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Midterm 2

• mean:	
  91.2	
  
• median:	
  93.75	
  
• std:	
  6.5
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Meddicorp Sales

Meddicorp Company sells medical 
supplies to hospitals, clinics, and 
doctor's offices.  
!
Meddicorp's management considers 
the effectiveness of a new 
advertising program.  
!
Management wants to know if the 
advertisement in 1999 is related to 
sales. 
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Data
The company observes for 25 offices the yearly 
sales (in thousands)  and the advertisement 
expenditure for the new program (in hundreds)  
!
SALES    ADV 
1     963.50    374.27 
2      893.00   408.50 
3    1057.25   414.31 
4    1183.25   448.42 
5    1419.50   517.88 
.......... 
!
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Regression analysis

• Step	
  1:	
  graphical	
  display	
  of	
  data	
  —	
  scatter	
  plot:	
  sales	
  
vs.	
  advertisement	
  cost
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• Step	
  2:	
  find	
  the	
  relationship	
  or	
  association	
  between	
  
Sales	
  and	
  Advertisement	
  Cost	
  —	
  Regression
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Regression Analysis

• The	
  collection	
  of	
  statistical	
  tools	
  that	
  are	
  used	
  to	
  
model	
  and	
  explore	
  relationships	
  between	
  variables	
  
that	
  are	
  related	
  in	
  nondeterministic	
  manner	
  is	
  
called	
  regression	
  analysis	
  
!

• Occurs	
  frequently	
  in	
  engineering	
  and	
  science

�7



Scatter Diagram
Many problems in engineering and science involve exploring the relationships between 

two or more variables.  !
Regression analysis is a statistical technique that is very useful for these types of 

problems
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Basics of Regression

• We	
  observe	
  a	
  response	
  or	
  dependent	
  variable	
  (Y)	
  
!

• With	
  each	
  (Y),	
  we	
  also	
  observe	
  regressors	
  or	
  
predictors	
  {X1,	
  …,	
  Xn}	
  
!

• Goal:	
  determine	
  the	
  mathematical	
  relationship	
  
between	
  response	
  variables	
  and	
  regressors	
  	
  

!
• Y	
  =	
  h(X1,	
  …,	
  Xn)
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• Function	
  can	
  be	
  non-­‐linear	
  
• In	
  this	
  class,	
  we	
  will	
  focus	
  on	
  the	
  case	
  where	
  Y	
  is	
  a	
  
linear	
  function	
  of	
  {X1,	
  …,	
  Xn}	
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C1

C
2

S = 0.680055      R-Sq = 96.9 %      R-Sq(adj) = 96.2 %
 - 0.246379 C1**2

C2 = -0.488636 + 3.78859 C1

Regression PlotY = h(X1,...,Xn) = β0+β1X1+...+βnXn 



Different forms of regression

• Simple	
  linear	
  regression	
  
!
!

• Multiple	
  linear	
  regression	
  
!
!

• Polynomial	
  regression
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Y = β0 + β1X + ε

Y = β0 + β1X1 + β2X2+ ε 

 Y = β0 + β1X + β2X2+ ε 

. . ..
..

. 

. . 
. . 
. 



Basics of regressions

Which is the RESPONSE and which is the 
PREDICTOR? 
!
 The response or dependent variable varies with 

different values of the regressor/predictor.  
!
 The predictor values are fixed: we observe the 

response for these fixed values 
!
 The focus is in explaining the response variable in 

association with one or more predictors
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Simple linear regression
Our goal is to find the best line that describes a linear relationship: 
!
Find (β0,β1) where 
!
Y = β0 + β1X + ε 
!

Unknown parameters:  

 1.  β0  Intercept (where the line crosses y-axis) 
 2.  β1 Slope of the line 
!
Basic idea 
  a.  Plot observations (X,Y) 
  b.  Find best line that follows plotted points 
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S = 1.13916      R-Sq = 87.9 %      R-Sq(adj) = 86.6 %

C2 = 1.80955 + 1.29268 C1

Regression Plot



Class activity
1. In the Meddicorp Company example, the response is: 
  A.  Sales         B. Advertisement Expenditure 
!
2. In the Meddicorp Company example, the predictor is: 
 A.  Sales         B. Advertisement Expenditure 
!
3. To learn about the association between sales and the advertisement 
expenditure we can use simple linear regression: 
 A. True            Β. False  
!
4. If the association between response and predictor is positive then the slope is 
 A. Positive     Β. Negative  C. We cannot identify the slope sign
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Simple linear regression: model
With observed data {(X1,Y1),….,(Xn,Yn)}, we model the linear 
relationship  
!
!
!
!
!

E(εi) = 0 
Var(εi) = σ2 

{ε1,…, εn} are independent random variables 
(Later we assume εi ~ Normal)
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 Yi = β0 + β1Xi + εi, i =1,…,n 

Later, we will check these assumptions when we check �model adequacy� 



Summary: simple linear regression
Based on the scatter diagram, it is probably reasonable to assume that the mean of the 
random variable Y is related to X by the following simple linear regression model:
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iii XY εββ ++= 10 ni ,,2,1 !=

Intercept 
 

Slope 

 

iε

Random error 
 

Response 
 

Regressor or Predictor 

 

ε i ∼Ν 0, σ 2( )

where the slope and intercept of the line are called regression coefficients. 

• The case of simple linear regression considers a single regressor or predictor x and a 
dependent or response variable Y. 



Estimate regression parameters
To estimate (β0,β1) , we find values that minimize squared error: 
!
!
!
!
!
• derivation: method of least squares
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Method of least squares

406 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

previously, the expected value of Y for each value of x is

where the intercept !0 and the slope !1 are unknown regression coefficients. We assume that
each observation, Y, can be described by the model

(11-2)

where " is a random error with mean zero and (unknown) variance #2. The random errors cor-
responding to different observations are also assumed to be uncorrelated random variables.

Suppose that we have n pairs of observations (x1, y1), (x2, y2), p , (xn, yn). Figure 11-3
shows a typical scatter plot of observed data and a candidate for the estimated regression
line. The estimates of !0 and !1 should result in a line that is (in some sense) a “best fit” to
the data. The German scientist Karl Gauss (1777–1855) proposed estimating the parameters
!0 and !1 in Equation 11-2 to minimize the sum of the squares of the vertical deviations in
Fig. 11-3.

We call this criterion for estimating the regression coefficients the method of least
squares. Using Equation 11-2, we may express the n observations in the sample as

(11-3)

and the sum of the squares of the deviations of the observations from the true regression 
line is

(11-4)

The least squares estimators of !0 and !1, say, and must satisfy

(11-5) 
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Figure 11-3 Deviations of the data from the
estimated regression model.
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To estimate (β0,β1) , we find values that  
minimize squared error: 
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Simplifying these two equations yields

(11-6)
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The fitted or estimated regression line is therefore

(11-9)

Note that each pair of observations satisfies the relationship

where ei " yi % is called the residual. The residual describes the error in the fit of the
model to the ith observation yi. Later in this chapter we will use the residuals to provide
information about the adequacy of the fitted model.

Notationally, it is occasionally convenient to give special symbols to the numerator and
denominator of Equation 11-8. Given data (x1, y1), (x2, y2), p , (xn, yn), let
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ŷi

yi " !̂0 # !̂1xi # ei,  i " 1, 2, p , n
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Least square estimates
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Alternative notation
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Example: oxygen and hydrocarcon level
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As an illustration, consider the data in Table 11-1. In this table y is the purity of oxygen
produced in a chemical distillation process, and x is the percentage of hydrocarbons that are
present in the main condenser of the distillation unit. Figure 11-1 presents a scatter diagram
of the data in Table 11-1. This is just a graph on which each (xi, yi) pair is represented as a point
plotted in a two-dimensional coordinate system. This scatter diagram was produced by
Minitab, and we selected an option that shows dot diagrams of the x and y variables along the
top and right margins of the graph, respectively, making it easy to see the distributions of the
individual variables (box plots or histograms could also be selected). Inspection of this scatter
diagram indicates that, although no simple curve will pass exactly through all the points, there
is a strong indication that the points lie scattered randomly around a straight line. Therefore, it
is probably reasonable to assume that the mean of the random variable Y is related to x by the
following straight-line relationship:

where the slope and intercept of the line are called regression coefficients. While the mean of
Y is a linear function of x, the actual observed value y does not fall exactly on a straight line.
The appropriate way to generalize this to a probabilistic linear model is to assume that the
expected value of Y is a linear function of x, but that for a fixed value of x the actual value of Y
is determined by the mean value function (the linear model) plus a random error term, say,

(11-1)Y ! "0 # "1x # $

E1Y 0  x2 ! %Y 
 0  x ! "0 # "1x

Table 11-1 Oxygen and Hydrocarbon Levels

Observation Hydrocarbon Level Purity
Number x (%) y (%)

1 0.99 90.01
2 1.02 89.05
3 1.15 91.43
4 1.29 93.74
5 1.46 96.73
6 1.36 94.45
7 0.87 87.59
8 1.23 91.77
9 1.55 99.42

10 1.40 93.65
11 1.19 93.54
12 1.15 92.52
13 0.98 90.56
14 1.01 89.54
15 1.11 89.85
16 1.20 90.39
17 1.26 93.25
18 1.32 93.41
19 1.43 94.98
20 0.95 87.33 Figure 11-1 Scatter diagram of oxygen purity versus hydrocarbon

level from Table 11-1.
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As an illustration, consider the data in Table 11-1. In this table y is the purity of oxygen
produced in a chemical distillation process, and x is the percentage of hydrocarbons that are
present in the main condenser of the distillation unit. Figure 11-1 presents a scatter diagram
of the data in Table 11-1. This is just a graph on which each (xi, yi) pair is represented as a point
plotted in a two-dimensional coordinate system. This scatter diagram was produced by
Minitab, and we selected an option that shows dot diagrams of the x and y variables along the
top and right margins of the graph, respectively, making it easy to see the distributions of the
individual variables (box plots or histograms could also be selected). Inspection of this scatter
diagram indicates that, although no simple curve will pass exactly through all the points, there
is a strong indication that the points lie scattered randomly around a straight line. Therefore, it
is probably reasonable to assume that the mean of the random variable Y is related to x by the
following straight-line relationship:

where the slope and intercept of the line are called regression coefficients. While the mean of
Y is a linear function of x, the actual observed value y does not fall exactly on a straight line.
The appropriate way to generalize this to a probabilistic linear model is to assume that the
expected value of Y is a linear function of x, but that for a fixed value of x the actual value of Y
is determined by the mean value function (the linear model) plus a random error term, say,
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 0  x ! "0 # "1x
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Computer software programs are widely used in regression modeling. These programs
typically carry more decimal places in the calculations. Table 11-2 shows a portion of the
output from Minitab for this problem. The estimates and are highlighted. In subse-
quent sections we will provide explanations for the information provided in this computer
output.

!̂1!̂0

EXAMPLE 11-1 Oxygen Purity
We will fit a simple linear regression model to the oxygen
purity data in Table 11-1. The following quantities may be
computed:

Sx x " a
20

i"1
x i

2 #

aa20

i"1
xib2

20
" 29.2892 #

123.9222
20

a
20

i"1
xi yi " 2,214.6566

a
20

i"1
 yi2 " 170,044.5321 a

20

i"1
xi2 " 29.2892

x " 1.1960 y " 92.1605

n " 20 a
20

i"1
xi " 23.92 a

20

i"1
 yi " 1,843.21

Therefore, the least squares estimates of the slope and inter-
cept are

and

The fitted simple linear regression model (with the coefficients
reported to three decimal places) is

This model is plotted in Fig. 11-4, along with the sample data.
Practical Interpretation: Using the regression model, we

would predict oxygen purity of " 89.23% when the
hydrocarbon level is x " 1.00%. The purity 89.23% may be
interpreted as  an estimate of the true population mean purity
when x " 1.00%, or as an estimate of a new observation
when x = 1.00%. These estimates are, of course, subject to
error; that is, it is unlikely that a future observation on purity
would be exactly 89.23% when the hydrocarbon level is
1.00%. In subsequent sections we will see how to use confi-
dence intervals and prediction intervals to describe the error
in estimation from a regression model.
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quent sections we will provide explanations for the information provided in this computer
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would predict oxygen purity of " 89.23% when the
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  mean	
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  when	
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  error	
  	
  
• later:	
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  confidence	
  intervals	
  to	
  describe	
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error	
  in	
  estimation	
  from	
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  regression	
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Computer software programs are widely used in regression modeling. These programs
typically carry more decimal places in the calculations. Table 11-2 shows a portion of the
output from Minitab for this problem. The estimates and are highlighted. In subse-
quent sections we will provide explanations for the information provided in this computer
output.

!̂1!̂0

EXAMPLE 11-1 Oxygen Purity
We will fit a simple linear regression model to the oxygen
purity data in Table 11-1. The following quantities may be
computed:

Sx x " a
20

i"1
x i

2 #

aa20

i"1
xib2

20
" 29.2892 #

123.9222
20

a
20

i"1
xi yi " 2,214.6566

a
20

i"1
 yi2 " 170,044.5321 a

20

i"1
xi2 " 29.2892

x " 1.1960 y " 92.1605

n " 20 a
20

i"1
xi " 23.92 a

20

i"1
 yi " 1,843.21

Therefore, the least squares estimates of the slope and inter-
cept are

and

The fitted simple linear regression model (with the coefficients
reported to three decimal places) is

This model is plotted in Fig. 11-4, along with the sample data.
Practical Interpretation: Using the regression model, we

would predict oxygen purity of " 89.23% when the
hydrocarbon level is x " 1.00%. The purity 89.23% may be
interpreted as  an estimate of the true population mean purity
when x " 1.00%, or as an estimate of a new observation
when x = 1.00%. These estimates are, of course, subject to
error; that is, it is unlikely that a future observation on purity
would be exactly 89.23% when the hydrocarbon level is
1.00%. In subsequent sections we will see how to use confi-
dence intervals and prediction intervals to describe the error
in estimation from a regression model.
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.ŷ " 74.283 $ 14.947x

" 0.68088

and

 " 2,214.6566 #
123.922 11,843.212

20
" 10.17744

 Sx y " a
20

i"1
xiyi #

aa20

i"1
xib aa20

i"1
 yib

20

JWCL232_c11_401-448.qxd  1/14/10  8:02 PM  Page 408

408 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

Computer software programs are widely used in regression modeling. These programs
typically carry more decimal places in the calculations. Table 11-2 shows a portion of the
output from Minitab for this problem. The estimates and are highlighted. In subse-
quent sections we will provide explanations for the information provided in this computer
output.

!̂1!̂0

EXAMPLE 11-1 Oxygen Purity
We will fit a simple linear regression model to the oxygen
purity data in Table 11-1. The following quantities may be
computed:

Sx x " a
20

i"1
x i

2 #

aa20

i"1
xib2

20
" 29.2892 #

123.9222
20

a
20

i"1
xi yi " 2,214.6566

a
20

i"1
 yi2 " 170,044.5321 a

20

i"1
xi2 " 29.2892

x " 1.1960 y " 92.1605

n " 20 a
20

i"1
xi " 23.92 a

20

i"1
 yi " 1,843.21

Therefore, the least squares estimates of the slope and inter-
cept are

and

The fitted simple linear regression model (with the coefficients
reported to three decimal places) is

This model is plotted in Fig. 11-4, along with the sample data.
Practical Interpretation: Using the regression model, we

would predict oxygen purity of " 89.23% when the
hydrocarbon level is x " 1.00%. The purity 89.23% may be
interpreted as  an estimate of the true population mean purity
when x " 1.00%, or as an estimate of a new observation
when x = 1.00%. These estimates are, of course, subject to
error; that is, it is unlikely that a future observation on purity
would be exactly 89.23% when the hydrocarbon level is
1.00%. In subsequent sections we will see how to use confi-
dence intervals and prediction intervals to describe the error
in estimation from a regression model.

ŷ
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Estimation of variance
• Using	
  the	
  fitted	
  model,	
  we	
  can	
  estimate	
  value	
  of	
  the	
  
response	
  variable	
  for	
  given	
  predictor	
  
!
!

• Residuals:	
  
• Our	
  model:	
  	
  Yi	
  =	
  β0	
  +	
  β1Xi	
  +	
  εi,	
  i	
  =1,…,n,	
  Var(εi)	
  =	
  σ2	
  	
  
• Unbiased	
  estimator	
  (MSE:	
  Mean	
  Square	
  Error)	
  
!
!

• 	
  oxygen	
  and	
  hydrocarcon	
  level	
  example
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410 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

where is the total sum of squares of the response
variable y. Formulas such as this are presented in Section 11-4. The error sum of squares and
the estimate of !2 for the oxygen purity data, are highlighted in the Minitab output
in Table 11-2.

!̂2 " 1.18,

SST " g n
i"1 1 yi # y 22 " g n

i"1 yi
2 # ny#2

EXERCISES FOR SECTION 11-2

11-1. An article in Concrete Research [“Near Surface
Characteristics of Concrete: Intrinsic Permeability” (Vol. 41,
1989)] presented data on compressive strength x and intrinsic per-
meability y of various concrete mixes and cures. Summary quan-
tities are n " 14, gyi " 572, g " 23,530, g xi " 43, "g xi

2y2
i

(e) Given that yards, find the fitted value of y and the
corresponding residual.

x " 7.21

Yards per Rating
Player Team Attempt Points
Philip Rivers SD 8.39 105.5
Chad Pennington MIA 7.67 97.4
Kurt Warner ARI 7.66 96.9
Drew Brees NO 7.98 96.2
Peyton Manning IND 7.21 95
Aaron Rodgers GB 7.53 93.8
Matt Schaub HOU 8.01 92.7
Tony Romo DAL 7.66 91.4
Jeff Garcia TB 7.21 90.2
Matt Cassel NE 7.16 89.4
Matt Ryan ATL 7.93 87.7
Shaun Hill SF 7.10 87.5
Seneca Wallace SEA 6.33 87
Eli Manning NYG 6.76 86.4
Donovan McNabb PHI 6.86 86.4
Jay Cutler DEN 7.35 86
Trent Edwards BUF 7.22 85.4
Jake Delhomme CAR 7.94 84.7
Jason Campbell WAS 6.41 84.3
David Garrard JAC 6.77 81.7
Brett Favre NYJ 6.65 81
Joe Flacco BAL 6.94 80.3
Kerry Collins TEN 6.45 80.2
Ben Roethlisberger PIT 7.04 80.1
Kyle Orton CHI 6.39 79.6
JaMarcus Russell OAK 6.58 77.1
Tyler Thigpen KC 6.21 76
Gus Freotte MIN 7.17 73.7
Dan Orlovsky DET 6.34 72.6
Marc Bulger STL 6.18 71.4
Ryan Fitzpatrick CIN 5.12 70
Derek Anderson CLE 5.71 66.5

157.42, and g xiyi " 1697.80. Assume that the two variables
are related according to the simple linear regression model.
(a) Calculate the least squares estimates of the slope and intercept.

Estimate !2. Graph the regression line.
(b) Use the equation of the fitted line to predict what perme-

ability would be observed when the compressive strength
is x " 4.3.

(c) Give a point estimate of the mean permeability when
compressive strength is x " 3.7.

(d) Suppose that the observed value of permeability at x "
3.7 is y " 46.1. Calculate the value of the corresponding
residual.

11-2. Regression methods were used to analyze the data
from a study investigating the relationship between roadway
surface temperature (x) and pavement deflection ( y). Summary
quantities were n " 20, g yi " 12.75, " 8.86, g xi "g yi

2

1478, " 143,215.8, and g xiyi " 1083.67.
(a) Calculate the least squares estimates of the slope and in-

tercept. Graph the regression line. Estimate !2.
(b) Use the equation of the fitted line to predict what pave-

ment deflection would be observed when the surface
temperature is 85$F.

(c) What is the mean pavement deflection when the surface
temperature is 90$F?

(d) What change in mean pavement deflection would be ex-
pected for a 1$F change in surface temperature?

11-3. The following table presents data on the ratings of quar-
terbacks for the 2008 National Football League season (source:
The Sports Network). It is suspected that the rating (y) is related
to the average number of yards gained per pass attempt (x).
(a) Calculate the least squares estimates of the slope and

intercept. What is the estimate of ? Graph the regres-
sion model.

(b) Find an estimate of the mean rating if a quarterback
averages 7.5 yards per attempt.

(c) What change in the mean rating is associated with a
decrease of one yard per attempt?

(d) To increase the mean rating by 10 points, how much in-
crease in the average yards per attempt must be generated?

!2

gx2
i
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Example: Oil Well Drilling Costs

Estimating the costs of 
drilling oil wells is an 
important consideration 
for the oil industry. 
!
Data: the total costs 
and the depths of 16 
off-shore oil wells 
located in Philippines.

�26

Depth  Cost 

5000  2596.8 

5200  3328.0 

6000  3181.1 

6538  3198.4 

7109  4779.9 

7556  5905.6 

8005  5769.2 

8207  8089.5 

Depth  Cost 

8210  4813.1 

8600  5618.7 

9026  7736.0 

9197  6788.3 

9926  7840.8 

10813  8882.5 

13800  10489.5 

14311  12506.6 



• Step	
  1:	
  graphical	
  display	
  of	
  the	
  data	
  
!
!
!
!
!
!
!
!

• R	
  code:	
  plot(Depth,	
  Cost,	
  xlab=	
  “Depth”,	
  ylab	
  =	
  “Cost”)
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Class activity 
1. In this example, the response is: 
  A. The drilling cost     B. The well depth 
!
!
2. In this example, the dependent variable is: 
 A. The drilling cost     B. The well depth 
!
!
3. Is there a linear association between the drilling cost and the well depth? 
A.  Yes and positive Β. Yes and negative  C. No

�28



• Step	
  2:	
  find	
  the	
  relationship	
  between	
  Depth	
  and	
  Cost

�29



Results and use of regression model
1. Fit a linear regression model: 
Estimates (β0,β1) are (-2277.1, 1.0033)  

2. What does the model predict as the cost increase for an additional 
depth of 1000 ft? 

If we increase X by 1000, we increase Y by 1000β1 = $1003 
!
3. What cost would you predict for an oil well of 10,000 ft depth? 
X = 10,000 ft is in the range of the data, and 
estimate of the line at x=10,000 is                       = -2277.1 + 10,033 = 

$7753 
!
4. What is the estimate of the error variance? Estimate σ2 ≈ 774,211 
!
5.What could you say about the cost of an oil well of depth 20,000 ft? 
X=20,000 ft is much greater than all the observed values of X 
We should not extrapolate the regression out that far. �30

10
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Summary
• Simple	
  linear	
  regression	
  
!

• Estimate	
  coefficients	
  from	
  data:	
  method	
  of	
  least	
  
squares	
  
!
!
!

• Estimate	
  of	
  variance

�31

Y = β0 + β1X

xy 10
ˆˆ ββ −=

xx

xy

S
S

=1̂β
ii xy 10

ˆˆˆ ββ += Fitted (estimated) 
regression model 

406 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

previously, the expected value of Y for each value of x is

where the intercept !0 and the slope !1 are unknown regression coefficients. We assume that
each observation, Y, can be described by the model

(11-2)

where " is a random error with mean zero and (unknown) variance #2. The random errors cor-
responding to different observations are also assumed to be uncorrelated random variables.

Suppose that we have n pairs of observations (x1, y1), (x2, y2), p , (xn, yn). Figure 11-3
shows a typical scatter plot of observed data and a candidate for the estimated regression
line. The estimates of !0 and !1 should result in a line that is (in some sense) a “best fit” to
the data. The German scientist Karl Gauss (1777–1855) proposed estimating the parameters
!0 and !1 in Equation 11-2 to minimize the sum of the squares of the vertical deviations in
Fig. 11-3.

We call this criterion for estimating the regression coefficients the method of least
squares. Using Equation 11-2, we may express the n observations in the sample as

(11-3)

and the sum of the squares of the deviations of the observations from the true regression 
line is

(11-4)

The least squares estimators of !0 and !1, say, and must satisfy

(11-5) 
$L
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`
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yi & !̂0 & !̂1xi2  xi % 0
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`
!̂  0,!̂1

% &2 a
n

i%1
1

 
yi & !̂0 & !̂1xi2 % 0

!̂1,!̂0

L % a
n

i%1
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i % a

n

i%1
1

 
yi & !0 & !1xi22

yi % !0 ' !1 xi ' "i,  i % 1, 2, p , n

Y % !0 ' !1 x ' "

E1Y 0  x2 % !0 ' !1 x
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y
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Data (y)
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Figure 11-3 Deviations of the data from the
estimated regression model.
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