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Introduction
Self- and mutually-exciting point processes are popular models
for dependent discrete event data. To date, most existing models
assume stationary kernels (including the classical Hawkes pro-
cesses) and simple parametric models. Modern applications with
complex event data require more general models that can incor-
porate contextual information of the events, called marks, besides
the temporal and location information. Moreover, such appli-
cations often require non-stationarity to capture more complex
spatio-temporal dependence. In this paper, we introduce a novel
and general neural network-based non-stationary influence kernel
with high expressiveness for handling complex discrete events
data while providing theoretical performance guarantees. We
demonstrate the superior performance of our proposed method
compared with the state-of-the-art on synthetic and real data.
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Figure: An example of non-stationary influence kernel k(t′, t) of event time t′
and future time t > t′.

Marked Temporal Point Process
A data point in the discrete event sequence:

x = (t,m), t ∈ [0, T ), m ∈M,

Conditional intensity function:

λ(x)dx = E
(
dN(x)|Ht(x)

)
.

Hawkes process with kernel k ∈ K ⊂ C0(X × X ):

λ[k](x) = µ +
∫
x′∈Xt(x)

k(x′, x)dN(x′), (1)

Log-likelihood given M sequences {xi,j}, i = 1, ..., Nj, j =
1, . . . ,M

`[k] := 1
M

M∑
j=1

(∫
X

log λj[k](x)dNj(x)−
∫
X
λj[k](x)dx

)
,

(2)

Contribution
X The kernel function is represented by a spectral decom-

position of the influence kernel.
X The spectral decomposition of asymmetric influence kernel

consists of a sum of the product of feature maps, which
can be parameterized by neural networks.

X We establish theoretical guarantees of the MLE
for the true kernel function based on functional vari-
ational analysis and finite-dimensional asymptotic analysis,
which shed light on theoretical understanding of neural
network-based kernel functions.

Neural Spectral Kernel
Influence kernel k is represented using finite-rank decomposition:

k(x′, x) =
R∑
r=1

νrψr(x′)φr(x), νr ≥ 0, (3)

where

ψr : X → R, φr : X → R, r = 1, · · · , R,

are two sets of feature functions in some smooth functional space
F ⊂ C0(X ), and νr is the corresponding weight or spectrum.

Kernel Identifiability
Assumption: (A1) The kernel function familyK ⊂ C0(X×X ),
and kernel functions in K is uniformly bounded; (A2) There exist
c1, c2 positive constants, such that for any k ∈ K, c1 ≤ λj[k](x) ≤
c2, ∀x ∈ X and ∀j.

Kernel identifiability using maximum likelihood: Un-
der Assumption, the true kernel function k∗ is locally identifiable
in that k∗ is a local minimum solution of maximum likelihood (2)
in expectation.

Kernel Architecture and Network Structure
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(b) Network structure
Figure: (a) The architecture of the proposed non-stationary neural spectral kernel. (b) The structure of the multi-branch neural network.

Optimal fit using feature
function basis representation

• Assume that the feature functions of the kernel can be well-
approximated by a linear combination of basis functions: bi(x) :
X → R, i = 1, . . . , S:

ψr(x) =
S∑
i=1

αribi(x), φr(x) =
S∑
i=1

βribi(x), r = 1, · · · , R.

The kernel function in (3) can be written as kA(x′, x) =
b(x′)TAb(x), where Apq =

∑R
r=1 νrαrpβrq.

• Let Ã ∈ A be the one which maximizes the expected log-
likelihood function. i.e.

Ã = arg max
A∈A

E (`A) . (4)

Under Assumption, let the `2-norm of a kernel be

‖k‖2
2 =

∫
X

∫
Xt(x)

k(x′, x)2dx′dx. (5)

Then we have

‖k∗−kÃ‖
2
2 ≤

c5
2|M|T + c4

2
c4

1
exp(2(c2−c1)|M|T )D(k∗,Kfinite)2,

where D(k∗,Kfinite) is the `2-distance between the true kernel
and the set Kfinite,

D(k∗,Kfinite) = min
k∈Kfinite

‖k∗ − k‖2.

Asymptotic normality of low-rank MLE

Let the singular value decomposition of Ã be Ã = UΛV T

and Ĩ be the expected Hessian matrix of the log-likelihood
at Ã. Let J̃ be the covariance matrix of a single trajectory’s
score function at Ã, and G̃ ∈ RS×S be the expected score
at Ã, Let F = (IS ⊗ U, V ⊗ IS) ∈ RS2×2SR where ⊗ is
the Kronecker product, IS is the identity matrix of size S,
C̃ = (Ã† ⊗ G̃)QS,S + ((Ã† ⊗ G̃)QS,S)T , where † represents
pseudo-inverse and Qa,b ∈ Rab×ab is the permutation matrix
such that vec(P T ) = Qa,bvec(P ) for any a-by-b matrix P .

If F T (Ĩ + C̃)F shares the same null-space with F , then
the low-rank estimator ÂMLE, solved from the constrained
maximum likelihood problem, when M →∞, satisfies

√
M(vec(ÂMLE)− vec(Ã))→
N (0, F (F T (Ĩ + C̃)F )†F T J̃F (F T (Ĩ + C̃)F )†F ),

Real Data Experiments
Table: Predictive log-likelihood on real data.

` Earthquake (2D) Robbery (1D) #Parameters Training/Testing time2

NSMPP -56.50 -74.47 171,555 0.766 / 0.84
RMTPP -218.39 -132.55 274,168 0.245 / 7.29
Neural Hawkes -189.39 -96.10 282,755 0.204 / 6.09
Hawkes NA -197.84 2 0.021 / <0.01

Numerical Experiments

Figure: Recovered kernels using three one-dimensional synthetic data sets.

Figure: Recovered kernels using three two-dimensional synthetic data sets.

Figure: Predicted conditional intensity using our method and other baseline
approaches for synthetic data sets.
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