Final Review

Fall 2013

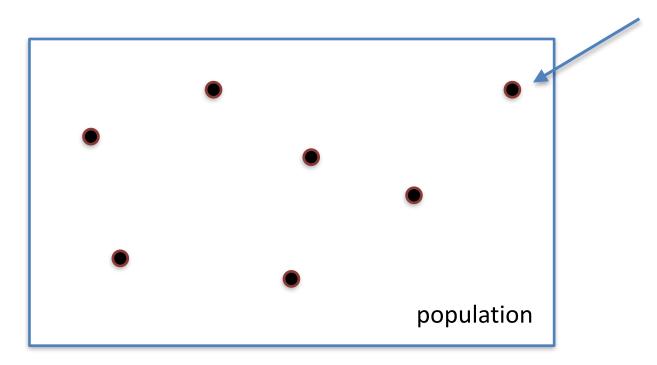
Prof. Yao Xie, yao.xie@isye.gatech.edu

H. Milton Stewart School of Industrial Systems & Engineering

Georgia Tech

Random sampling model

random samples

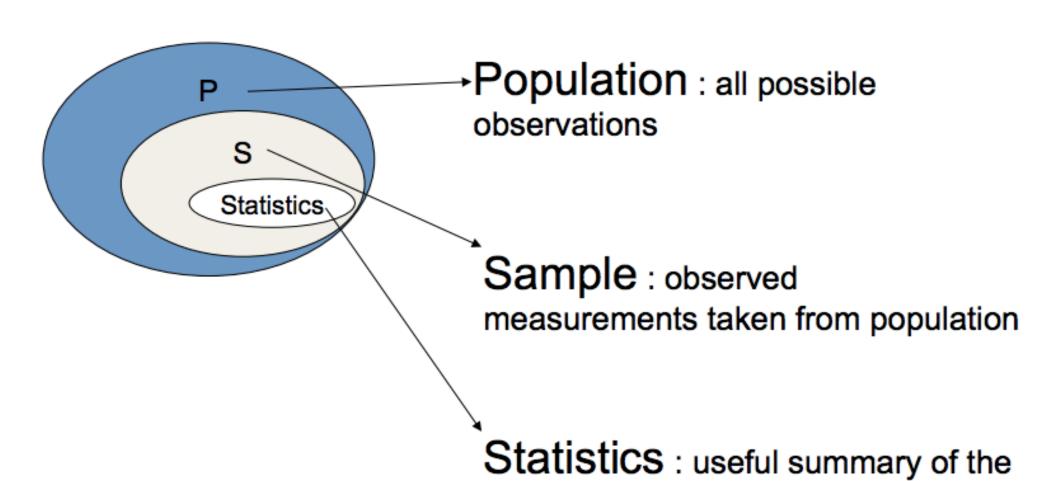


random samples: $X_1, ..., X_n$

For example, we use digital thermometer to measure body temperature for 5 times, we obtain a sequence.

If we do this experiment the next day, we get a different sequence of measures.

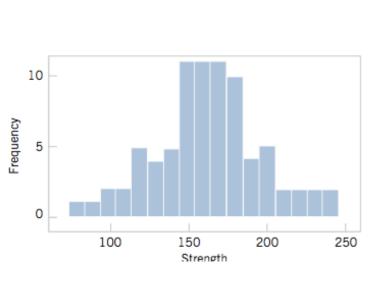
The result of the measurement is a sequence of random samples (also called data).

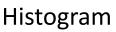


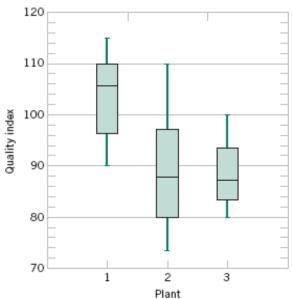
sample data

Descriptive statistics

- Quantitative values
 - provides simple summaries about samples
- plot





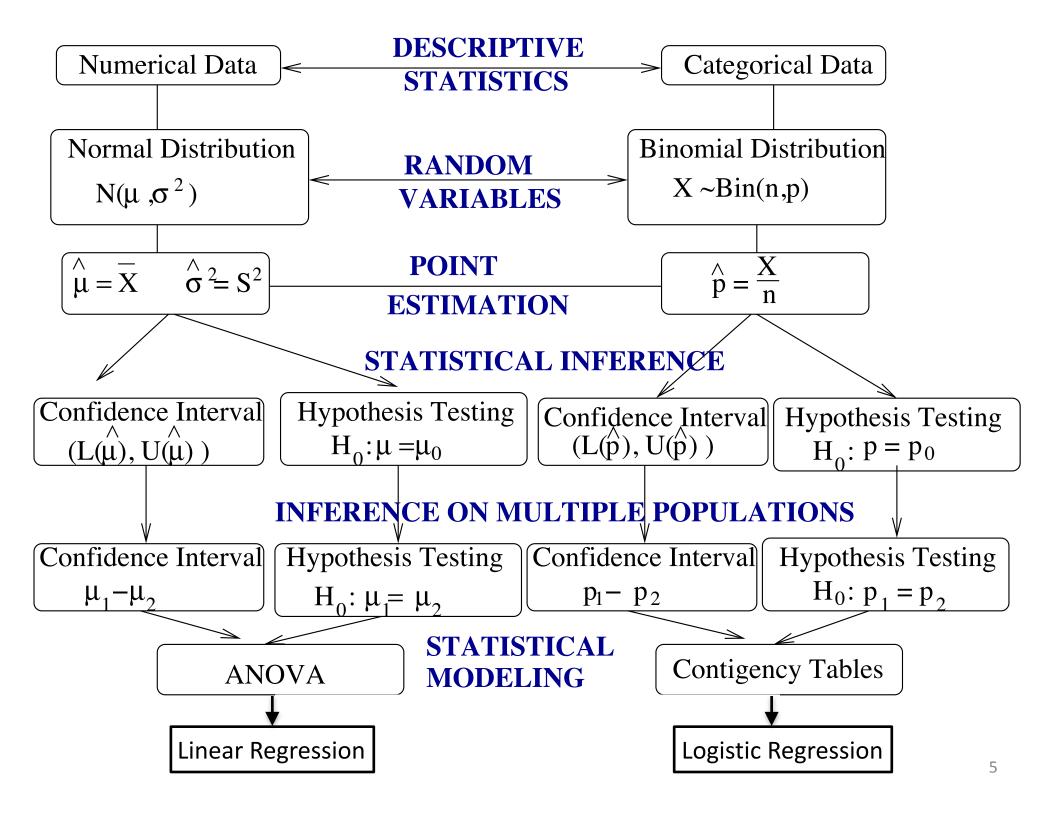


Box plot

Stem	Leaf	Frequency
7	6	1
8	7	1
9	7	1
10	5 1	2
11	5 8 0	3
12	1 0 3	3
13	413535	6
14	29583169	8
15	471340886808	12
16	3073050879	10
17	8544162106	10
18	0 3 6 1 4 1 0	7
19	960934	6
20	7 1 0 8	4
21	8	1
22	189	3
23	7	1
24	5	1

Stem: Tens and hundreds digits (psi); Leaf: Ones digits (psi)

Stem & Leaf diagram



Data summary

- Samples x_1, x_2, \dots, x_n
- Sample mean $\bar{x} = \frac{1}{n} x_1 + \frac{1}{n} x_2 + \dots + \frac{1}{n} x_n$
- Sample median
 - 1) rank samples from smallest to largest

$$y_1, y_2, \cdots, y_n$$

• 2) odd number of samples, median = $y_{(n+1)/2}$ even number of samples, median =

$$(y_{(n-1)/2} + y_{(n-1)/2})/2$$

- Sample range = largest smallest
- Sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

- Sample quartile \mathcal{X}_p : pth quartile is such that p-percent of samples are smaller than \mathcal{X}_p
- upper quartile
- lower quartile
- Inter quartile range (IQR) = upper quartile lower quartile

Sampling distribution

- Distribution of the statistics we come up (above)
- Sampling distribution extremely useful for determining
 - forms of confidence interval
 - hypothesis test

Sampling distribution: summary

	Sample mean	Sample variance
Form	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	$S^2 = \frac{1}{n} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2$
sample i.i.d. normal Known variance	$\overline{X} \sim N \left(\mu, \frac{\sigma^2}{n} \right)$	$\frac{S^2(n-1)}{\sigma^2} \sim \chi_{n-1}^2$
Unknown variance	large n, approximately normal as above	large n, approximately normal

Other common sampling distribution

Sample proportion	Standardized sample mean, known variance	Standardized sample mean, unknown variance
$\hat{p} = \frac{X}{n}$	$\frac{\overline{X} - \mu}{\sqrt{\sigma^2 / n}}$	$\frac{\overline{X} - \mu}{\sqrt{S^2 / n}}$
Exact:	Exact	Exact
$n\hat{p} \sim BIN(n,p)$	$\frac{\overline{X} - \mu}{\sqrt{\sigma^2 / n}} \sim N(0, 1)$	$\frac{\overline{X} - \mu}{\sqrt{S^2 / n}} \sim t_{n-1}$
Large sample:		
$\hat{p} \sim N(np, np(1-p))$		

Two sample

Difference in sample mean, known variance

Difference in sample mean, unknown (but identical) variance,

Proportion of sample variance

$$\frac{\left(\overline{X}_{1} - \overline{X}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

$$\sim N\left(0, 1\right)$$

$$\frac{(\bar{X}_{1} - \bar{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2} + \sigma_{2}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} \qquad \frac{(\bar{X}_{1} - \bar{X}_{2}) - (\mu_{1} - \mu_{2})}{S_{p}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} \qquad \frac{S_{1}^{2} / \sigma_{1}^{2}}{S_{2}^{2} / \sigma_{2}^{2}} \sim F_{n_{1} - 1, n_{2} - 1}$$

$$\sim t_{n_1+n_2-1}$$

$$\frac{S_1^2 / \sigma_1^2}{S_2^2 / \sigma_2^2} \sim F_{n_1 - 1, n_2 - 1}$$

$$S_p^2 = \frac{\sum_{i=1}^{n_1} (X_{1i} - \overline{X}_1)^2 + \sum_{i=1}^{n_1} (X_{2i} - \overline{X}_2)^2}{n_1 + n_2 - 2}$$

Statistical methods

- Point estimator
- Confidence interval
- Hypothesis test

- Two sample test (two populations)
- ANOVA (more than two populations)

Linear regression

Point estimator

- Mean of estimator: unbiased
- Variance of estimator
- Mean Square Error (MSE)
 - MSE = biase² + variance

- Method of finding point estimators
 - method of moment
 - maximum likelihood

Confidence interval

- Point estimator: a single value for estimated parameter
- Confidence interval: an interval such that true parameter lies in

- [a, b] contains true parameter with probability $1-\alpha$
- then [a, b] is the $1-\alpha$ confidence interval

Typical forms of k

k = upper cutting point * variance of point estimator

$$\left(\overline{x} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \overline{x} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2}\right)$$

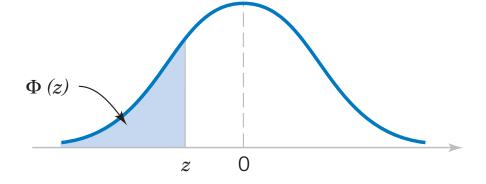
$$\left(\overline{x} - \frac{S}{\sqrt{n}} t_{\underline{\alpha}, n-1}, \overline{x} + \frac{S}{\sqrt{n}} t_{\underline{\alpha}, n-1}\right)$$

$$\left(\hat{p}-z_{\alpha/2}\sqrt{\hat{p}(1-\hat{p})/n}, \hat{p}-z_{\alpha/2}\sqrt{\hat{p}(1-\hat{p})/n}\right)$$

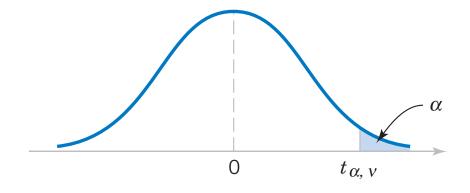
 width of confidence interval determined by sample size and confidence level

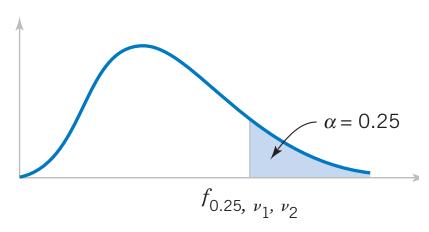
Tails etc

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2} du$$



CDF





Upper cutting point (also called "percentage point" 16

Forms of confidence intervals

Two-sided interval
 [point estimator - k, point estimator + k]

One-sided interval

[point estimator + k, infinity]

or

[-infinity, point estimator - k]

k specifies width of confidence interval

Hypothesis test

- Use data to test two contradicting statements
 - H₀: null hypothesis
 - H₁: alternative hypothesis
- Two approaches
 - Fixed confidence level
 - Form: reject H₀ when test statistic falls out of thresholds
 - p-value
 - probability of observing something more "extreme" than data

Procedure of hypothesis test (sec. 9.1.6)

- 1. Set the significance level (.01, .05, .1)
- 2. Set null and alternative hypothesis
- 3. Determine other parameters
- 4. Decide type of the test
 - test for mean with known variance (z-test)
 - test for mean with unknown variance (t-test)
 - test for sample proportion parameter
- 6. Use data available:
 - perform test to reach a decision
 - and report p-value

Summary: test for mean

Null Hypothesis

Test Statistic

$$H_0: \mu = \mu_0$$

$$\overline{\chi}$$

Significance level: α

Alternative Hypothesis	Known Variance H0 is rejected if	Unknown Variance H0 is rejected if
$H_1: \mu \neq \mu_0$	$\left \overline{x}-\mu_0\right >z_{\alpha/2}\sigma/\sqrt{n}$	$\left \overline{x} - \mu_0 \right > t_{\alpha/2, n-1} s / \sqrt{n}$
$H_1: \mu > \mu_0$	$\overline{x} > \mu_0 + z_\alpha \sigma / \sqrt{n}$	$\overline{x} > \mu_0 + t_{\alpha, n-1} s / \sqrt{n}$
$H_1: \mu < \mu_0$	$\overline{x} < \mu_0 - z_\alpha \sigma / \sqrt{n}$	$\overline{x} < \mu_0 - t_{\alpha, n-1} s / \sqrt{n}$

Test for sample proportion

Null Hypothesis

$$H_0: p = p_0$$

Significance level: α

Test Statistic

$$\frac{\hat{p} - p_0}{\sqrt{p_0 \left(1 - p_0\right)/n}}$$

Alternative Hypothesis	H0 is rejected if		
$H_1: p \neq p_0$	$\left \frac{\hat{p} - p_0}{\sqrt{p_0 \left(1 - p_0 \right) / n}} \right > z_{\alpha/2}$		

Two sample test: mean

For the following hypothesis test

$$H_0: \mu_1 - \mu_2 = \Delta$$

$$H_1: \mu_1 - \mu_2 \neq \Delta$$

Reject H₀ when

$$\left| \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{S_p \sqrt{1/n_1 + 1/n_2}} \right| > t_{\alpha/2}$$

Two-sample test: sample proportion

For two-sided test,

$$H_0: p_1 = p_2$$

$$H_1: p_1 \neq p_2$$

reject H₀ when

$$\frac{\hat{p}_{1} - \hat{p}_{2}}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)}} > z_{\alpha/2}$$

Analysis of variance

- Multiple populations
- Analyze difference in their means

Table 13-2 Typical Data for a Single-Factor Experiment

Treatment		Obser	vations		Totals	Averages
1	<i>y</i> ₁₁	<i>y</i> ₁₂		y_{1n}	y_1 .	\overline{y}_1 .
2	y_{21}	<i>y</i> ₂₂		y_{2n}	y_2 .	\overline{y}_2 .
:	- :		:::			:
a	y_{a1}	y_{a2}		y_{an}	y_a .	\overline{y}_a .
					у	<u>y</u>

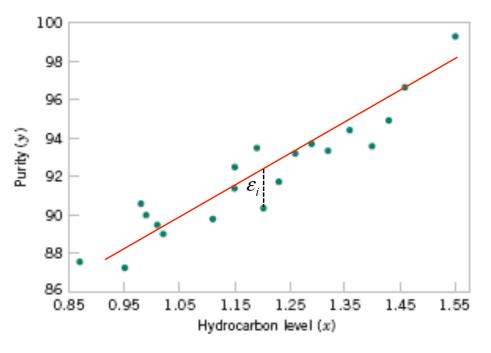
$$F_0 = \frac{SS_{\text{Treatments}}/(a-1)}{SS_E/[a(n-1)]} = \frac{MS_{\text{Treatments}}}{MS_E}$$
(13-7)

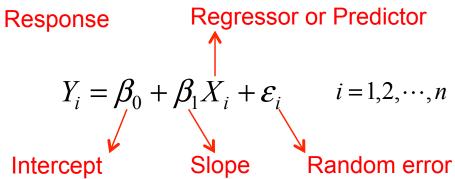
We would reject H₀ if

$$F_0 > F_{\alpha, a-1, a(n-1)}$$

Linear regression

Simple linear regression





Fitted coefficients

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n}$$
(11-10)

$$S_{xy} = \sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x}) = \sum_{i=1}^{n} x_i y_i - \frac{\left(\sum_{i=1}^{n} x_i\right)\left(\sum_{i=1}^{n} y_i\right)}{n}$$
(11-11)

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$$

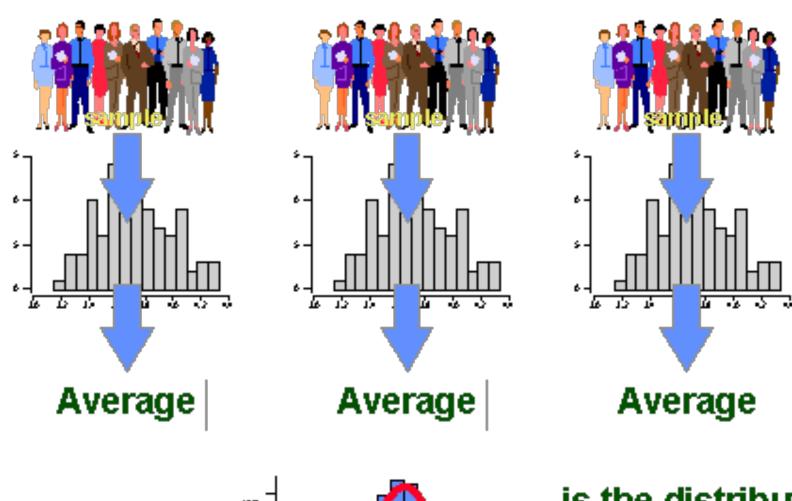
$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$$
 Fitted (estimated) regression model

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

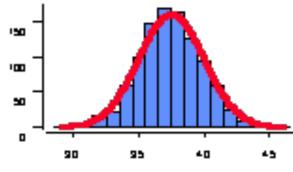
Model diagnosis

- Plot residuals
- Use R and read the output
- For simple and multiple linear regression: we are going to rely on R to do the calculations

Finally...



The Sampling Distribution...



...is the distribution of a statistic across an infinite number of samples

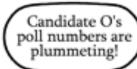
Finally...

- What statistics is about?
- Fit model using data (e.g. distributions)
- Use model to make inferences
 - estimation
 - hypothesis testing
 - prediction (e.g. using linear regression)
- Why model is useful?
 - report findings from data
 - systematically quantify uncertainty

Dear News Media,

When reporting poll results, please keep in mind the following suggestions:

- If two poll numbers differ by less than the margin of error, it's not a news story.
- Scientific facts are not determined by public opinion polls.
- A poll taken of your viewers/internet users is not a scientific poll.
- 4. What if all polls included the option "Don't care"?



Yes, Galileo, but what of the latest polls that show the earth is flat?

And now to fill air-time, a poll which shows people who think like me agree with me!

The election results are in!

Candidate A 30% Candidate B 26% "Whatever" 44%

Signed,

 Someone who took a basic statistics course.