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Test difference in two means
• Safety	  of	  drinking	  water	  (Arizona	  Republic,	  May	  27,	  
2001)	  

• Water	  sampled	  from	  10	  communities	  in	  Pheonix	  
• And	  10	  communities	  from	  rural	  Arizona

Phoenix	  
μ1

rural	  Arizona	  	  
μ2	  



Test difference in more than 2 mean 
• In	  many	  cases	  we	  may	  want	  to	  compare	  means	  of	  
more	  than	  two	  populations	  
!
!
!
!
!
!
!

• In	  practice,	  many	  experiment	  requires	  comparing	  
more	  than	  two	  levels	  

• Analysis	  of	  Variance	  (ANOVA)

Phoenix	  
μ1

rural	  Arizona	  	  
μ2	  

Northern
Cali	  μ3

Southern	  
Cali	  μ4

Nevada	  
μ5



ANOVA Example 1:  
Voice Pitch and Height 
Each singer in the NY Choral Society in 1979 self-reported his or 
her height to the nearest inch. Their voice parts in order from 
highest pitch to lowest pitch are Soprano, Alto, Tenor, Bass. The 
first two are typically sung by female voices and the last two by 
male voices.  
!
One can examine how height varies across voice range, or make 
comparisons of sopranos and altos and separate comparisons of 
tenors and basses. 
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Compare Singer Height by Voice Pitch
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1.  Is there a difference 
in the height by 
voice pitch? 

2. Which singers are 
taller? 



ANOVA Example 2:  Keybord layout 

Three different keyboard layouts are being compared in terms of 
typing speed. 

�6

Layout 1  Layout 2  Layout 3 

23.8  30.2  27.0 

25.6  29.9  25.4 

24.0  29.1  25.6 

25.1  28.8  24.2 

25.5  29.1  24.8 

26.1  28.6  24.0 

23.8  28.3  25.5 

25.7  28.7  23.9 

24.3  27.9  22.6 

26.0  30.5  26.0 

24.6  *    23.4 

27.0  *    *    



Operation Time by Keyboard Layout
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1.  Is there a difference 
in the time taken to 
perform a task?  

2. Which layout is more 
effective? 



ANOVA Example 3: Carpet Wear
Six carpet fiber blends are tested for the amount of wear.
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Carpet Type   Number Sampled 

 1    16 
 2    16 
 3    13 
 4    16 
 5    14 
 6    15 



Example:

Test means of multiple normals

Question	  of	  interest:	  Is	  hardwood	  concentration	  an	  important	  factor	  in	  improving	  tensile	  
strength?	  
!

!
"
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others from differsmean  oneleast at :
: 43210
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Hypothesis Test on Means of Multiple Normal 
Distributions

!
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others from differsmean  oneleast at :
: 43210
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Hypothesis Test on Means of Multiple Normal 
Distributions

•	  The	  levels	  of	  the	  factor	  are	  sometimes	  called	  treatments.	  
•	  Each	  treatment	  has	  six	  observations	  or	  replicates.	  
•	  The	  runs	  are	  run	  in	  random	  order.	  
•	  This	  setting	  is	  known	  as	  Completely	  Randomized	  Single-‐Factor	  Experiment.

nj
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!
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=

= Number	  of	  populations

Sample	  size

ijy Observation	  j	  from	  
population	  i

Grand	  Total Grand	  Average

Population	  i	  Total

Population	  i	  Average



Hypothesis Test on Means of Multiple Normal 
Distributions
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Hypothesis Test on Means of Multiple Normal 
Distributions

We	  wish	  to	  test	  the	  hypotheses:

!
"
# ===

others from differsmean  oneleast at :
: 43210

aH
H µµµµ

We	  know	  that	   ii τµµ +=

Therefore,	  the	  hypothesis	  test	  can	  be	  written	  as



Analysis of Variance (ANOVA)

!
"
# ===

others from differsmean  oneleast at :
: 43210

aH
H µµµµ

ANOVA	  partitions	  the	  total	  variability	  into	  two	  parts

Total	  Variations	  =	  Between-‐group	  Variations	  +	  Within-‐group	  Variations
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SST	  =	  SSB	  +	  SSW	  	  or	  	  (SST	  =	  SStreatments	  +	  SSError)



Calculation in ANOVA
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has an F-distribution with a ! 1 and a (n ! 1) degrees of freedom. Furthermore, from the
expected mean squares, we know that MSE is an unbiased estimator of "2. Also, under the null
hypothesis, MSTreatments is an unbiased estimator of "2. However, if the null hypothesis is
false, the expected value of MSTreatments is greater than "2. Therefore, under the alternative
hypothesis, the expected value of the numerator of the test statistic (Equation 13-7)
is greater than the expected value of the denominator. Consequently, we should reject H0
if the statistic is large. This implies an upper-tail, one-tail critical region. Therefore,
we would reject H0 if where f0 is the computed value of F0 from
Equation 13-7.

Efficient computational formulas for the sums of squares may be obtained by
expanding and simplifying the definitions of SSTreatments and SST. This yields the following
results.

f0 # f$,a!1,a 1n!12

The sums of squares computing formulas for the ANOVA with equal sample sizes in
each treatment are

(13-8)

and

(13-9)

The error sum of squares is obtained by subtraction as

(13-10)SSE % SST ! SSTreatments

SS Treatments % a
a

i%1
  

y2
i .
n !

y..2

N

SS T % a
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 a
n

j%1
 y2
ij !

y..2
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Computing
Formulas for

ANOVA: Single
Factor with

Equal Sample
Sizes

The computations for this test procedure are usually summarized in tabular form as shown in
Table 13-3. This is called an analysis of variance (or ANOVA) table.

Table 13-3 The Analysis of Variance for a Single-Factor Experiment, Fixed-Effects Model

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Treatments SSTreatments a ! 1 MSTreatments

Error SSE a(n ! 1) MSE
Total SST an ! 1

MSTreatments

MSE

EXAMPLE 13-1 Tensile Strength ANOVA
Consider the paper tensile strength experiment described in
Section 13-2.1. This experiment is a CRD. We can use the
analysis of variance to test the hypothesis that different hard-
wood concentrations do not affect the mean tensile strength of
the paper.

The hypotheses are

 H1: &i ' 0 for at least one i
 H0: &1 % &2 % &3 % &4 % 0

We will use . The sums of squares for the analysis of
variance are computed from Equations 13-8, 13-9, and 13-10
as follows:

 % 1722 ( 1822 ( p ( 12022 !
138322

24
% 512.96

 SST % a
4

i%1
 a

6

j%1
 y2
ij !

y..2

N

$ % 0.01
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unimportant. Instead, we test hypotheses about the variability of the and try to estimate this
variability. This is called the random effects, or components of variance, model.

In this section we develop the analysis of variance for the fixed-effects model. The 
analysis of variance is not new to us; it was used previously in the presentation of regression
analysis. However, in this section we show how it can be used to test for equality of treatment
effects. In the fixed-effects model, the treatment effects !i are usually defined as deviations
from the overall mean ", so that

(13-2)

Let yi. represent the total of the observations under the ith treatment and represent the average
of the observations under the ith treatment. Similarly, let represent the grand total of all obser-
vations and represent the grand mean of all observations. Expressed mathematically,

(13-3)

where N # an is the total number of observations. Thus, the “dot” subscript notation implies
summation over the subscript that it replaces.

We are interested in testing the equality of the a treatment means "1, "2, . . . , "a. Using
Equation 13-2, we find that this is equivalent to testing the hypotheses

(13-4)

Thus, if the null hypothesis is true, each observation consists of the overall mean " plus a
realization of the random error component $ij. This is equivalent to saying that all N
observations are taken from a normal distribution with mean " and variance %2. Therefore,
if the null hypothesis is true, changing the levels of the factor has no effect on the mean
response.

The ANOVA partitions the total variability in the sample data into two component parts.
Then, the test of the hypothesis in Equation 13-4 is based on a comparison of two independ-
ent estimates of the population variance. The total variability in the data is described by the
total sum of squares

The partition of the total sum of squares is given in the following definition.
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The sum of squares identity is

(13-5)

or symbolically

(13-6)SST # SSTreatments ) SSE
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unimportant. Instead, we test hypotheses about the variability of the and try to estimate this
variability. This is called the random effects, or components of variance, model.

In this section we develop the analysis of variance for the fixed-effects model. The 
analysis of variance is not new to us; it was used previously in the presentation of regression
analysis. However, in this section we show how it can be used to test for equality of treatment
effects. In the fixed-effects model, the treatment effects !i are usually defined as deviations
from the overall mean ", so that

(13-2)

Let yi. represent the total of the observations under the ith treatment and represent the average
of the observations under the ith treatment. Similarly, let represent the grand total of all obser-
vations and represent the grand mean of all observations. Expressed mathematically,

(13-3)

where N # an is the total number of observations. Thus, the “dot” subscript notation implies
summation over the subscript that it replaces.

We are interested in testing the equality of the a treatment means "1, "2, . . . , "a. Using
Equation 13-2, we find that this is equivalent to testing the hypotheses

(13-4)

Thus, if the null hypothesis is true, each observation consists of the overall mean " plus a
realization of the random error component $ij. This is equivalent to saying that all N
observations are taken from a normal distribution with mean " and variance %2. Therefore,
if the null hypothesis is true, changing the levels of the factor has no effect on the mean
response.

The ANOVA partitions the total variability in the sample data into two component parts.
Then, the test of the hypothesis in Equation 13-4 is based on a comparison of two independ-
ent estimates of the population variance. The total variability in the data is described by the
total sum of squares

The partition of the total sum of squares is given in the following definition.

SST # a
a

i#1
a
n

j#1
 1 yij & y..22

 H1: !i ' 0 for at least one i
 H0: !1 # !2 # p # !a # 0

 y.. # a
a

i#1
 a

n

j#1
 yij   y.. # y..(N

 yi. # a
n

j#1
 yij  yi. # yi.(n  i # 1, 2, . . . , a

y..
y..

yi.

a
a

i#1
 !i # 0

!i

The sum of squares identity is

(13-5)

or symbolically

(13-6)SST # SSTreatments ) SSE

a
a

i#1
 a
n

j#1
 1 yij & y..22 # n a

a

i#1
 1  yi. & y..22 ) a

a

i#1
 a
n

j#1
 1 yij & yi.22

ANOVA Sum
of Squares

Identity:
Single Factor

Experiment 

JWCL232_c13_513-550.qxd  1/18/10  10:40 AM  Page 518

520 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

has an F-distribution with a ! 1 and a (n ! 1) degrees of freedom. Furthermore, from the
expected mean squares, we know that MSE is an unbiased estimator of "2. Also, under the null
hypothesis, MSTreatments is an unbiased estimator of "2. However, if the null hypothesis is
false, the expected value of MSTreatments is greater than "2. Therefore, under the alternative
hypothesis, the expected value of the numerator of the test statistic (Equation 13-7)
is greater than the expected value of the denominator. Consequently, we should reject H0
if the statistic is large. This implies an upper-tail, one-tail critical region. Therefore,
we would reject H0 if where f0 is the computed value of F0 from
Equation 13-7.

Efficient computational formulas for the sums of squares may be obtained by
expanding and simplifying the definitions of SSTreatments and SST. This yields the following
results.

f0 # f$,a!1,a 1n!12

The sums of squares computing formulas for the ANOVA with equal sample sizes in
each treatment are

(13-8)

and

(13-9)

The error sum of squares is obtained by subtraction as

(13-10)SSE % SST ! SSTreatments
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Sizes

The computations for this test procedure are usually summarized in tabular form as shown in
Table 13-3. This is called an analysis of variance (or ANOVA) table.

Table 13-3 The Analysis of Variance for a Single-Factor Experiment, Fixed-Effects Model

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Treatments SSTreatments a ! 1 MSTreatments

Error SSE a(n ! 1) MSE
Total SST an ! 1

MSTreatments

MSE

EXAMPLE 13-1 Tensile Strength ANOVA
Consider the paper tensile strength experiment described in
Section 13-2.1. This experiment is a CRD. We can use the
analysis of variance to test the hypothesis that different hard-
wood concentrations do not affect the mean tensile strength of
the paper.

The hypotheses are

 H1: &i ' 0 for at least one i
 H0: &1 % &2 % &3 % &4 % 0

We will use . The sums of squares for the analysis of
variance are computed from Equations 13-8, 13-9, and 13-10
as follows:

 % 1722 ( 1822 ( p ( 12022 !
138322

24
% 512.96
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has an F-distribution with a ! 1 and a (n ! 1) degrees of freedom. Furthermore, from the
expected mean squares, we know that MSE is an unbiased estimator of "2. Also, under the null
hypothesis, MSTreatments is an unbiased estimator of "2. However, if the null hypothesis is
false, the expected value of MSTreatments is greater than "2. Therefore, under the alternative
hypothesis, the expected value of the numerator of the test statistic (Equation 13-7)
is greater than the expected value of the denominator. Consequently, we should reject H0
if the statistic is large. This implies an upper-tail, one-tail critical region. Therefore,
we would reject H0 if where f0 is the computed value of F0 from
Equation 13-7.

Efficient computational formulas for the sums of squares may be obtained by
expanding and simplifying the definitions of SSTreatments and SST. This yields the following
results.

f0 # f$,a!1,a 1n!12

The sums of squares computing formulas for the ANOVA with equal sample sizes in
each treatment are

(13-8)

and

(13-9)

The error sum of squares is obtained by subtraction as
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Sizes

The computations for this test procedure are usually summarized in tabular form as shown in
Table 13-3. This is called an analysis of variance (or ANOVA) table.

Table 13-3 The Analysis of Variance for a Single-Factor Experiment, Fixed-Effects Model

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Treatments SSTreatments a ! 1 MSTreatments

Error SSE a(n ! 1) MSE
Total SST an ! 1

MSTreatments

MSE

EXAMPLE 13-1 Tensile Strength ANOVA
Consider the paper tensile strength experiment described in
Section 13-2.1. This experiment is a CRD. We can use the
analysis of variance to test the hypothesis that different hard-
wood concentrations do not affect the mean tensile strength of
the paper.

The hypotheses are

 H1: &i ' 0 for at least one i
 H0: &1 % &2 % &3 % &4 % 0

We will use . The sums of squares for the analysis of
variance are computed from Equations 13-8, 13-9, and 13-10
as follows:
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Analysis of Variance (ANOVA)

ANOVA	  partitions	  the	  total	  variability	  into	  two	  parts

SST	  =	  SStreatments	  +	  SSError

The	  appropriate	  test	  statistic	  is

We	  would	  reject	  H0	  if

)1(,1,0 −−> naaFF α aNaFF −−> ,1,0 αor	  

!
"
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: 210

a

a

H
H µµµ !



ANOVA test
• Under	  H0	  

!
!
!
!

is	  a	  F	  distribution	  with	  degree-‐of-‐freedom	  (a-‐1,	  a(n-‐1))	  	  
!
• Under	  H1	  	  

!
the	  mean	  of	  the	  numerator	  is	  much	  bigger	  than	  the	  mean	  of	  the	  
denominator



F distribution
• A	  continuous	  distribution	  
!
!
!
!
!

• mean	  =	  
!

• we	  should	  reject	  H0	  when	  	  

the	  statistic	  is	  large



Analysis of Variance (ANOVA)

SST	  =	  SStreatments	  +	  SSError
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ANOVA Table
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We	  would	  reject	  H0	  if

)1(,1,0 −−> naaFF α



Example:

ANOVA

a = 4
n = 6
N = 24
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has an F-distribution with a ! 1 and a (n ! 1) degrees of freedom. Furthermore, from the
expected mean squares, we know that MSE is an unbiased estimator of "2. Also, under the null
hypothesis, MSTreatments is an unbiased estimator of "2. However, if the null hypothesis is
false, the expected value of MSTreatments is greater than "2. Therefore, under the alternative
hypothesis, the expected value of the numerator of the test statistic (Equation 13-7)
is greater than the expected value of the denominator. Consequently, we should reject H0
if the statistic is large. This implies an upper-tail, one-tail critical region. Therefore,
we would reject H0 if where f0 is the computed value of F0 from
Equation 13-7.

Efficient computational formulas for the sums of squares may be obtained by
expanding and simplifying the definitions of SSTreatments and SST. This yields the following
results.

f0 # f$,a!1,a 1n!12

The sums of squares computing formulas for the ANOVA with equal sample sizes in
each treatment are

(13-8)

and

(13-9)

The error sum of squares is obtained by subtraction as

(13-10)SSE % SST ! SSTreatments
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The computations for this test procedure are usually summarized in tabular form as shown in
Table 13-3. This is called an analysis of variance (or ANOVA) table.

Table 13-3 The Analysis of Variance for a Single-Factor Experiment, Fixed-Effects Model

Source of Degrees of
Variation Sum of Squares Freedom Mean Square F0

Treatments SSTreatments a ! 1 MSTreatments

Error SSE a(n ! 1) MSE
Total SST an ! 1

MSTreatments

MSE

EXAMPLE 13-1 Tensile Strength ANOVA
Consider the paper tensile strength experiment described in
Section 13-2.1. This experiment is a CRD. We can use the
analysis of variance to test the hypothesis that different hard-
wood concentrations do not affect the mean tensile strength of
the paper.

The hypotheses are

 H1: &i ' 0 for at least one i
 H0: &1 % &2 % &3 % &4 % 0

We will use . The sums of squares for the analysis of
variance are computed from Equations 13-8, 13-9, and 13-10
as follows:
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Minitab Output
Many software packages have the capability to analyze data from designed experiments using
the analysis of variance. Table 13-5 presents the output from the Minitab one-way analysis of
variance routine for the paper tensile strength experiment in Example 13-1. The results agree
closely with the manual calculations reported previously in Table 13-4.

The Minitab output also presents 95% confidence intervals on each individual treatment
mean. The mean of the ith treatment is defined as

A point estimator of !i is . Now, if we assume that the errors are normally distributed,
each treatment average is normally distributed with mean and variance . Thus, if were
known, we could use the normal distribution to construct a CI. Using MSE as an estimator of 
(the square root of MSE is the “Pooled StDev” referred to in the Minitab output), we would base
the CI on the t distribution, since

has a t distribution with a(n " 1) degrees of freedom. This leads to the following definition 
of the confidence interval.

T #
Yi. " !i1MSE$n

%2
%2%2$n!i

!̂i # Yi.

!i # ! & 'i  i # 1, 2, p , a

Table 13-4 ANOVA for the Tensile Strength Data

Source of Degrees of
Variation Sum of Squares Freedom Mean Square f0 P-value
Hardwood
concentration 382.79 3 127.60 19.60 3.59 E-6
Error 130.17 20 6.51
Total 512.96 23

A 100(1 " () percent confidence interval on the mean of the ith treatment !i is

(13-11)yi. " t($ 2,a 1n"12 BMSE
n ) !i ) yi. & t($2,a1n"12 BMSE

n

Confidence
Interval on a

Treatment
Mean

The ANOVA is summarized in Table 13-4. Since f0.01,3,20 #
4.94, we reject H0 and conclude that hardwood concentra-
tion in the pulp significantly affects the mean strength of

 # 512.96 " 382.79 # 130.17
 SSE # SST " SSTreatments

 # 382.79

 #
16022 & 19422 & 110222 & 112722

6
"
138322

24

 SSTreatments # a
4

i#1
 
y2
i .
n "

y2..
N

the paper. We can also find a P-value for this test statistic as
follows:

Since is considerably smaller than ( # 0.01,
we have strong evidence to conclude that H0 is not true.

Practical Interpretation: There is strong evidence to
conclude that hardwood concentration has an effect on ten-
sile strength. However, the ANOVA does not tell as which
levels of hardwood concentration result in different tensile
strength means. We will see how to answer this question 
below.

P ! 3.59 * 10"6

P # P1F3,20 + 19.602 ! 3.59 * 10"6
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a = 4
n = 6
N = 24

a −1= 3
a(n −1) = 4 × 5 = 20
under H0 :statistic distributed as F3,20



F table
Table VI Percentage Points f!,v1,v2 of the F Distribution (continued)

f0.01,v1,v2

Degrees of freedom for the numerator (v1)
1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120

1 4052 4999.5 5403 5625 5764 5859 5928 5982 6022 6056 6106 6157 6209 6235 6261 6287 6313 6339 6366
2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50
3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.00 26.50 26.41 26.32 26.22 26.13
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.46
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31
10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17
14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00
15 8.68 6.36 5.42 4.89 4.36 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75
17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57
19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.59
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60
120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38

6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00"
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ANOVA table we come up with
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Minitab Output
Many software packages have the capability to analyze data from designed experiments using
the analysis of variance. Table 13-5 presents the output from the Minitab one-way analysis of
variance routine for the paper tensile strength experiment in Example 13-1. The results agree
closely with the manual calculations reported previously in Table 13-4.

The Minitab output also presents 95% confidence intervals on each individual treatment
mean. The mean of the ith treatment is defined as

A point estimator of !i is . Now, if we assume that the errors are normally distributed,
each treatment average is normally distributed with mean and variance . Thus, if were
known, we could use the normal distribution to construct a CI. Using MSE as an estimator of 
(the square root of MSE is the “Pooled StDev” referred to in the Minitab output), we would base
the CI on the t distribution, since

has a t distribution with a(n " 1) degrees of freedom. This leads to the following definition 
of the confidence interval.

T #
Yi. " !i1MSE$n

%2
%2%2$n!i

!̂i # Yi.

!i # ! & 'i  i # 1, 2, p , a

Table 13-4 ANOVA for the Tensile Strength Data

Source of Degrees of
Variation Sum of Squares Freedom Mean Square f0 P-value
Hardwood
concentration 382.79 3 127.60 19.60 3.59 E-6
Error 130.17 20 6.51
Total 512.96 23

A 100(1 " () percent confidence interval on the mean of the ith treatment !i is

(13-11)yi. " t($ 2,a 1n"12 BMSE
n ) !i ) yi. & t($2,a1n"12 BMSE

n

Confidence
Interval on a

Treatment
Mean

The ANOVA is summarized in Table 13-4. Since f0.01,3,20 #
4.94, we reject H0 and conclude that hardwood concentra-
tion in the pulp significantly affects the mean strength of

 # 512.96 " 382.79 # 130.17
 SSE # SST " SSTreatments

 # 382.79

 #
16022 & 19422 & 110222 & 112722

6
"
138322

24

 SSTreatments # a
4

i#1
 
y2
i .
n "

y2..
N

the paper. We can also find a P-value for this test statistic as
follows:

Since is considerably smaller than ( # 0.01,
we have strong evidence to conclude that H0 is not true.

Practical Interpretation: There is strong evidence to
conclude that hardwood concentration has an effect on ten-
sile strength. However, the ANOVA does not tell as which
levels of hardwood concentration result in different tensile
strength means. We will see how to answer this question 
below.

P ! 3.59 * 10"6

P # P1F3,20 + 19.602 ! 3.59 * 10"6
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Reject	  H0

p-‐value:
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F0.01,3,20 = 4.94

R	  command



Multiple comparisons following the ANOVA 
• ANOVA	  only	  tells	  whether	  or	  not	  the	  means	  are	  the	  
same	  

• to	  determine	  which	  means	  are	  different:	  multiple	  
comparison	  methods	  

• Fisher’s	  least	  significant	  difference	  (LSD)	  method	  
• compute	  pairwise	  group	  sample	  means,	  and	  claim	  
the	  groups	  to	  be	  different	  if	  their	  sample	  mean	  
difference	  satisfies:	  

�25

524 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

Choosing a balanced design has two important advantages. First, the ANOVA is relatively
insensitive to small departures from the assumption of equality of variances if the sample sizes
are equal. This is not the case for unequal sample sizes. Second, the power of the test is max-
imized if the samples are of equal size.

13-2.3 Multiple Comparisons Following the ANOVA

When the null hypothesis is rejected in the ANOVA, we know
that some of the treatment or factor level means are different. However, the ANOVA
doesn’t identify which means are different. Methods for investigating this issue are called
multiple comparisons methods. Many of these procedures are available. Here we
describe a very simple one, Fisher’s least significant difference (LSD) method and a
graphical method. Montgomery (2009) presents these and other methods and provides a
comparative discussion.

The Fisher LSD method compares all pairs of means with the null hypotheses H0: !i " !j
(for all i # j) using the t-statistic

Assuming a two-sided alternative hypothesis, the pair of means !i and !j would be declared
significantly different if

where LSD, the least significant difference, is

0 yi. $ yj. 0 % LSD

t0 "
yi. $ yj.B2MSE

n

H0: &1 " &2 " p " &a " 0

If the sample sizes are different in each treatment, the LSD is defined as

LSD " t'(2,N$a BMSE 
a 1
ni )

1
njb

(13-16)LSD " t'(2,a 1n$12 B2MSE
n

Least
Significant

Difference for
Multiple

Comparisons

EXAMPLE 13-2
We will apply the Fisher LSD method to the hardwood con-
centration experiment. There are a " 4 means, n " 6, MSE "
6.51, and t0.025,20 " 2.086. The treatment means are

The value of LSD is 
. Therefore, any pair of treatment aver-12 16.512 (6 " 3.07

LSD " t0.025,2012MSE (n " 2.086

y4. " 21.17 psi
y3. " 17.00 psi
y2. " 15.67 psi
y1. " 10.00 psi

ages that differs by more than 3.07 implies that the correspon-
ding pair of treatment means are different.

The comparisons among the observed treatment averages
are as follows:

2 vs. 1 " 15.67 $ 10.00 "   5.67 % 3.07
3 vs. 2 " 17.00 $ 15.67 "   1.33 * 3.07
3 vs. 1 " 17.00 $ 10.00 "   7.00 % 3.07
4 vs. 3 " 21.17 $ 17.00 "   4.17 % 3.07
4 vs. 2 " 21.17 $ 15.67 "   5.50 % 3.07
4 vs. 1 " 21.17 $ 10.00 " 11.17 % 3.07

JWCL232_c13_513-550.qxd  1/18/10  10:40 AM  Page 524

524 CHAPTER 13 DESIGN AND ANALYSIS OF SINGLE-FACTOR EXPERIMENTS: THE ANALYSIS OF VARIANCE

Choosing a balanced design has two important advantages. First, the ANOVA is relatively
insensitive to small departures from the assumption of equality of variances if the sample sizes
are equal. This is not the case for unequal sample sizes. Second, the power of the test is max-
imized if the samples are of equal size.

13-2.3 Multiple Comparisons Following the ANOVA

When the null hypothesis is rejected in the ANOVA, we know
that some of the treatment or factor level means are different. However, the ANOVA
doesn’t identify which means are different. Methods for investigating this issue are called
multiple comparisons methods. Many of these procedures are available. Here we
describe a very simple one, Fisher’s least significant difference (LSD) method and a
graphical method. Montgomery (2009) presents these and other methods and provides a
comparative discussion.

The Fisher LSD method compares all pairs of means with the null hypotheses H0: !i " !j
(for all i # j) using the t-statistic

Assuming a two-sided alternative hypothesis, the pair of means !i and !j would be declared
significantly different if

where LSD, the least significant difference, is

0 yi. $ yj. 0 % LSD

t0 "
yi. $ yj.B2MSE

n

H0: &1 " &2 " p " &a " 0

If the sample sizes are different in each treatment, the LSD is defined as

LSD " t'(2,N$a BMSE 
a 1
ni )

1
njb

(13-16)LSD " t'(2,a 1n$12 B2MSE
n

Least
Significant

Difference for
Multiple

Comparisons

EXAMPLE 13-2
We will apply the Fisher LSD method to the hardwood con-
centration experiment. There are a " 4 means, n " 6, MSE "
6.51, and t0.025,20 " 2.086. The treatment means are

The value of LSD is 
. Therefore, any pair of treatment aver-12 16.512 (6 " 3.07

LSD " t0.025,2012MSE (n " 2.086

y4. " 21.17 psi
y3. " 17.00 psi
y2. " 15.67 psi
y1. " 10.00 psi

ages that differs by more than 3.07 implies that the correspon-
ding pair of treatment means are different.

The comparisons among the observed treatment averages
are as follows:

2 vs. 1 " 15.67 $ 10.00 "   5.67 % 3.07
3 vs. 2 " 17.00 $ 15.67 "   1.33 * 3.07
3 vs. 1 " 17.00 $ 10.00 "   7.00 % 3.07
4 vs. 3 " 21.17 $ 17.00 "   4.17 % 3.07
4 vs. 2 " 21.17 $ 15.67 "   5.50 % 3.07
4 vs. 1 " 21.17 $ 10.00 " 11.17 % 3.07

JWCL232_c13_513-550.qxd  1/18/10  10:40 AM  Page 524

(13-7)F0 !
SS Treatments " 1a # 12
SSE " 3a 1n # 12 4 !

MS Treatments

MSE
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The expected value of the treatment sum of squares is 

and the expected value of the error sum of squares is

E1SSE2 ! a1n # 12$2

E1SS Treatments2 ! 1a # 12$2 % n a
a

i!1
 
&i

2

The identity in Equation 13-5 shows that the total variability in the data, measured by the
total corrected sum of squares SST, can be partitioned into a sum of squares of differences
between treatment means and the grand mean denoted SSTreatments and a sum of squares of dif-
ferences of observations within a treatment from the treatment mean denoted SSE. Differences
between observed treatment means and the grand mean measure the differences between treat-
ments, while differences of observations within a treatment from the treatment mean can be
due only to random error. 

We can gain considerable insight into how the analysis of variance works by examining
the expected values of SSTreatments and SSE. This will lead us to an appropriate statistic for test-
ing the hypothesis of no differences among treatment means (or all ).&i ! 0

There is also a partition of the number of degrees of freedom that corresponds to the sum
of squares identity in Equation 13-5. That is, there are an ! N observations; thus, SST has
an # 1 degrees of freedom. There are a levels of the factor, so SSTreatments has a # 1 degrees of
freedom. Finally, within any treatment there are n replicates providing n # 1 degrees of free-
dom with which to estimate the experimental error. Since there are a treatments, we have
a(n # 1) degrees of freedom for error. Therefore, the degrees of freedom partition is

The ratio

is called the mean square for treatments. Now if the null hypothesis !
is true, MSTreatments is an unbiased estimator of $2 because . However,

if H1 is true, MSTreatments estimates $2 plus a positive term that incorporates variation due to the
systematic difference in treatment means.

Note that the error mean square

is an unbiased estimator of $2 regardless of whether or not H0 is true. We can also show that
MSTreatments and MSE are independent. Consequently, we can show that if the null hypothesis H0
is true, the ratio

MSE ! SSE" 3a1n # 12 4
g a

i!1 &i ! 0p ! &a ! 0
H0: &1 ! &2

MSTreatments ! SSTreatments " 1a # 12
an # 1 ! a # 1 % a1n # 12

Expected
Values of Sums

of Squares:
Single Factor

Experiment

ANOVA 
F-Test
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