214 0.85 1.04

10 220 0.95 1.64

1 j ! 0.52"10x1 j 2
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Figure 6-19 Normal probability plot for battery life.

EXAMPLE 6-7 Battery Life
Ten observations on the effective service life in minutes of
batteries used in a portable personal computer are as follows:
176, 191, 214, 220, 205, 192, 201, 190, 183, 185. We
hypothesize that battery life is adequately modeled by a nor-
mal distribution. To use probability plotting to investigate this
hypothesis, first arrange the observations in ascending order
and calculate their cumulative frequencies as
shown in Table 6-6.

The pairs of values and are now plotted
on normal probability axes. This plot is shown in Fig. 6-19.

1 j ! 0.52"10x1 j 2
1 j ! 0.52"10

Most normal probability plots have on the left
vertical scale and (sometimes) on the
right vertical scale, with the variable value plotted on the hori-
zontal scale. A straight line, chosen subjectively, has been
drawn through the plotted points. In drawing the straight line,
you should be influenced more by the points near the middle of
the plot than by the extreme points. A good rule of thumb is to
draw the line approximately between the 25th and 75th per-
centile points. This is how the line in Fig. 6-19 was determined.
In assessing the “closeness” of the points to the straight line,

100 31 ! 1 j ! 0.52"n 41001 j ! 0.52"n

JWCL232_c06_191-222.qxd  1/14/10  5:56 PM  Page 215

6-6 PROBABILITY PLOTS 215

Some of the visual displays we have used earlier, such as the histogram, can provide
insight about the form of the underlying distribution. However, histograms are usually not
really reliable indicators of the distribution form unless the sample size is very large. A
probability plot is a graphical method for determining whether sample data conform to a
hypothesized distribution based on a subjective visual examination of the data. The general
procedure is very simple and can be performed quickly. It is also more reliable than the his-
togram for small- to moderate-size samples. Probability plotting typically uses special axes
that have been scaled for the hypothesized distribution. Software is widely available for the
normal, lognormal, Weibull, and various chi-square and gamma distributions. We focus pri-
marily on normal probability plots because many statistical techniques are appropriate only
when the population is (at least approximately) normal.

To construct a probability plot, the observations in the sample are first ranked from small-
est to largest. That is, the sample is arranged as where 

is the smallest observation, x(2) is the second-smallest observation, and so forth, with x(n)
the largest. The ordered observations x( j) are then plotted against their observed cumulative
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Figure 6-19 Normal probability plot for battery life.

EXAMPLE 6-7 Battery Life
Ten observations on the effective service life in minutes of
batteries used in a portable personal computer are as follows:
176, 191, 214, 220, 205, 192, 201, 190, 183, 185. We
hypothesize that battery life is adequately modeled by a nor-
mal distribution. To use probability plotting to investigate this
hypothesis, first arrange the observations in ascending order
and calculate their cumulative frequencies as
shown in Table 6-6.

The pairs of values and are now plotted
on normal probability axes. This plot is shown in Fig. 6-19.
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vertical scale and (sometimes) on the
right vertical scale, with the variable value plotted on the hori-
zontal scale. A straight line, chosen subjectively, has been
drawn through the plotted points. In drawing the straight line,
you should be influenced more by the points near the middle of
the plot than by the extreme points. A good rule of thumb is to
draw the line approximately between the 25th and 75th per-
centile points. This is how the line in Fig. 6-19 was determined.
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Some of the visual displays we have used earlier, such as the histogram, can provide
insight about the form of the underlying distribution. However, histograms are usually not
really reliable indicators of the distribution form unless the sample size is very large. A
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when the population is (at least approximately) normal.

To construct a probability plot, the observations in the sample are first ranked from small-
est to largest. That is, the sample is arranged as where 

is the smallest observation, x(2) is the second-smallest observation, and so forth, with x(n)
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Figure 6-19 Normal probability plot for battery life.

EXAMPLE 6-7 Battery Life
Ten observations on the effective service life in minutes of
batteries used in a portable personal computer are as follows:
176, 191, 214, 220, 205, 192, 201, 190, 183, 185. We
hypothesize that battery life is adequately modeled by a nor-
mal distribution. To use probability plotting to investigate this
hypothesis, first arrange the observations in ascending order
and calculate their cumulative frequencies as
shown in Table 6-6.

The pairs of values and are now plotted
on normal probability axes. This plot is shown in Fig. 6-19.
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vertical scale and (sometimes) on the
right vertical scale, with the variable value plotted on the hori-
zontal scale. A straight line, chosen subjectively, has been
drawn through the plotted points. In drawing the straight line,
you should be influenced more by the points near the middle of
the plot than by the extreme points. A good rule of thumb is to
draw the line approximately between the 25th and 75th per-
centile points. This is how the line in Fig. 6-19 was determined.
In assessing the “closeness” of the points to the straight line,
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when the population is (at least approximately) normal.
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adequately describes the data, the plotted points will fall approximately along a straight line;
if the plotted points deviate significantly from a straight line, the hypothesized model is not ap-
propriate. Usually, the determination of whether or not the data plot as a straight line is sub-
jective. The procedure is illustrated in the following example.
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Figure 6-19 Normal probability plot for battery life.

EXAMPLE 6-7 Battery Life
Ten observations on the effective service life in minutes of
batteries used in a portable personal computer are as follows:
176, 191, 214, 220, 205, 192, 201, 190, 183, 185. We
hypothesize that battery life is adequately modeled by a nor-
mal distribution. To use probability plotting to investigate this
hypothesis, first arrange the observations in ascending order
and calculate their cumulative frequencies as
shown in Table 6-6.

The pairs of values and are now plotted
on normal probability axes. This plot is shown in Fig. 6-19.

1 j ! 0.52"10x1 j 2
1 j ! 0.52"10

Most normal probability plots have on the left
vertical scale and (sometimes) on the
right vertical scale, with the variable value plotted on the hori-
zontal scale. A straight line, chosen subjectively, has been
drawn through the plotted points. In drawing the straight line,
you should be influenced more by the points near the middle of
the plot than by the extreme points. A good rule of thumb is to
draw the line approximately between the 25th and 75th per-
centile points. This is how the line in Fig. 6-19 was determined.
In assessing the “closeness” of the points to the straight line,

100 31 ! 1 j ! 0.52"n 41001 j ! 0.52"n
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Some of the visual displays we have used earlier, such as the histogram, can provide
insight about the form of the underlying distribution. However, histograms are usually not
really reliable indicators of the distribution form unless the sample size is very large. A
probability plot is a graphical method for determining whether sample data conform to a
hypothesized distribution based on a subjective visual examination of the data. The general
procedure is very simple and can be performed quickly. It is also more reliable than the his-
togram for small- to moderate-size samples. Probability plotting typically uses special axes
that have been scaled for the hypothesized distribution. Software is widely available for the
normal, lognormal, Weibull, and various chi-square and gamma distributions. We focus pri-
marily on normal probability plots because many statistical techniques are appropriate only
when the population is (at least approximately) normal.

To construct a probability plot, the observations in the sample are first ranked from small-
est to largest. That is, the sample is arranged as where 

is the smallest observation, x(2) is the second-smallest observation, and so forth, with x(n)
the largest. The ordered observations x( j) are then plotted against their observed cumulative
frequency ( j ! 0.5)!n on the appropriate probability paper. If the hypothesized distribution
adequately describes the data, the plotted points will fall approximately along a straight line;
if the plotted points deviate significantly from a straight line, the hypothesized model is not ap-
propriate. Usually, the determination of whether or not the data plot as a straight line is sub-
jective. The procedure is illustrated in the following example.

x112 x112, x122, p , x1n2,x1, x2, p , xn

Table 6-6 Calculation for Constructing a Normal 
Probability Plot

j zj
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3 185 0.25 !0.67
4 190 0.35 !0.39
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9 214 0.85 1.04

10 220 0.95 1.64
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hypothesize that battery life is adequately modeled by a nor-
mal distribution. To use probability plotting to investigate this
hypothesis, first arrange the observations in ascending order
and calculate their cumulative frequencies as
shown in Table 6-6.

The pairs of values and are now plotted
on normal probability axes. This plot is shown in Fig. 6-19.
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you should be influenced more by the points near the middle of
the plot than by the extreme points. A good rule of thumb is to
draw the line approximately between the 25th and 75th per-
centile points. This is how the line in Fig. 6-19 was determined.
In assessing the “closeness” of the points to the straight line,
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Figure 11-10 Normal probability plot of residuals,
Example 11-7.

Figure 11-11 Plot of residuals versus predicted oxygen
purity , Example 11-7.ŷ
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Table 11-4 Oxygen Purity Data from Example 11-1, Predicted Values, and Residuals

Hydrocarbon Oxygen Predicted Residual
Level, x Purity, y Value, e ! y "

1 0.99 90.01 89.081 0.929
2 1.02 89.05 89.530 "0.480
3 1.15 91.43 91.473 "0.043
4 1.29 93.74 93.566 0.174
5 1.46 96.73 96.107 0.623
6 1.36 94.45 94.612 "0.162
7 0.87 87.59 87.288 0.302
8 1.23 91.77 92.669 "0.899
9 1.55 99.42 97.452 1.968

10 1.40 93.65 95.210 "1.560

ŷŷ
Hydrocarbon Oxygen Predicted Residual

Level, x Purity, y Value, e ! y "

11 1.19 93.54 92.071 1.469
12 1.15 92.52 91.473 1.047
13 0.98 90.56 88.932 1.628
14 1.01 89.54 89.380 0.160
15 1.11 89.85 90.875 "1.025
16 1.20 90.39 92.220 "1.830
17 1.26 93.25 93.117 0.133
18 1.32 93.41 94.014 "0.604
19 1.43 94.98 95.658 "0.678
20 0.95 87.33 88.483 "1.153

ŷŷ

The coefficient of determination is

(11-34)R2 !
SSR
SST

! 1 "
SSE
SST

R2

11-7.2 Coefficient of Determination (R2)

A widely used measure for a regression model is the following ratio of sum of squares.

The coefficient is often used to judge the adequacy of a regression model. Subsequently, we
will see that in the case where X and Y are jointly distributed random variables, R2 is the square
of the correlation coefficient between X and Y. From the analysis of variance identity in
Equations 11-24 and 11-25, 0 # R2 # 1. We often refer loosely to R2 as the amount of vari-
ability in the data explained or accounted for by the regression model. For the oxygen purity
regression model, we have R2 ! SSR SST ! 152.13 173.38 ! 0.877; that is, the model ac-
counts for 87.7% of the variability in the data.

$$
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Figure 11-10 Normal probability plot of residuals,
Example 11-7.

Figure 11-11 Plot of residuals versus predicted oxygen
purity , Example 11-7.ŷ
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Table 11-4 Oxygen Purity Data from Example 11-1, Predicted Values, and Residuals

Hydrocarbon Oxygen Predicted Residual
Level, x Purity, y Value, e ! y "

1 0.99 90.01 89.081 0.929
2 1.02 89.05 89.530 "0.480
3 1.15 91.43 91.473 "0.043
4 1.29 93.74 93.566 0.174
5 1.46 96.73 96.107 0.623
6 1.36 94.45 94.612 "0.162
7 0.87 87.59 87.288 0.302
8 1.23 91.77 92.669 "0.899
9 1.55 99.42 97.452 1.968

10 1.40 93.65 95.210 "1.560

ŷŷ
Hydrocarbon Oxygen Predicted Residual

Level, x Purity, y Value, e ! y "

11 1.19 93.54 92.071 1.469
12 1.15 92.52 91.473 1.047
13 0.98 90.56 88.932 1.628
14 1.01 89.54 89.380 0.160
15 1.11 89.85 90.875 "1.025
16 1.20 90.39 92.220 "1.830
17 1.26 93.25 93.117 0.133
18 1.32 93.41 94.014 "0.604
19 1.43 94.98 95.658 "0.678
20 0.95 87.33 88.483 "1.153

ŷŷ

The coefficient of determination is

(11-34)R2 !
SSR
SST

! 1 "
SSE
SST

R2

11-7.2 Coefficient of Determination (R2)

A widely used measure for a regression model is the following ratio of sum of squares.

The coefficient is often used to judge the adequacy of a regression model. Subsequently, we
will see that in the case where X and Y are jointly distributed random variables, R2 is the square
of the correlation coefficient between X and Y. From the analysis of variance identity in
Equations 11-24 and 11-25, 0 # R2 # 1. We often refer loosely to R2 as the amount of vari-
ability in the data explained or accounted for by the regression model. For the oxygen purity
regression model, we have R2 ! SSR SST ! 152.13 173.38 ! 0.877; that is, the model ac-
counts for 87.7% of the variability in the data.
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Figure 11-10 Normal probability plot of residuals,
Example 11-7.

Figure 11-11 Plot of residuals versus predicted oxygen
purity , Example 11-7.ŷ
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R
es

id
ua

ls
 

Table 11-4 Oxygen Purity Data from Example 11-1, Predicted Values, and Residuals

Hydrocarbon Oxygen Predicted Residual
Level, x Purity, y Value, e ! y "

1 0.99 90.01 89.081 0.929
2 1.02 89.05 89.530 "0.480
3 1.15 91.43 91.473 "0.043
4 1.29 93.74 93.566 0.174
5 1.46 96.73 96.107 0.623
6 1.36 94.45 94.612 "0.162
7 0.87 87.59 87.288 0.302
8 1.23 91.77 92.669 "0.899
9 1.55 99.42 97.452 1.968

10 1.40 93.65 95.210 "1.560

ŷŷ
Hydrocarbon Oxygen Predicted Residual

Level, x Purity, y Value, e ! y "

11 1.19 93.54 92.071 1.469
12 1.15 92.52 91.473 1.047
13 0.98 90.56 88.932 1.628
14 1.01 89.54 89.380 0.160
15 1.11 89.85 90.875 "1.025
16 1.20 90.39 92.220 "1.830
17 1.26 93.25 93.117 0.133
18 1.32 93.41 94.014 "0.604
19 1.43 94.98 95.658 "0.678
20 0.95 87.33 88.483 "1.153

ŷŷ

The coefficient of determination is

(11-34)R2 !
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11-7.2 Coefficient of Determination (R2)

A widely used measure for a regression model is the following ratio of sum of squares.

The coefficient is often used to judge the adequacy of a regression model. Subsequently, we
will see that in the case where X and Y are jointly distributed random variables, R2 is the square
of the correlation coefficient between X and Y. From the analysis of variance identity in
Equations 11-24 and 11-25, 0 # R2 # 1. We often refer loosely to R2 as the amount of vari-
ability in the data explained or accounted for by the regression model. For the oxygen purity
regression model, we have R2 ! SSR SST ! 152.13 173.38 ! 0.877; that is, the model ac-
counts for 87.7% of the variability in the data.
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Figure 11-10 Normal probability plot of residuals,
Example 11-7.

Figure 11-11 Plot of residuals versus predicted oxygen
purity , Example 11-7.ŷ
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R
es

id
ua

ls
 

Table 11-4 Oxygen Purity Data from Example 11-1, Predicted Values, and Residuals

Hydrocarbon Oxygen Predicted Residual
Level, x Purity, y Value, e ! y "

1 0.99 90.01 89.081 0.929
2 1.02 89.05 89.530 "0.480
3 1.15 91.43 91.473 "0.043
4 1.29 93.74 93.566 0.174
5 1.46 96.73 96.107 0.623
6 1.36 94.45 94.612 "0.162
7 0.87 87.59 87.288 0.302
8 1.23 91.77 92.669 "0.899
9 1.55 99.42 97.452 1.968

10 1.40 93.65 95.210 "1.560

ŷŷ
Hydrocarbon Oxygen Predicted Residual

Level, x Purity, y Value, e ! y "

11 1.19 93.54 92.071 1.469
12 1.15 92.52 91.473 1.047
13 0.98 90.56 88.932 1.628
14 1.01 89.54 89.380 0.160
15 1.11 89.85 90.875 "1.025
16 1.20 90.39 92.220 "1.830
17 1.26 93.25 93.117 0.133
18 1.32 93.41 94.014 "0.604
19 1.43 94.98 95.658 "0.678
20 0.95 87.33 88.483 "1.153

ŷŷ

The coefficient of determination is

(11-34)R2 !
SSR
SST

! 1 "
SSE
SST

R2

11-7.2 Coefficient of Determination (R2)

A widely used measure for a regression model is the following ratio of sum of squares.

The coefficient is often used to judge the adequacy of a regression model. Subsequently, we
will see that in the case where X and Y are jointly distributed random variables, R2 is the square
of the correlation coefficient between X and Y. From the analysis of variance identity in
Equations 11-24 and 11-25, 0 # R2 # 1. We often refer loosely to R2 as the amount of vari-
ability in the data explained or accounted for by the regression model. For the oxygen purity
regression model, we have R2 ! SSR SST ! 152.13 173.38 ! 0.877; that is, the model ac-
counts for 87.7% of the variability in the data.
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11-8 CORRELATION 433

which is just the coefficient of determination. That is, the coefficient of determination R2 is
just the square of the correlation coefficient between Y and X.

It is often useful to test the hypotheses

(11-45)

The appropriate test statistic for these hypotheses is

H1: ! " 0
H0: ! # 0

Confidence
Interval for 

a Correlation
Coefficient

(11-49)Z0 # 1arctanh R $ arctanh !02 1n $ 321%2

(11-50)tanh aarctanh r $
z&%21n $ 3

b ' ! ' tanh aarctanh r (
z&%21n $ 3

b

which has the t distribution with n $ 2 degrees of freedom if H0: ! # 0 is true. Therefore, we
would reject the null hypothesis if !t0! ) t&"2,n$2. This test is equivalent to the test of the hypothesis
H0: *1 # 0 given in Section 11-5.1. This equivalence follows directly from Equation 11-46.

The test procedure for the hypotheses

(11-47)

where !0 ! 0 is somewhat more complicated. For moderately large samples (say, n + 25), the
statistic

(11-48)

is approximately normally distributed with mean and variance

respectively. Therefore, to test the hypothesis H0: ! # !0, we may use the test statistic 

,Z # arctanh ! #
1
2 ln 

1 ( !

1 $ !
  and  -2

Z #
1

n $ 3

Z # arctanh R #
1
2   ln  

1 ( R
1 $ R

H1: ! " !0

H0: ! # !0

and reject H0: ! # !0 if the value of the test statistic in Equation 11-49 is such that !z0! ) z&"2.
It is also possible to construct an approximate 100(1 $ &)% confidence interval for !, using

the transformation in Equation 11-48. The approximate 100(1 $ &)% confidence interval is

(11-46)T0 #
R1n $ 221 $ R2

Test Statistic
for Zero

Correlation

where tanh u # (eu $ e$u)"(eu ( e$u).
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11-8 CORRELATION

Our development of regression analysis has assumed that x is a mathematical variable, mea-
sured with negligible error, and that Y is a random variable. Many applications of regression
analysis involve situations in which both X and Y are random variables. In these situations, it
is usually assumed that the observations (Xi, Yi), i ! 1, 2, p , n are jointly distributed random
variables obtained from the distribution f (x, y).

For example, suppose we wish to develop a regression model relating the shear strength
of spot welds to the weld diameter. In this example, weld diameter cannot be controlled. We
would randomly select n spot welds and observe a diameter (Xi) and a shear strength (Yi) for
each. Therefore (Xi, Yi) are jointly distributed random variables.

We assume that the joint distribution of Xi and Yi is the bivariate normal distribution pre-
sented in Chapter 5, and "Y and #2

Y are the mean and variance of Y, "X and are the mean
and variance of X, and $ is the correlation coefficient between Y and X. Recall that the corre-
lation coefficient is defined as

(11-35)

where #XY is the covariance between Y and X.
The conditional distribution of Y for a given value of X ! x is

(11-36)

where

(11-37)

(11-38)

and the variance of the conditional distribution of Y given X ! x is

(11-39)#2
Y 0  x ! #2

Y 11 % $22
 &1 !

#Y
#X

 $

 &0 ! "Y % "X$
#Y
#X

fY 0  x 1 y2 !
112'#Y 0  x   exp c%1

2  ay % &0 % &1x
#Y 0  x b2d

$ !
#XY

#X#Y

#2
X

Hint:

The ith studentized residual is defined as

(a) Explain why ri has unit standard deviation.
(b) Do the standardized residuals have unit standard deviation?
(c) Discuss the behavior of the studentized residual when the

sample value xi is very close to the middle of the range of x.

ri !
eiB#̂2 c1 % a1
n (

1xi % x 22
Sxx

b d

cov1Yi, Ŷi2 ! #2 c 1n (
1xi % x 22
Sxx

d .
(d) Discuss the behavior of the studentized residual when the

sample value xi is very near one end of the range of x.
11-65. Show that an equivalent way to define the test for
significance of regression in simple linear regression is to base
the test on R2 as follows: to test H0: &1 ! 0 versus H1: &1 ! 0,
calculate

and to reject H0: &1 ! 0 if the computed value f0 ) f*,1,n%2.
Suppose that a simple linear regression model has been fit to
n ! 25 observations and R2 ! 0.90.
(a) Test for significance of regression at * ! 0.05.
(b) What is the smallest value of R2 that would lead to the

conclusion of a significant regression if * ! 0.05?

F0 !
R21n % 22

1 % R2
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That is, the conditional distribution of Y given X ! x is normal with mean

(11-40)

and variance Thus, the mean of the conditional distribution of Y given X ! x is a
simple linear regression model. Furthermore, there is a relationship between the correlation
coefficient " and the slope #1. From Equation 11-38 we see that if " ! 0, then #1 ! 0, which
implies that there is no regression of Y on X. That is, knowledge of X does not assist us in
predicting Y.

The method of maximum likelihood may be used to estimate the parameters #0 and #1. It
can be shown that the maximum likelihood estimators of those parameters are

(11-41)

and

(11-42)

We note that the estimators of the intercept and slope in Equations 11-41 and 11-42 are
identical to those given by the method of least squares in the case where X was assumed to be
a mathematical variable. That is, the regression model with Y and X jointly normally distrib-
uted is equivalent to the model with X considered as a mathematical variable. This follows
because the random variables Y given X ! x are independently and normally distributed with
mean #0 $ #1x and constant variance These results will also hold for any joint distribu-
tion of Y and X such that the conditional distribution of Y given X is normal.

It is possible to draw inferences about the correlation coefficient " in this model. The
estimator of " is the sample correlation coefficient

(11-43)

Note that

(11-44)

so the slope is just the sample correlation coefficient R multiplied by a scale factor that is
the square root of the “spread” of the Y values divided by the “spread” of the X values.Thus,

and R are closely related, although they provide somewhat different information. The
sample correlation coefficient R measures the linear association between Y and X, while 
measures the predicted change in the mean of Y for a unit change in X. In the case of a math-
ematical variable x, R has no meaning because the magnitude of R depends on the choice of
spacing of x. We may also write, from Equation 11-44,

R2 ! #̂2
1  
SXX
SST

!
#̂1SXY
SST

!
SSR
SST

#̂1

#̂1

#̂1

#̂1 ! aSST
SXX
b1% 2

 R

R !
a
n

i!1
Yi 1Xi & X 2

c an
i!1
1Xi & X 22 an

i!1
1Yi & Y 22 d 1%2 !

SXY1SXXSST21%2

'2
Y 0 x 

.

#̂1 !
a
n

i!1
Yi 1Xi & X 2

a
n

i!1
1Xi & X 22 !

SXY
SXX

#̂0 ! Y & #̂1X 

'2
Y 0 x 

.

E1Y 0  x2 ! #0 $ #1x
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which is just the coefficient of determination. That is, the coefficient of determination R2 is
just the square of the correlation coefficient between Y and X.

It is often useful to test the hypotheses

(11-45)

The appropriate test statistic for these hypotheses is

H1: ! " 0
H0: ! # 0

Confidence
Interval for 

a Correlation
Coefficient

(11-49)Z0 # 1arctanh R $ arctanh !02 1n $ 321%2

(11-50)tanh aarctanh r $
z&%21n $ 3

b ' ! ' tanh aarctanh r (
z&%21n $ 3

b

which has the t distribution with n $ 2 degrees of freedom if H0: ! # 0 is true. Therefore, we
would reject the null hypothesis if !t0! ) t&"2,n$2. This test is equivalent to the test of the hypothesis
H0: *1 # 0 given in Section 11-5.1. This equivalence follows directly from Equation 11-46.

The test procedure for the hypotheses

(11-47)

where !0 ! 0 is somewhat more complicated. For moderately large samples (say, n + 25), the
statistic

(11-48)

is approximately normally distributed with mean and variance

respectively. Therefore, to test the hypothesis H0: ! # !0, we may use the test statistic 

,Z # arctanh ! #
1
2 ln 

1 ( !

1 $ !
  and  -2

Z #
1

n $ 3

Z # arctanh R #
1
2   ln  

1 ( R
1 $ R

H1: ! " !0

H0: ! # !0

and reject H0: ! # !0 if the value of the test statistic in Equation 11-49 is such that !z0! ) z&"2.
It is also possible to construct an approximate 100(1 $ &)% confidence interval for !, using

the transformation in Equation 11-48. The approximate 100(1 $ &)% confidence interval is

(11-46)T0 #
R1n $ 221 $ R2

Test Statistic
for Zero

Correlation

where tanh u # (eu $ e$u)"(eu ( e$u).
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which is just the coefficient of determination. That is, the coefficient of determination R2 is
just the square of the correlation coefficient between Y and X.

It is often useful to test the hypotheses

(11-45)

The appropriate test statistic for these hypotheses is

H1: ! " 0
H0: ! # 0

Confidence
Interval for 

a Correlation
Coefficient

(11-49)Z0 # 1arctanh R $ arctanh !02 1n $ 321%2

(11-50)tanh aarctanh r $
z&%21n $ 3

b ' ! ' tanh aarctanh r (
z&%21n $ 3

b

which has the t distribution with n $ 2 degrees of freedom if H0: ! # 0 is true. Therefore, we
would reject the null hypothesis if !t0! ) t&"2,n$2. This test is equivalent to the test of the hypothesis
H0: *1 # 0 given in Section 11-5.1. This equivalence follows directly from Equation 11-46.

The test procedure for the hypotheses

(11-47)

where !0 ! 0 is somewhat more complicated. For moderately large samples (say, n + 25), the
statistic

(11-48)

is approximately normally distributed with mean and variance

respectively. Therefore, to test the hypothesis H0: ! # !0, we may use the test statistic 

,Z # arctanh ! #
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2 ln 

1 ( !

1 $ !
  and  -2

Z #
1
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1 ( R
1 $ R
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and reject H0: ! # !0 if the value of the test statistic in Equation 11-49 is such that !z0! ) z&"2.
It is also possible to construct an approximate 100(1 $ &)% confidence interval for !, using

the transformation in Equation 11-48. The approximate 100(1 $ &)% confidence interval is

(11-46)T0 #
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Test Statistic
for Zero

Correlation

where tanh u # (eu $ e$u)"(eu ( e$u).
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which is just the coefficient of determination. That is, the coefficient of determination R2 is
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Table 1-2 Wire Bond Pull Strength Data

Observation Pull Strength Wire Length Die Height
Number y x1 x2

1 9.95 2 50
2 24.45 8 110
3 31.75 11 120
4 35.00 10 550
5 25.02 8 295
6 16.86 4 200
7 14.38 2 375
8 9.60 2 52
9 24.35 9 100

10 27.50 8 300
11 17.08 4 412
12 37.00 11 400
13 41.95 12 500
14 11.66 2 360
15 21.65 4 205
16 17.89 4 400
17 69.00 20 600
18 10.30 1 585
19 34.93 10 540
20 46.59 15 250
21 44.88 15 290
22 54.12 16 510
23 56.63 17 590
24 22.13 6 100
25 21.15 5 400
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Figure 1-15 Three-
dimensional plot of
the wire bond pull
strength data.

both wire length and die height increase. Furthermore, it seems reasonable to think that a
model such as

would be appropriate as an empirical model for this relationship. In general, this type of
empirical model is called a regression model. In Chapters 11 and 12 we show how to build
these models and test their adequacy as approximating functions. We will use a method for

Pull strength ! "0 # "11wire length2 # "21die height2 # $
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Figure 11-13 Scatter
plot of wire bond
strength versus wire
length, Example 11-8.
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Regression Analysis: Strength versus Length

The regression equation is
Strength ! 5.11 " 2.90 Length

Predictor Coef SE Coef T P
Constant 5.115 1.146 4.46 0.000
Length 2.9027 0.1170 24.80 0.000

S ! 3.093 R-Sq ! 96.4% R-Sq(adj) ! 96.2%
PRESS ! 272.144 R-Sq(pred) ! 95.54%

Analysis of Variance

Source DF SS MS F P
Regression 1 5885.9 5885.9 615.08 0.000
Residual Error 23 220.1 9.6
Total 24 6105.9

EXAMPLE 11-8 Wire Bond Pull Strength
In Chapter 1 (Section 1-3) an application of regression analysis
is described in which an engineer at a semiconductor assembly
plant is investigating the relationship between pull strength of a
wire bond and two factors: wire length and die height. In this ex-
ample, we will consider only one of the factors, the wire length.
A random sample of 25 units is selected and tested, and the wire
bond pull strength and wire length are observed for each unit.
The data are shown in Table 1-2. We assume that pull strength
and wire length are jointly normally distributed.

Figure 11-13 shows a scatter diagram of wire bond
strength versus wire length. We have used the Minitab option
of displaying box plots of each individual variable on the scat-
ter diagram. There is evidence of a linear relationship between
the two variables.

The Minitab output for fitting a simple linear regression
model to the data is shown below.

Now Sxx ! 698.56 and Sxy ! 2027.7132, and the sample
correlation coefficient is

Note that r2 ! (0.9818)2 ! 0.9640 (which is reported in the
Minitab output), or that approximately 96.40% of the variability
in pull strength is explained by the linear relationship to wire
length.

Now suppose that we wish to test the hypotheses

H1: # $ 0
H0: # ! 0

r !
Sxy3SxxSST 41%2 !

2027.71323 1698.5602 16105.92 41%2 ! 0.9818
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Figure 11-13 Scatter
plot of wire bond
strength versus wire
length, Example 11-8.
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Regression Analysis: Strength versus Length

The regression equation is
Strength ! 5.11 " 2.90 Length

Predictor Coef SE Coef T P
Constant 5.115 1.146 4.46 0.000
Length 2.9027 0.1170 24.80 0.000

S ! 3.093 R-Sq ! 96.4% R-Sq(adj) ! 96.2%
PRESS ! 272.144 R-Sq(pred) ! 95.54%

Analysis of Variance

Source DF SS MS F P
Regression 1 5885.9 5885.9 615.08 0.000
Residual Error 23 220.1 9.6
Total 24 6105.9

EXAMPLE 11-8 Wire Bond Pull Strength
In Chapter 1 (Section 1-3) an application of regression analysis
is described in which an engineer at a semiconductor assembly
plant is investigating the relationship between pull strength of a
wire bond and two factors: wire length and die height. In this ex-
ample, we will consider only one of the factors, the wire length.
A random sample of 25 units is selected and tested, and the wire
bond pull strength and wire length are observed for each unit.
The data are shown in Table 1-2. We assume that pull strength
and wire length are jointly normally distributed.

Figure 11-13 shows a scatter diagram of wire bond
strength versus wire length. We have used the Minitab option
of displaying box plots of each individual variable on the scat-
ter diagram. There is evidence of a linear relationship between
the two variables.

The Minitab output for fitting a simple linear regression
model to the data is shown below.

Now Sxx ! 698.56 and Sxy ! 2027.7132, and the sample
correlation coefficient is

Note that r2 ! (0.9818)2 ! 0.9640 (which is reported in the
Minitab output), or that approximately 96.40% of the variability
in pull strength is explained by the linear relationship to wire
length.

Now suppose that we wish to test the hypotheses

H1: # $ 0
H0: # ! 0

r !
Sxy3SxxSST 41%2 !

2027.71323 1698.5602 16105.92 41%2 ! 0.9818
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with ! " 0.05. We can compute the t-statistic of Equation
11-46 as

This statistic is also reported in the Minitab output as a test of
H0: #1 " 0. Because t0.025,23 " 2.069, we reject H0 and con-
clude that the correlation coefficient $ % 0.

t0 "
r1n & 221 & r2 "

0.981812311 & 0.9640
" 24.8

Finally, we may construct an approximate 95% confi-
dence interval on $ from Equation 11-50. Since arctanh r "
arctanh 0.9818 " 2.3452, Equation 11-50 becomes

which reduces to

0.9585 ' $ ' 0.9921

tanh a2.3452 &
1.96122
b ' $ ' tanh a2.3452 (

1.96122
b

11-66. Suppose data is obtained from 20 pairs of (x, y) and
the sample correlation coefficient is 0.8.
(a) Test the hypothesis that against with

. Calculate the P-value.
(b) Test the hypothesis that against 

with . Calculate the P-value.
(c) Construct a 95% two-sided confidence interval for the

correlation coefficient. Explain how the questions in parts
(a) and (b) could be answered with a confidence interval.

11-67. Suppose data are obtained from 20 pairs of (x, y) and
the sample correlation coefficient is 0.75.
(a) Test the hypothesis that against with

. Calculate the P-value.
(b) Test the hypothesis that against 

with . Calculate the P-value.
(c) Construct a 95% one-sided confidence interval for the

correlation coefficient. Explain how the questions in
parts (a) and (b) could be answered with a confidence
interval.

11-68. A random sample of n " 25 observations was made
on the time to failure of an electronic component and the tem-
perature in the application environment in which the compo-
nent was used.
(a) Given that r " 0.83, test the hypothesis that $ " 0, using

! " 0.05. What is the P-value for this test?
(b) Find a 95% confidence interval on $.
(c) Test the hypothesis H0: $ " 0.8 versus H1: $ ! 0.8, using

! " 0.05. Find the P-value for this test.
11-69. A random sample of 50 observations was made on
the diameter of spot welds and the corresponding weld shear
strength.
(a) Given that r " 0.62, test the hypothesis that $ " 0, using

! " 0.01. What is the P-value for this test?
(b) Find a 99% confidence interval for $.
(c) Based on the confidence interval in part (b), can you con-

clude that $ " 0.5 at the 0.01 level of significance?
11-70. The following data gave X " the water content of
snow on April 1 and Y " the yield from April to July (in
inches) on the Snake River watershed in Wyoming for 1919 to
1935. (The data were taken from an article in Research Notes,
Vol. 61, 1950, Pacific Northwest Forest Range Experiment
Station, Oregon.)

! " 0.05
H1 : $ ) 0.5H1: $ " 0.5

! " 0.05
H1: $ ) 0H0 : $ " 0

! " 0.05
H1 : $ % 0.5H1 : $ " 0.5

! " 0.05
H1 : $ % 0H0 

: $ " 0

x y x y
23.1 10.5 37.9 22.8
32.8 16.7 30.5 14.1
31.8 18.2 25.1 12.9
32.0 17.0 12.4 8.8
30.4 16.3 35.1 17.4
24.0 10.5 31.5 14.9
39.5 23.1 21.1 10.5
24.2 12.4 27.6 16.1
52.5 24.9

(a) Estimate the correlation between Y and X.
(b) Test the hypothesis that $ " 0, using ! " 0.05.
(c) Fit a simple linear regression model and test for signifi-

cance of regression using ! " 0.05. What conclusions
can you draw? How is the test for significance of regres-
sion related to the test on $ in part (b)?

(d) Analyze the residuals and comment on model adequacy.
11-71. The final test and exam averages for 20 randomly
selected students taking a course in engineering statistics and a
course in operations research follow. Assume that the final
averages are jointly normally distributed.
(a) Find the regression line relating the statistics final average

to the OR final average. Graph the data.
(b) Test for significance of regression using ! " 0.05.
(c) Estimate the correlation coefficient.
(d) Test the hypothesis that $ " 0, using ! " 0.05.
(e) Test the hypothesis that $ " 0.5, using ! " 0.05.
(f) Construct a 95% confidence interval for the correlation

coefficient.

Statistics OR Statistics OR Statistics OR
86 80 86 81 83 81
75 81 71 76 75 70
69 75 65 72 71 73
75 81 84 85 76 72
90 92 71 72 84 80
94 95 62 65 97 98
83 80 90 93
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with ! " 0.05. We can compute the t-statistic of Equation
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perature in the application environment in which the compo-
nent was used.
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11-69. A random sample of 50 observations was made on
the diameter of spot welds and the corresponding weld shear
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(a) Given that r " 0.62, test the hypothesis that $ " 0, using
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(b) Find a 99% confidence interval for $.
(c) Based on the confidence interval in part (b), can you con-
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(a) Estimate the correlation between Y and X.
(b) Test the hypothesis that $ " 0, using ! " 0.05.
(c) Fit a simple linear regression model and test for signifi-

cance of regression using ! " 0.05. What conclusions
can you draw? How is the test for significance of regres-
sion related to the test on $ in part (b)?
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(a) Find the regression line relating the statistics final average
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That is, the conditional distribution of Y given X ! x is normal with mean

(11-40)

and variance Thus, the mean of the conditional distribution of Y given X ! x is a
simple linear regression model. Furthermore, there is a relationship between the correlation
coefficient " and the slope #1. From Equation 11-38 we see that if " ! 0, then #1 ! 0, which
implies that there is no regression of Y on X. That is, knowledge of X does not assist us in
predicting Y.

The method of maximum likelihood may be used to estimate the parameters #0 and #1. It
can be shown that the maximum likelihood estimators of those parameters are

(11-41)

and

(11-42)

We note that the estimators of the intercept and slope in Equations 11-41 and 11-42 are
identical to those given by the method of least squares in the case where X was assumed to be
a mathematical variable. That is, the regression model with Y and X jointly normally distrib-
uted is equivalent to the model with X considered as a mathematical variable. This follows
because the random variables Y given X ! x are independently and normally distributed with
mean #0 $ #1x and constant variance These results will also hold for any joint distribu-
tion of Y and X such that the conditional distribution of Y given X is normal.

It is possible to draw inferences about the correlation coefficient " in this model. The
estimator of " is the sample correlation coefficient

(11-43)

Note that

(11-44)

so the slope is just the sample correlation coefficient R multiplied by a scale factor that is
the square root of the “spread” of the Y values divided by the “spread” of the X values.Thus,

and R are closely related, although they provide somewhat different information. The
sample correlation coefficient R measures the linear association between Y and X, while 
measures the predicted change in the mean of Y for a unit change in X. In the case of a math-
ematical variable x, R has no meaning because the magnitude of R depends on the choice of
spacing of x. We may also write, from Equation 11-44,

R2 ! #̂2
1  
SXX
SST

!
#̂1SXY
SST

!
SSR
SST

#̂1

#̂1

#̂1

#̂1 ! aSST
SXX
b1% 2

 R

R !
a
n

i!1
Yi 1Xi & X 2

c an
i!1
1Xi & X 22 an

i!1
1Yi & Y 22 d 1%2 !

SXY1SXXSST21%2

'2
Y 0 x 

.

#̂1 !
a
n

i!1
Yi 1Xi & X 2

a
n

i!1
1Xi & X 22 !

SXY
SXX

#̂0 ! Y & #̂1X 

'2
Y 0 x 

.

E1Y 0  x2 ! #0 $ #1x
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with ! " 0.05. We can compute the t-statistic of Equation
11-46 as

This statistic is also reported in the Minitab output as a test of
H0: #1 " 0. Because t0.025,23 " 2.069, we reject H0 and con-
clude that the correlation coefficient $ % 0.

t0 "
r1n & 221 & r2 "

0.981812311 & 0.9640
" 24.8

Finally, we may construct an approximate 95% confi-
dence interval on $ from Equation 11-50. Since arctanh r "
arctanh 0.9818 " 2.3452, Equation 11-50 becomes

which reduces to

0.9585 ' $ ' 0.9921

tanh a2.3452 &
1.96122
b ' $ ' tanh a2.3452 (

1.96122
b

11-66. Suppose data is obtained from 20 pairs of (x, y) and
the sample correlation coefficient is 0.8.
(a) Test the hypothesis that against with

. Calculate the P-value.
(b) Test the hypothesis that against 

with . Calculate the P-value.
(c) Construct a 95% two-sided confidence interval for the

correlation coefficient. Explain how the questions in parts
(a) and (b) could be answered with a confidence interval.

11-67. Suppose data are obtained from 20 pairs of (x, y) and
the sample correlation coefficient is 0.75.
(a) Test the hypothesis that against with

. Calculate the P-value.
(b) Test the hypothesis that against 

with . Calculate the P-value.
(c) Construct a 95% one-sided confidence interval for the

correlation coefficient. Explain how the questions in
parts (a) and (b) could be answered with a confidence
interval.

11-68. A random sample of n " 25 observations was made
on the time to failure of an electronic component and the tem-
perature in the application environment in which the compo-
nent was used.
(a) Given that r " 0.83, test the hypothesis that $ " 0, using

! " 0.05. What is the P-value for this test?
(b) Find a 95% confidence interval on $.
(c) Test the hypothesis H0: $ " 0.8 versus H1: $ ! 0.8, using

! " 0.05. Find the P-value for this test.
11-69. A random sample of 50 observations was made on
the diameter of spot welds and the corresponding weld shear
strength.
(a) Given that r " 0.62, test the hypothesis that $ " 0, using

! " 0.01. What is the P-value for this test?
(b) Find a 99% confidence interval for $.
(c) Based on the confidence interval in part (b), can you con-

clude that $ " 0.5 at the 0.01 level of significance?
11-70. The following data gave X " the water content of
snow on April 1 and Y " the yield from April to July (in
inches) on the Snake River watershed in Wyoming for 1919 to
1935. (The data were taken from an article in Research Notes,
Vol. 61, 1950, Pacific Northwest Forest Range Experiment
Station, Oregon.)

! " 0.05
H1 : $ ) 0.5H1: $ " 0.5

! " 0.05
H1: $ ) 0H0 : $ " 0

! " 0.05
H1 : $ % 0.5H1 : $ " 0.5

! " 0.05
H1 : $ % 0H0 

: $ " 0

x y x y
23.1 10.5 37.9 22.8
32.8 16.7 30.5 14.1
31.8 18.2 25.1 12.9
32.0 17.0 12.4 8.8
30.4 16.3 35.1 17.4
24.0 10.5 31.5 14.9
39.5 23.1 21.1 10.5
24.2 12.4 27.6 16.1
52.5 24.9

(a) Estimate the correlation between Y and X.
(b) Test the hypothesis that $ " 0, using ! " 0.05.
(c) Fit a simple linear regression model and test for signifi-

cance of regression using ! " 0.05. What conclusions
can you draw? How is the test for significance of regres-
sion related to the test on $ in part (b)?

(d) Analyze the residuals and comment on model adequacy.
11-71. The final test and exam averages for 20 randomly
selected students taking a course in engineering statistics and a
course in operations research follow. Assume that the final
averages are jointly normally distributed.
(a) Find the regression line relating the statistics final average

to the OR final average. Graph the data.
(b) Test for significance of regression using ! " 0.05.
(c) Estimate the correlation coefficient.
(d) Test the hypothesis that $ " 0, using ! " 0.05.
(e) Test the hypothesis that $ " 0.5, using ! " 0.05.
(f) Construct a 95% confidence interval for the correlation

coefficient.

Statistics OR Statistics OR Statistics OR
86 80 86 81 83 81
75 81 71 76 75 70
69 75 65 72 71 73
75 81 84 85 76 72
90 92 71 72 84 80
94 95 62 65 97 98
83 80 90 93
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with ! " 0.05. We can compute the t-statistic of Equation
11-46 as

This statistic is also reported in the Minitab output as a test of
H0: #1 " 0. Because t0.025,23 " 2.069, we reject H0 and con-
clude that the correlation coefficient $ % 0.

t0 "
r1n & 221 & r2 "

0.981812311 & 0.9640
" 24.8

Finally, we may construct an approximate 95% confi-
dence interval on $ from Equation 11-50. Since arctanh r "
arctanh 0.9818 " 2.3452, Equation 11-50 becomes

which reduces to

0.9585 ' $ ' 0.9921

tanh a2.3452 &
1.96122
b ' $ ' tanh a2.3452 (

1.96122
b

11-66. Suppose data is obtained from 20 pairs of (x, y) and
the sample correlation coefficient is 0.8.
(a) Test the hypothesis that against with

. Calculate the P-value.
(b) Test the hypothesis that against 

with . Calculate the P-value.
(c) Construct a 95% two-sided confidence interval for the

correlation coefficient. Explain how the questions in parts
(a) and (b) could be answered with a confidence interval.

11-67. Suppose data are obtained from 20 pairs of (x, y) and
the sample correlation coefficient is 0.75.
(a) Test the hypothesis that against with

. Calculate the P-value.
(b) Test the hypothesis that against 

with . Calculate the P-value.
(c) Construct a 95% one-sided confidence interval for the

correlation coefficient. Explain how the questions in
parts (a) and (b) could be answered with a confidence
interval.

11-68. A random sample of n " 25 observations was made
on the time to failure of an electronic component and the tem-
perature in the application environment in which the compo-
nent was used.
(a) Given that r " 0.83, test the hypothesis that $ " 0, using

! " 0.05. What is the P-value for this test?
(b) Find a 95% confidence interval on $.
(c) Test the hypothesis H0: $ " 0.8 versus H1: $ ! 0.8, using

! " 0.05. Find the P-value for this test.
11-69. A random sample of 50 observations was made on
the diameter of spot welds and the corresponding weld shear
strength.
(a) Given that r " 0.62, test the hypothesis that $ " 0, using

! " 0.01. What is the P-value for this test?
(b) Find a 99% confidence interval for $.
(c) Based on the confidence interval in part (b), can you con-

clude that $ " 0.5 at the 0.01 level of significance?
11-70. The following data gave X " the water content of
snow on April 1 and Y " the yield from April to July (in
inches) on the Snake River watershed in Wyoming for 1919 to
1935. (The data were taken from an article in Research Notes,
Vol. 61, 1950, Pacific Northwest Forest Range Experiment
Station, Oregon.)

! " 0.05
H1 : $ ) 0.5H1: $ " 0.5

! " 0.05
H1: $ ) 0H0 : $ " 0

! " 0.05
H1 : $ % 0.5H1 : $ " 0.5

! " 0.05
H1 : $ % 0H0 

: $ " 0

x y x y
23.1 10.5 37.9 22.8
32.8 16.7 30.5 14.1
31.8 18.2 25.1 12.9
32.0 17.0 12.4 8.8
30.4 16.3 35.1 17.4
24.0 10.5 31.5 14.9
39.5 23.1 21.1 10.5
24.2 12.4 27.6 16.1
52.5 24.9

(a) Estimate the correlation between Y and X.
(b) Test the hypothesis that $ " 0, using ! " 0.05.
(c) Fit a simple linear regression model and test for signifi-

cance of regression using ! " 0.05. What conclusions
can you draw? How is the test for significance of regres-
sion related to the test on $ in part (b)?

(d) Analyze the residuals and comment on model adequacy.
11-71. The final test and exam averages for 20 randomly
selected students taking a course in engineering statistics and a
course in operations research follow. Assume that the final
averages are jointly normally distributed.
(a) Find the regression line relating the statistics final average

to the OR final average. Graph the data.
(b) Test for significance of regression using ! " 0.05.
(c) Estimate the correlation coefficient.
(d) Test the hypothesis that $ " 0, using ! " 0.05.
(e) Test the hypothesis that $ " 0.5, using ! " 0.05.
(f) Construct a 95% confidence interval for the correlation

coefficient.

Statistics OR Statistics OR Statistics OR
86 80 86 81 83 81
75 81 71 76 75 70
69 75 65 72 71 73
75 81 84 85 76 72
90 92 71 72 84 80
94 95 62 65 97 98
83 80 90 93
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which is just the coefficient of determination. That is, the coefficient of determination R2 is
just the square of the correlation coefficient between Y and X.

It is often useful to test the hypotheses

(11-45)

The appropriate test statistic for these hypotheses is

H1: ! " 0
H0: ! # 0

Confidence
Interval for 

a Correlation
Coefficient

(11-49)Z0 # 1arctanh R $ arctanh !02 1n $ 321%2

(11-50)tanh aarctanh r $
z&%21n $ 3

b ' ! ' tanh aarctanh r (
z&%21n $ 3

b

which has the t distribution with n $ 2 degrees of freedom if H0: ! # 0 is true. Therefore, we
would reject the null hypothesis if !t0! ) t&"2,n$2. This test is equivalent to the test of the hypothesis
H0: *1 # 0 given in Section 11-5.1. This equivalence follows directly from Equation 11-46.

The test procedure for the hypotheses

(11-47)

where !0 ! 0 is somewhat more complicated. For moderately large samples (say, n + 25), the
statistic

(11-48)

is approximately normally distributed with mean and variance

respectively. Therefore, to test the hypothesis H0: ! # !0, we may use the test statistic 

,Z # arctanh ! #
1
2 ln 

1 ( !

1 $ !
  and  -2

Z #
1

n $ 3

Z # arctanh R #
1
2   ln  

1 ( R
1 $ R

H1: ! " !0

H0: ! # !0

and reject H0: ! # !0 if the value of the test statistic in Equation 11-49 is such that !z0! ) z&"2.
It is also possible to construct an approximate 100(1 $ &)% confidence interval for !, using

the transformation in Equation 11-48. The approximate 100(1 $ &)% confidence interval is

(11-46)T0 #
R1n $ 221 $ R2

Test Statistic
for Zero

Correlation

where tanh u # (eu $ e$u)"(eu ( e$u).
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Summary for model diagnosis
• Check	
  residuals	
  are	
  normally	
  distributed?	
  

• use	
  normal	
  probability	
  plot	
  
• Check	
  linearity?	
  

• look	
  at	
  whether	
  residual	
  is	
  stationary	
  
• Check	
  whether	
  or	
  not	
  	
  X	
  and	
  Y	
  are	
  correlated?	
  

• z-­‐test	
  and	
  ANOVA	
  
• test	
  and	
  confidence	
  interval	
  for	
  correlation	
  coefficient	
  	
  

• How	
  to	
  use	
  regression	
  model:	
  
• mean	
  response	
  and	
  its	
  confidence	
  interval	
  
• predicted	
  y	
  and	
  its	
  confidence	
  interval
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