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Info-Greedy Sequential Adaptive
Compressed Sensing

Gábor Braun, Sebastian Pokutta, and Yao Xie

Abstract—We present an information-theoretic framework for
sequential adaptive compressed sensing, Info-Greedy Sensing,
where measurements are chosen to maximize the extracted in-
formation conditioned on the previous measurements. We show
that the widely used bisection approach is Info-Greedy for a
family of -sparse signals by connecting compressed sensing and
blackbox complexity of sequential query algorithms, and present
Info-Greedy algorithms for Gaussian andGaussian mixture model
(GMM) signals, as well as ways to design sparse Info-Greedy
measurements. Numerical examples demonstrate the good perfor-
mance of the proposed algorithms using simulated and real data:
Info-Greedy Sensing shows significant improvement over random
projection for signals with sparse and low-rank covariance ma-
trices, and adaptivity brings robustness when there is a mismatch
between the assumed and the true distributions.
Index Terms—Compressed sensing, adaptive estimation, adap-

tive signal detection, mutual information.

I. INTRODUCTION

N OWADAYS ubiquitous big data applications (image
processing [1], power network monitoring [2], and large

scale sensor networks [3]) call for more efficient information
sensing techniques. Often these techniques are sequential in
that the measurements are taken one after another. Hence
information gained in the past can be used to guide an adaptive
design of subsequent measurements, which naturally leads to
the notion of sequential adaptive sensing. At the same time,
a path to efficient sensing of big data is compressive sensing
[4]–[6], which exploits low-dimensional structures to recover
signals from a number of measurements much smaller than the
ambient dimension of the signals.
Early compressed sensing works mainly focus on non-adap-

tive and one-shot measurement schemes. Recently there has
also been much interest in sequential adaptive compressed
sensing, which measures noisy linear combinations of the
entries (this is different from the direct adaptive sensing, which
measures signal entries directly [7]–[10]). Although in the sem-
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inal work of [11], it was shown under fairly general assumptions
that “adaptivity does not help much”, i.e., sequential adaptive
compressed sensing does not improve the order of the min-max
bounds obtained by algorithms, these limitations are restricted
to certain performance metrics. It has also been recognized
(see, e.g., [12]–[14]) that adaptive compressed sensing offers
several benefits with respect to other performance metrics, such
as the reduction in the signal-to-noise ratio (SNR) to recover
the signal. Moreover, larger performance gain can be achieved
by adaptive compressed sensing if we aim at recovering a
“family” of signals with known statistical prior information
(incorporating statistical priors in compressed sensing has been
considered in [15] for the non-sequential setting and in [16] for
the sequential setting using Bayesian methods).
To harvest the benefits of adaptive compressed sensing,

various algorithms have been developed: compressive binary
search [17], [18], which considers a problem of determining the
location of a single non-zero entry; a variant of the iterative bi-
section algorithm [19] to adaptively identify the partial support
of the signal; random choice of compressed sensing vectors
[20], and a collection of independent structured random sensing
matrices in each measurement step [21] with some columns
“masked” to zero; an experimental design approach [22] that
designs measurements adaptive to the mean square error of the
estimated signal; exploiting additional graphical structure of
the signal [23], [24]; the CASS algorithm [13], which is based
on bisection search to locate multiple non-zero entries, and is
claimed to be near-optimal in the number of measurements
needed sequentially to achieve small recovery errors; an adap-
tive sensing strategy specifically tailored to tree-sparse signals
[25] that significantly outperforms non-adaptive sensing strate-
gies. In optics literature, compressive imaging systems with
sequential measurement architectures have been developed
[26]–[28], which may modify the measurement basis based
on specific object information derived from the previous mea-
surements and achieve better performance. In medical imaging
literature, [29] uses Bayesian experimental design to optimize
-space sampling for nonlinear sparse MRI reconstruction.
The idea of using an information measure for sequential

compressed sensing has been spelled out in various places for
specific settings or signal models, for example, the seminal
Bayesian compressive sensing work [16], which designs a
new projection that minimizes the differential entropy of the
posterior estimate on a Gaussian signal; [6, Chapter 6.2] and
[30], which introduces the so-called “expected information”
and outlines a general strategy for sequential adaptive sensing;
[31], which develops a two-step adaptive statistical compressed
sensing scheme for Gaussian mixture model (GMM) signals
based on maximizing an information-theoretic objective func-
tion; [32], which sequentially senses low-rank GMM signals
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based on a posterior distribution and provides an empirical per-
formance analysis; [33] studies the design of linear projection
measurements for a vector Poisson signal model; [34] designs
general nonlinear functions for mapping high-dimensional data
into lower-dimensional space using mutual information as a
metric. A general belief, though, is that it is difficult to devise
quantitative error bounds for such sequential information max-
imizing algorithms (see, e.g., [6, Section 6.2.3]).
In this work, we present a unified information theoretical

framework for sequential adaptive compressive sensing, called
Info-Greedy Sensing, which greedily picks the measurement
with the largest amount of information gain based on the
previous measurements. More precisely, we design the next
measurement to maximize the conditional mutual information
between the measurement and the signal with respect to the
previous measurements. This framework enables us to better
understand existing algorithms, establish theoretical perfor-
mance guarantees, as well as develop new algorithms. The
optimization problem associated with Info-Greedy Sensing is
often non-convex. In some cases the solutions can be found
analytically, and in others we resort to iterative heuristics. In
particular, (1) we show that the widely used bisection approach
is Info-Greedy for a family of -sparse signals by connecting
compressed sensing and blackbox complexity of sequential
query algorithms [35]; (2) we present Info-Greedy algorithms
for Gaussian and Gaussian Mixture Model (GMM) signals
under more general noise models (e.g., “noise-folding” [36])
than those considered in [32], and analyze their performance in
terms of the number of measurements needed; (3) we also de-
velop new sensing algorithms, e.g., for sparse sensing vectors.
Numerical examples are provided to demonstrate the accuracy
of theoretical bounds and good performance of Info-Greedy
Sensing algorithms using simulated and real data.
The rest of the paper is organized as follows. Section II sets

up the formalism for Info-Greedy Sensing. Sections III and
IV present the Info-Greedy Sensing algorithms for -sparse
signals and Gaussian signals (low-rank single Gaussian and
GMM), respectively. Section V discusses the Info-Greedy
Sensing with sparse measurement vectors. Section VI contains
numerical examples using simulated and real data. Finally,
Section VII concludes the paper. All proofs are delegated to
the Appendix1.
The notation in this paper is standard. In particular,

denotes the Gaussian distribution with mean and covariance
matrix ; denotes the th coordinate of the vector ; we use
the shorthand ; let denote the cardinality
of a set ; is the number of non-zeros in vector ; let
be the spectral norm (largest eigenvalue) of a positive definite
matrix ; let be the determinant of a matrix ; let
denote the entropy of a random variable ; let denote the
mutual information between two random variables and . Let
the column vector has 1 on the th entry and zero elsewhere,
and let be the quantile function of the chi-squared distribu-
tion with degrees of freedom.

II. FORMULATION

A typical compressed sensing setup is as follows. Let
be the unknown -dimensional signal. There are measure-

1Appendix of the paper is available at online version of the paper http://arxiv.
org/abs/1407.0731

ments, and is the measurement vector depending lin-
early on the signal and subject to an additive noise:

...
...

(1)
where is the sensing matrix, and is
the noise vector. Here, each coordinate of is a result of
measuring with an additive noise . In the setting of se-
quential compressed sensing, the unknown signal is measured
sequentially

In high-dimensional problems, various low-dimensional
signal models for are in common use: (1) sparse signal
models, the canonical one being having non-zero
entries2; (2) low-rank Gaussian model (signal in a subspace
plus Gaussian noise); and (3) Gaussian mixture model (GMM)
(a model for signal lying in a union of multiple subspaces plus
Gaussian noise), which has been widely used in image and
video analysis among others3.
Compressed sensing exploits the low dimensional structure

of the signal to recover the signal with high accuracy using
much fewer measurements than the dimension of the signal, i.e.,

. Two central and interrelated problems in compressed
sensing include signal recovery and designing the sensing ma-
trix . Early compressed sensing works usually assume to be
random, which does have benefits for universality regardless of
the signal distribution. However, when there is prior knowledge
about the signal distribution, one can optimize to minimize
the number of measurements subject to a total sensing power
constraint

(2)

for some constant . In the following, we either vary power
for each measurement , or fix them to be unit power

(for example, due to physical constraint) and use
repeated measurements times in the direction of , which is
equivalent to measuring using an integer valued power. Here
can be viewed as the amount of resource we allocated for that
measurement (or direction).
We will consider a methodology where is chosen to extract

the most information about the signal, i.e., to maximize mu-
tual information. In the non-sequential setting this means that
maximizes the mutual information between the signal and

the measurement outcome, i.e., .
In sequential compressed sensing, the subsequent measurement
vectors can be designed using the already acquired measure-
ments, and hence the sensing matrix can be designed row by
row. Optimal sequential design of can be defined recursively

2In a related model the signal come from a dictionary with few nonzero
coefficients, whose support is unknown. We will not further consider this model
here.

3A mixture of GMM models has also been used to study sparse signals [37].
There are also other low-dimensional signal models including the general man-
ifold models which will not be considered here.
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and viewed as dynamic programming [38]. However, this for-
mulation is usually intractable in all but the most simple situa-
tions (one such example is the sequential probabilistic bisection
algorithm in [30], which locates a single non-zero entry). In-
stead, the usual approach operates in a greedy fashion. The core
idea is that based on the information that the previous measure-
ments have extracted, the new measurement should probe in the
direction that maximizes the conditional information as much as
possible. We formalize this idea as Info-Greedy Sensing, which
is described in Algorithm 1. The algorithm is initialized with a
prior distribution of signal , and returns the Bayesian posterior
mean as an estimator for signal . Conditional mutual informa-
tion is a natural metric, as it counts only useful new information
between the signal and the potential result of the measurement
disregarding noise and what has already been learned from pre-
vious measurements.

Algorithm 1 Info-Greedy Sensing

Require: distributions of signal and noise , error tolerance
or maximum number of iterations

1:
2: repeat

3:
4: {measurement}
5:

6: until or .

Algorithm 1 stops either when the conditional mutual infor-
mation is smaller than a threshold , or we have reached the
maximum number of iterations . How relates to the pre-
cision depends on the specific signal model employed. For ex-
ample, for Gaussian signal, the conditional mutual information
is the log determinant of the conditional covariance matrix, and
hence the signal is constrained to be in a small ellipsoid with
high probability. Also note that in this algorithm, the recovered
signal may not reach accuracy if it exhausts the number of it-
erations . In theoretical analysis we assume is sufficiently
large to avoid it.
Note that the optimization problem in Info-Greedy Sensing

is non-convex in gen-
eral [39]. Hence, we will discuss various heuristics and establish
their theoretical performance in terms of the following metric:
Definition II.1 (Info-Greedy): We call an algorithm Info-

Greedy if the measurement maximizes
for each , where is the unknown signal, is the measurement
outcome, and is the amount of resource for measurement .

III. -SPARSE SIGNAL

In this section, we consider the Info-Greedy Sensing for
-sparse signal with arbitrary nonnegative amplitudes in the

noiseless case as well as under Gaussian measurement noise.
We show that a natural modification of the bisection algorithm
corresponds to Info-Greedy Sensing under a certain proba-
bilistic model. We also show that Algorithm 2 is optimal in
terms of the number of measurements for 1-sparse signals as
well as optimal up to a factor for -sparse signals in the
noiseless case. In the presence of Gaussian measurement noise,

it is optimal up to at most another factor. Finally, we show
Algorithm 2 is Info-Greedy when , and when it is
Info-Greedy up to a factor.
To simplify the problem, we assume the sensing matrix

consists of binary entries: . Consider a signal with
each element with up to non-zero entries which are
distributed uniformly at random. The following lemma gives an
upper bound on the number of measurements for our modi-
fied bisection algorithm (see Algorithm 2) to recover such . In
the description of Algorithm 2, let

denote the characteristic vector of a set . The basic idea is to
recursively estimate a tuple that consists of a set which
contains possible locations of the non-zero elements, and the
total signal amplitude in that set. We say that a signal has
minimum amplitude , if implies for all .
Theorem III.1 (Upper Bound for -Sparse Signal ): Let
be a -sparse signal.

1) In the noiseless case, Algorithm 2 recovers the signal
exactly with at most measurements (using
in Line 1).

2) In the noisy case with , Algorithm 2 re-
covers the signal such that with prob-
ability at least using at
most measurements.

Algorithm 2 Bisection for -sparse signals

Require: ambient dimension of , error probability , noise
variance , error
1:
2:
3: {initialize estimator}
4: while not empty do

5: for all do
6: Partition with
7: Replace by and in

8: end for
9: for all do

10: Measure times and average:
11: if then

12: Remove from . { is already 0 on .}
13: else if then

14: Remove from .
15: where .

16: end if
17: end for

18: end while
19: return as estimator for .

Lemma III.2 (Lower Bound for Noiseless -Sparse Signal ):
Let , be a -sparse signal. Then to recover
exactly, the expected number of measurements required for

any algorithm is at least .
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Lemma III.3 (Bisection Algorithm 2 for is
Info-Greedy): For Algorithm 2, is Info-Greedy.
In general case the simple analysis that leads to Lemma III.3

fails. However, using Theorem ?? in the Appendix we can esti-
mate the average amount of information obtained from a mea-
surement:
Lemma III.4 (Bisection Algorithm 2 is Info-Greedy Up to a
Factor in the Noiseless Case): Let . Then the

average information of a measurement in Algorithm 2:

Remark III.5:
1) Observe that Lemma III.4 establishes that Algorithm 2 for

a sparse signal with acquires at least a
fraction of the maximum possible

mutual information (which on average is roughly 1 bit per
measurement).

2) Here we constrained the entries of matrix to be binary
valued. This may correspond to applications, for examples,
sensors reporting errors and the measurements count the
total number of errors. Note that, however, if we relax this
constraint and allow entries of to be real-valued, in the
absence of noise the signal can be recovered from onemea-
surement that project the signal onto a vector with entries

.
3) The setup here with -sparse signals and binary measure-

ment matrix generalizes the group testing [40] setup.
4) the CASS algorithm [13] is another algorithm that re-

covers a -sparse signal by iteratively partitioning the
signal support into subsets, computing the sum over
that subset and keeping the largest . In [13] it was shown
that to recover a -sparse with non-uniform positive
amplitude with high probability, the number of measure-
ments is on the order of with varying
power measurement. It is important to note that the CASS
algorithm allows for power allocation to mitigate noise,
while we repeat measurements. This, however, coincides
with the number of unit length measurements of our
algorithm, in Lemma III.1 after appropriate
normalization. For specific regimes of error probability,
the overhead in Lemma III.1 can be further
reduced. For example, for any constant probability of error

, the number of required repetitions per measure-
ment is leading to improved performance.
Our algorithm can be also easily modified to incorporate
power allocation.

IV. LOW-RANK GAUSSIAN MODELS

In this section, we derive the Info-Greedy Sensing algo-
rithms for the single low-rank Gaussian model as well as the
low-rank GMM signal model, and also quantify the algorithm's
performance.

A. Single Gaussian Model

Consider a Gaussian signal with known pa-
rameters and . The covariance matrix has rank . We
will consider three noise models:

(a) white Gaussian noise added after the measurement (the
most common model in compressed sensing):

(3)

Let represent the power allocated to the th
measurement. In this case, higher power allocated to a
measurement increases SNR of that measurement.

(b) white Gaussian noise added prior to the measurement,
a model that appears in some applications such as re-
duced dimension multi-user detection in communication
systems [41] and also known as the “noise folding” model
[36]:

(4)

In this case, allocating higher power for a measurement
cannot increase the SNR of the outcome. Hence, we use
the actual number of repeated measurements in the same
direction as a proxy for the amount of resource allocated
for that direction.

(c) colored Gaussian noise with covariance added either
prior to the measurement:

(5)

or after the measurement:

(6)

In the following, we will establish lower bounds on the
amount of resource (either the minimum power or the number
of measurements) needed for Info-Greedy Sensing to achieve a
recovery error .
1) White Noise Added Prior to Measurement or “Noise

Folding”: We start our discussion with this model and results
for other models can be derived similarly. As does not affect
SNR, we set . Note that conditional distribution of
given is a Gaussian random vector with adjusted parameters

(7)

Therefore, to find Info-Greedy Sensing for a single Gaussian
signal, it suffices to characterize the first measurement

and from there on iterate with adjusted dis-
tributional parameters. For Gaussian signal and
the noisy measurement , we have

(8)

Clearly, with , (8) is maximized when corresponds
to the largest eigenvector of . From the above argument, the
Info-Greedy Sensing algorithm for a single Gaussian signal is
to choose as the orthonormal eigenvectors of in a
decreasing order of eigenvalues, as described in Algorithm 3.
The following theorem establishes the bound on the number of
measurements needed.
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Theorem IV.1 (White Gaussian Noise Added Prior to Mea-
surement or “Noise Folding”): Let and let

be the eigenvalues of with multiplicities. Further
let be the accuracy and . Then Algorithm
3 recovers satisfying with probability at least
using at most the following number of measurements by unit

vectors :

(9a)

provided . If the number of measurements
simplifies to

(9b)

This also holds when .
2) White Noise Added After Measurement: A key insight in

the proof for Theorem IV.1 is that repeated measurements in
the same eigenvector direction corresponds to a single measure-
ment in that direction with all the power summed together. This
can be seen from the following discussion. After measuring in
the direction of a unit norm eigenvector with eigenvalue ,
and using power , the conditional covariance matrix takes the
form of

(10)

where is the component of in the orthogonal complement
of . Thus, the only change in the eigendecomposition of is
the update of the eigenvalue of from to .
Informally, measuring with power allocation on a Gaussian
signal reduces the uncertainty in direction . We have the
following performance bound for sensing a Gaussian signal:
Theorem IV.2 (White Gaussian Noise Added After Measure-

ment): Let and let be the eigenvalues
of with multiplicities. Further let be the accuracy
and . Then Algorithm 3 recovers satisfying

with probability at least using at most the fol-
lowing power

(11)

provided .
3) Colored Noise: When a colored noise

is added either prior to, or after the measurement, similar to the
white noise cases, the conditional distribution of given the first
measurement is a Gaussian random variable with adjusted
parameters. Hence, as before, the measurement vectors can be
found iteratively. Algorithm 3 presents Info-Greedy Sensing for
this case and the derivation is given in Appendix B. Algorithm

3 also summarizes all the Info-Greedy Sensing algorithms for
Gaussian signal under various noise models.

Algorithm 3 Info-Greedy Sensing for Gaussian signals

Require: signal mean and covariance , accuracy ,
probability of correctness , noise covariance matrix (for
white noise )
1: repeat

2: if white noise added after measurement then
3: {largest eigenvalue}
4: eigenvector of for eigenvalue
5:
6:
7:

8: else if white noise added prior to measurement then
9: {largest eigenvalue}
10: eigenvector of for eigenvalue
11:
12:

13: else if colored noise added after measurement then
14:
{eigendecomposition}

15:
16:
17:

18: else if colored noise added prior to measurement :then
19: {largest eigenvalue}
20:
21: largest eigenvector of for eigenvalue

22:
23:

24: end if
25: {mean}
26: {covariance}

27: until {all eigenvalues become small}
28: return posterior mean

The following version of Theorem IV.1 is for the required
number of measurements for colored noise in the “noise
folding” model:
Theorem IV.3 (Colored Gaussian Noise Added Prior to

Measurement or “Noise Folding”): Let be a
Gaussian signal, and let denote the eigenvalues of

with multiplicities. Assume . Further-
more, let be the required accuracy. Then Algorithm 3
recovers satisfying with probability at least
using at most the following number of measurements by unit
vectors :

(12)
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Remark IV.4:
(1) Under these noise models, the posterior distribution of

the signal is also Gaussian, and the measurement out-
come affects only its mean and but not the covariance
matrix (see (7)). In other words, the outcome does not af-
fect the mutual information of posterior Gaussian signal.
In this sense, for Gaussian signals adaptivity brings no
advantage when is accurate, as the measurements are
pre-determined by the eigenspace of . However, when
knowledge of is inaccurate for Gaussian signals, adap-
tivity brings benefit as demonstrated in Section VI-A1,
since a sequential update of the covariance matrix incor-
porates new information and “corrects” the covariance
matrix when we design the next measurement.

(2) In (10) the eigenvalue reduces to after
the first measurement. Now iterating this we see by in-
duction that after measurements in direction , the
eigenvalue reduces to , which is the
same as measuring once in direction with power .
Hence, measuring several times in the same direction of
, and thereby splitting power into for the
measurements, has the same effect as making one mea-
surement with total the power .

(3) Info-Greedy Sensing for Gaussian signal can be imple-
mented efficiently. Note that in the algorithm we only
need compute the leading eigenvector of the covariance
matrix; moreover, updates of the covariance matrix and
mean are simple and iterative. In particular, for a sparse

with non-zero entries, the computation
of the largest eigenvalue and associated eigenvector can
be implemented in using sparse power's
method [42], where is the number of power iterations.
In many high-dimensional applications, is sparse if
the variables (entries of ) are not highly correlated.
Also note that the sparsity structure of the covariance
matrix as well as the correlation structure of the signal
entries will not be changed by the update of the co-
variance matrix. This is because in (10) the update only
changes the eigenvalues but not the eigenvectors. To see
why this is true, let be the eigendecom-
position of . By saying that the covariance matrix is
sparse, we assume that 's are sparse and, hence, the
resulting covariance matrix has few non-zero entries.
Therefore, updating the covariance matrix will not sig-
nificantly change the number of non-zero entries in a co-
variance matrix. We demonstrate the scalability of Info-
Greedy Sensing with larger examples in Section VI-A1.

B. Gaussian Mixture Model (GMM)

The probability density function of GMM is given by

(13)

where is the number of classes, and is the probability of
samples from class . Unlike Gaussian, mutual information of
GMM cannot be explicitly written. However, for GMM signals

a gradient descent approach that works for an arbitrary signal
model can be used as outlined in [32]. The derivation uses the
fact that the gradient of the conditional mutual information with
respect to is a linear transform of the minimum mean square
error (MMSE) matrix [39], [43]. Moreover, the gradient descent
approach for GMM signals exhibits structural properties that
can be exploited to reduce the computational cost for evaluating
the MMSE matrix, as outlined in [32], [37]4.
An alternative heuristic for sensing GMM is the so-called

greedy heuristic, which is also mentioned in [32]. The heuristic
picks the Gaussian component with the highest posterior at
thatmoment, and chooses the nextmeasurement to be its eigen-
vector associated with themaximum eigenvalue, as summarized
in Algorithm 5. The greedy heuristic is not Info-Greedy, but it
can be implemented more efficiently compared to the gradient
descent approach. The following theorem establishes a simple
upper bound on the number of required measurements to re-
cover a GMM signal using the greedy heuristic with small error.
The analysis is based on the well-known multiplicative weight
update method (see e.g., [45]) and utilizes a simple reduction
argument showing that when the variance of every component
has been reduced sufficiently to ensure a low error recovery with
probability ,we can learn (amix of) the right component(s)with
few extra measurements.
Theorem IV.5 (Upper Bound on of Greedy Heuristic

Algorithm for GMM): Consider a GMM signal parameter-
ized in (13). Let be the required number of measurements
(or power) to ensure with probability for a
Gaussian signal corresponding to component for
all . Then we need at most

measurements (or power) to ensure when sam-
pling from the posterior distribution of with probability

.
Remark IV.6: In the high noise case, i.e., when SNR is low,

Info-Greedy measurements can be approximated easily. Let
denote the random variable indicating the class where the signal
is sampled from. Then

Hence, the Info-Greedy measurement should be the leading
eigenvector of the average covariance matrix with the posterior
weights.

4Another related work is [44] which studies the behavior of minimum mean
sure error (MMSE) associated with the reconstruction of a signal drawn from a
GMM as a function of the properties of the linear measurement kernel and the
Gaussian mixture, i.e., whether the MMSE converges or does not converge to
zero as the noise.
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Algorithm 4 Update GMM distributional parameters

Require: mean , covariance , number of GMM
components , distribution , standard deviation of
noise, matrix contains vectors thus far and measurements
acquired thus far
1: for do

2: {mean}
3: {covariance}
4:

5: end for
6: {normalizing distribution}
7: return updated parameters

Algorithm 5 Info-Greedy Sensing for GMM using greedy
heuristic and gradient descent approach

Require: mean , covariance , initial
distribution standard deviation of noise, probability
of correctness
1: Initialize , ,
2: repeat

3: if greedy heuristic then
4:
5: largest eigenvector of

6: else if gradient decent approach then
7: solved using stochastic gradient descent (see
Appendix)

8: end if
9: {measure}
10: update parameters using Algorithm 4

11: until reach maximum iteration
12: return signal estimate ,

V. SPARSE MEASUREMENT VECTOR

In various applications, we are interested in finding a sparse
measurement vector .With such requirement, we can add a car-
dinality constraint on in the Info-Greedy Sensing formulation:

, where is the number of non-zero entries we al-
lowed for vector. This is a non-convex integer program with
non-linear cost function, which can be solved by outer approxi-
mation [46], [47]. The idea of outer approximation is to generate
a sequence of cutting planes to approximate the cost function via
its subgradient and iteratively include these cutting planes as
constraints in the original optimization problem. In particular,
we initialize by solving the following optimization problem

(14)

where and are introduced auxiliary variables, and is an
user specified upper bound that bounds the cost function over
the feasible region. The constraint of the above optimization
problem can be casted into matrix vector form as follows:

such that The mixed-integer linear pro-
gram formulated in (14) can be solved efficiently by a standard
software such as GUROBI5. In the next iteration, solution to
this optimization problem will be used to generate a new cutting
plane, which we include in the original problem by appending
a row to and adding an entry to as follows

(15)

(16)

where is the non-linear cost function in the original problem.
For Gaussian signal , the cost function and its gradient take the
form of:

(17)
By repeating iterations as above, we can find a measurement
vector with sparsity which is approximately Info-Greedy.

VI. NUMERICAL EXAMPLES

A. Simulated Examples
1) Low-Rank Gaussian Model: First, we examine the per-

formance of Info-Greedy Sensing for Gaussian signal. The di-
mension of the signal is , and we set the probability
of recovery , the noise standard deviation .
The signal mean vector , where the covariance matrix
is generated as , has
each entry i.i.d. , and the operator thresholds
eigenvalues of a matrix that are smaller than 0.7 to be zero.
The error tolerance (represented as dashed lines in the
figures). For the white noise case, we set , and
for the colored noise case, and the noise co-
variance matrix is generated randomly as
for a random matrix with entries i.i.d. . The number
of measurements is determined from Theorem IV.1 and The-
orem IV.2. We run the algorithm over 1000 random instances.
Fig. 1 demonstrates the ordered recovery error , as
well as the ordered number of measurements calculated from
the formulas, for the white and colored noise cases, respectively.
Note that in both the white noise and colored noise cases, the

5http://www.gurobi.com
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Fig. 1. Sensing a low-rank Gaussian signal of dimension and with
about 70% eigenvalues of zero: (a) and (c) compare recovery error

for the Info-Greedy Sensing and random sensing , in the presence of
white noise added after the measurement, and colored noise added prior to the
measurement (“noise folding”), respectively; (c) and (d) show ordered number
ofmeasurements for Info-Greedy Sensing in the two cases. Info-Greedy Sensing
and batch method perform identical in this case.

errors for Info-Greedy Sensing can be two orders of magni-
tude lower than the errors obtained from measurement using
Gaussian random vectors, and the errors fall below our desired
tolerance using the theoretically calculated .
When the assumed covariance matrix for the signal is equal

to its true covariance matrix, Info-Greedy Sensing is identical
to the batch method [32] (the batch method measures using the
largest eigenvectors of the signal covariance matrix). However,
when there is a mismatch between the two, Info-Greedy Sensing
outperforms the batch method due to adaptivity, as shown in
Fig. 2. For Gaussian signals, the complexity of the batch method
is (due to eigendecomposition), versus the complexity
of Info-Greedy Sensing algorithm is on the order of
where is the number of iterations needed to compute the eigen-
vector associated with the largest eigenvalue (e.g., using the
power method), and is the number of measures which is typ-
ically on the order of .
We also try larger examples. Fig. 3 demonstrates the per-

formance of Info-Greedy Sensing for a signal of dimension
1000 and with dense and low-rank (approximately 5% of non-
zero eigenvalues). Another interesting case is shown in Fig. 4,
where and is rank 3 and very sparse: only about
0.0003% of the entries of are non-zeros. In this case Info-
Greedy Sensing is able to recover the signal with a high preci-
sion using only 3 measurements. This shows the potential value
of Info-Greedy Sensing for big data.
2) Low-Rank GMM Model: In this example we consider

a GMM model with components, and each Gaussian
component is generated as a single Gaussian component de-
scribed in the previous example Section VI-A1 ( and

). The true prior distribution is

Fig. 2. Sensing a low-rank Gaussian signal of dimension and about
5% of the eigenvalues are non-zero, when there is mismatch between the as-
sumed covariance matrix and true covariance matrix:

, where , and using 20 measurements. The batch method mea-
sures using the largest eigenvectors of , and the Info-Greedy Sensing
updates in the algorithm. Info-Greedy Sensing is more robust to mis-
match than the batch method.

Fig. 3. Sense a low-rank Gaussian signal of dimension and about
5% eigenvalues of are non-zero. Info-Greedy Sensing has two orders of mag-
nitude improvement over the random projection.

Fig. 4. Sense a Gaussian signal of dimension . The covariance ma-
trix is low-rank and sparse: only 0.0003% of entries are non-zero and the rank
is 3. Info-Greedy Sensing has two orders of magnitude improvement over the
random projection. The number of measurements is 3 as calculated through (11).

for the three components (hence each time the signal is draw
from one component with these probabilities), and the assumed
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Fig. 5. Sensing a GMM signal: comparison of greedy heuristic and the
gradient descent approach in terms of (a) mutual information
over number of measurements , average over 100 Monte Carlo trials; (b)

over number of measurements , averaged over 100 Monte
Carlo trials.

Fig. 6. Sensing a GMM signal: comparison of errors for the batch gradient de-
scent method [32] and the Info-Greedy Sensing algorithms: the greedy heuristic
and the gradient descent approach, when and , respectively.

prior distribution for the algorithms is uniform: each compo-
nent has probability . The parameters for the gradient de-
scent approach are: step size and the error tolerance
to stop the iteration . Fig. 5 demonstrates the esti-
mated cumulative mutual information and mutual information
in a single step, averaged over 100 Monte Carlo trials, and the
gradient descent based approach has higher information gain
than that of the greedy heuristic, as expected. Fig. 6 shows the
ordered errors for the batch method based on mutual informa-
tion gradient [32], the greedy heuristic versus gradient descent
approach, when and , respectively. Note that
Info-Greedy Sensing approaches (greedy heuristic and gradient
descent) outperform the batch method due to adaptivity, and
that the simpler greedy heuristic performs fairly well compared
with the gradient descent approach. For GMM signals, the com-
plexity of the batch method is (due to eigendecompo-
sition of components), versus the complexity of Info-Greedy
Sensing algorithm is on the order of where is the
number of iterations needed to compute the eigenvector associ-
ated with the largest eigenvector (e.g., using the power method),
and is the number of measures which is typically on the order
of .
3) Sparse Info-Greedy Sensing: Consider designing a sparse

Info-Greedy Sensing vector for a single Gaussian signal with
, desired sparsity of measurement vector ,

and the low-rank covariance matrix is generated as before
by thresholding eigenvalues. Fig. 7(a) shows the pattern of
non-zero entries from measurement 1 to 5. Fig. 7(b) compares
the performance of randomly selecting 5 non-zero entries. The

Fig. 7. Results of designing sparse sensing vectors: (a) support of the sparse
measurements for , , over 5 measurements; (b) comparison of
errors for the random sparse measurement, sparse Info-Greedy measurement,
and non-sparse Info-Greedy measurement.

Fig. 8. Comparison of true and recovered handwritten digit 2 by the greedy
heuristic and the gradient descent approach, respectively.

TABLE I
COMPARISON OF PROBABILITY OF FALSE CLASSIFICATION

FOR MNIST HANDWRITTEN DIGITS DATASET.

sparse Info-Greedy Sensing algorithm outperforms the random
approach and does not degrade too much from the non-sparse
Info-Greedy Sensing.

B. Real Data

1) MNIST Handwritten Dataset: We exam the performance
of using GMM Info-Greedy Sensing on MNIST handwritten
dataset6. In this example, since the true label of the training
data is known, we can use training data to estimate the true
prior distribution , and (there are classes of
Gaussian components each corresponding to one digit) using
10,000 training pictures of handwritten digits picture of dimen-
sion 28 by 28. The images are vectorize and hence ,
and the digit can be recognized using the its highest posterior
after sequential measurements. Fig. 8 demonstrates an instance
of recovered image (true label is 2) using sequential
measurements, for the greedy heuristic and the gradient descent
approach, respectively. In this instance, the greedy heuristic
classifies the image erroneously as 6, and the gradient descent
approach correctly classifies the image as 2. Table I shows the
probability of false classification for the testing data, where the
random approach is where are normalized random Gaussian
vectors. Again, the greedy heuristic has good performance
compared to the gradient descent method.

6http://yann.lecun.com/exdb/mnist/
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Fig. 9. Recovery of power consumption data of 58 counties in California: (a)
normal probability of residuals formed by training data after subtracting the
mean estimated from year 2006 to year 2011; (b) relative error
for estimating power consumption vector in year 2012 versus the number of
measurements.

2) Recovery of Power Consumption Vector: We consider
recovery of a power consumption vector for 58 counties in
California7. Data for power consumption in these counties
from year 2006 to year 2012 are available. We first fit a single
Gaussian model using data from year 2006 to 2011 (Fig. 9(a),
the probability plot demonstrates that Gaussian is a reasonably
good fit to the data), and then test the performance of the
Info-Greedy Sensing in recovering the data vector of year 2012.
Fig. 9(b) shows that even by using a coarse estimate of the
covariance matrix from limited data (5 samples), Info-Greedy
Sensing can have better performance than the random al-
gorithm. This example has some practical implications: the
compressed measurements here correspond to collecting the
total power consumption over a region of the power network.
This collection process can be achieved automatically by new
technologies such as the wireless sensor network platform
using embedded RFID in [2] and, hence, our Info-Greedy
Sensing may be an efficient solution to monitoring of power
consumption of each node in a large power network.

VII. CONCLUSION

We have presented a general framework for sequential adap-
tive compressed sensing, Info-Greedy Sensing, which is based
on maximizing mutual information between the measurement
and the signal model conditioned on previous measurements.
Our results demonstrate that adaptivity helps when prior distri-
butional information of the signal is available and Info-Greedy
is an efficient tool to explore such prior information, such as in
the case of the GMM signals. Adaptivity also brings robustness
when there is mismatch between the assumed and true distri-
bution, and we have demonstrated such benefits for Gaussian
signals. Moreover, Info-Greedy Sensing shows significant im-
provement over random projection for signals with sparse and
low-rank covariance matrices, which demonstrate the potential
value of Info-Greedy Sensing for big data.
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