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The Viterbi Algorithm 

G. DAVID FORNEY, JR. 

Invited Paper 

Abstrucf-The  Viterbi  algorithm  (VA) is a  recursive  optimal solu- 
tion to the problem of estimating the state sequence of a  discrete- 
time finite-state  Markov  process observed in memoryless noise. 
Many  problems in areas such as digital  communications can be cast 
in this form. This paper gives a  tutorial  exposition of the algorithm 
and of how it is implemented  and analyzed. Applications  to  date  are 
reviewed. Increasing use of the algorithm in a  widening  variety of 
areas is foreseen. 

I. INTRODUCTION 

P I  
HE VITERBI  algorithm (VA) was  proposed  in 1967 

as a method of decoding  convolutional  codes.  Since 
that  time,  it   has  been  recognized as an  a t t ract ive solu- 

tion  to a variety of digital  estimation  problems,  somewhat  as 
the  Kalman  filter  has  been  adapted  to a variety of analog  esti- 
mation  problems.  Like  the  Kalman  filter,  the VA tracks  the 
s ta te  of a stochastic  process  with a recursive  method  that  is 
optimum  in a certain  sense,  and  that  lends itself  readily to 
implementation  and  analysis.  However,  the  underlying pro- 
cess  is  assumed  to  be  finite-state  Markov  rather  than  Gaus- 
sian,  which  leads to  marked  differences  in  structure. 

This  paper is intended  to  be  principally a tutorial  intro- 
duction  to  the VA, i ts   structure,   and  i ts   analysis.   I t   also  pur- 
ports  to  review  more  or less  exhaustively  all  work  inspired  by 
or related to the  algorithm  up  to  the  t ime of writing  (summer 
1972). Our belief is  that  the  algorithm will  find application  in 
a n  increasing  diversity of areas.  Our  hope is tha t  we can  ac- 
celerate  this  process  for  the  readers of this  paper. 

The  Editor. 
This invited paper is one of a series planned on topics of general interest- 

Manuscript  received September  20,  1972; revised November 27, 1972. 
The  author is with Codex  Corporation, Newton,  Mass.  02195. 

11. STATEMENT OF THE PROBLEM 
In  its  most  general  form,  the VA may be  viewed as a solu- 

tion to the  problem of maximum a posteriori probability 
(MAP) estimation of the  state  sequence of a finite-state  dis- 
crete-time  Markov  process  observed  in  memoryless noise. I n  
this  section  we  set  up  the  problem  in  this  generality,  and  then 
illustrate  by  example  the  different  sorts of problems  that  can 
be  made  to  fit such a model. The  general  approach also has   the 
virtue of tutorial  simplicity. 

The  underlying  Markov  process  is  characterized as fol- 
lows.  Time is discrete.  The  state xk at  time k is  one of a finite 
number M of states m, 1 s m  5 14; i.e., the  state  space X is 
simply { 1, 2, . . , A I ] ,  Initially  we  shall  assume  that  the 
process  runs  only  from  time 0 to   t ime K and  that   the  init ial  
and  final states x0 and XK are  known;  the  state  sequence  is 
then  represented  by a finite  vector X =  (20, + 1 , x ~ ) .  We see 
later  that  extension  to  infinite  sequences  is  trivial. 

T h e  process is Markov,  in  the  sense  that  the  probability 

given all states  up  to  t ime k ,  depends  only on the   s ta te  xk at 
t ime k :  

P ( X k + l I  x09 x1, . * . , xk) of being  in  state Xk+l  at time k f  1, 

P ( X k + l  j xo, x1, . . . , Xk) = P(Xk+lI Xk). 

The  transition  probabilities P ( x k + l ~  x k )  may  be  time  varying, 
but  we  do  not  explicitly  indicate  this  in  the  notation. 

I t  is convenient  to  define  the  transition & at time k as the  
pair of states (xk+l, x k )  : 

t k  (%+I, xk). 

We  let E be  the  (possibly  time-varying)  set of transitions 
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Fig. 1.  Most general model. 

& = (%&I, x k )  for  which P(xe11 x k )  ZO, and I X I their  number. 
Clearly I X 1 5 M2. There is evidently  a  one-to-one  correspon- 
dence  between  state  sequences X and  transition  sequences 
f =  (50, * * , &-I). (We  write x= t.) 

The  process is assumed  to  be  observed  in  memoryless 
noise; t ha t  is,  there is a sequence z of observations z k  in  which 
Zk depends  probabilistically  only  on  the  transition E at time 
k:l 

k-0 

In  the  parlance of information  theory, z can  be  described as 
the  output of some  memoryless  channel  whose  input  sequence 
is  (see  Fig. 1). Again,  though we  shall  not  indicate  it ex- 
plicitly,  the  channel  may  be  time  varying  in  the  sense  that 
P ( z k I b )  may  be a function of k .  This  formulation  subsumes 
the  following as special  cases. 

1) The  case  in  which z k  depends  only  on  the  state x k :  

2) The  case  in  which 4 depends  probabilistically  on  an 
output y k  of the  process at time k ,  where y k  is  in  turn a de- 
terministic  function of the  transition b or the  state ?&. 

Example: The following  model frequently  arises  in  digital 
communications.  There  is  an  input  sequence u = (UO, ul, * . ), 
where  each u k  is  generated  independently  according  to  some 
probability  distribution P ( i ( k )  and  can  take  on  one of a  finite 
number of values,  say m. There  is a noise-free  signal  sequence 
y, not  observable,  in  which  each y k  is  some  deterministic  func- 
tion of the  present  and  thev  previous  inputs: 

y k  = f ( U k ,  * ’ * 7 U k - v )  - 
The  observed  sequence z is  the  output of a memoryless  chan- 
nel  whose input  is y. We  call  such a process a shift-register 
process, since  (as  illustrated  in  Fig. 2) it  can  be  modeled  by a 
shift  register of length Y with  inputs u k .  (Alternately,  it  is a 
vth-order  m-ary  Markov  process.) T o  complete  the  corre- 
spondence  to  our  general  model we define: 

1) the  s ta te  

x k  & ( u k - 1 ,  ‘ ‘ 3 u k - v )  

2) the  transition 

b & ( u k ,  * * ’ Uk-- . ) .  

The  number of states  is  thus 1 XI =m’, and of transitions, 
IEl =m’+l. If the  input  sequence  “starts” at time 0 and 
‘stops” at time K - v ,  i.e., 

u = (  . . .  0, u0, u 1 ,  ’ ’ , ~ K - P ,  0, 0, ‘ * ’ ) 

then  the  shift-register  process  effectively  starts  at  time 0 and 
ends at time K with x0 = XK = (0, 0, , 0). 

for continuous-valued Zk, simply  substitute a density P(z t  I&) for the  dis- 
1 The notation  is  appropriate  when  observations are discrete-valued; 

tribution P(z t  I&). 

“ h a  SHIFT REGISTER t.- 
DETERMINISTIC  FUNCTION 

MEWRYLESS 
CHANNEL 

Fig. 2. Shift-register  model. 

’ Ik , 
I 

Fig. 3. A convolutional  encoder. 

Finally, we state  the  problem  to  which  the VA is a solu- 
tion.  Given  a  sequence z of observations of a discrete-time 
finite-state  Markov process  in  memoryless  noise,  find the 
state  sequence x for  which  the a  posteriori probability P(xl I) 
is  maximum.  Alternately,  find  the  transition  sequence F, for 
which P(F, j z) is maximum  (since x 2  E ) .  In  the  shift-register 
model  this  is  also  the  same  as  finding  the  most  probable  input 
sequence u, since t&. X ;  or also  the  most  probable  signal  se- 
quence y, if y L 1  X .  I t  is  well known  that  this  MAP  rule  mini- 
mizes the  error  probability  in  detecting  the  whole  sequence 
(the  block-, message-, or word-error  probability),  and  thus  is 
optimum  in  this  sense.  We  shall  see  that  in  many  applications 
i t  is  effectively  optimum  in  any  sense. 

Application  Examples: We  now  give  examples  showing tha t  
the  problem  statement  above  applies  to  a  number of diverse 
fields,  including  convolutional  coding,  intersymbol  interfer- 
ence,  continuous-phase  frequency-shift  keying  (FSK),  and 
text  recognition.  The  adequately  motivated  reader  may  skip 
immediately  to  the  next  section. 

A .  Convolutional Codes 
A  rate-l/n  binary  convolutional  encoder  is a shift-register 

circuit  exactly  like  that of Fig. 2, where  the  inputs u k  are  in- 
formation  bits  and  the  outputs y k  are  blocks of # bits, y k  

=(Pa, * - * , p , ,~ ) ,  each of which  is a parity  check  on  (modulo- 
2 sum of) some  subset of the v + l  information  bits ( U k ,  

Uk-1, * . , Uk-v) .  When  the  encoded  sequence  (codeword) y is 
sent  through  a  memoryless  channel, we have precisely the 
model of Fig. 2. Fig. 3 shows a particular  rate-$  code  with 
v = 2 .  (This  code is the  only  one  ever  used  for  illustration  in  the 
VA coding  literature,  but  the  reader  must  not  infer  that  it  is 
the  only  one  the VA can  handle.) 

More  general  convolutional  encoders  exist:  the  rate  may 
be k / n ,  the  inputs  may  be  nonbinary,  and  the  encoder  may 
even  contain  feedback.  In  every  case,  however,  the  code  may 
be  taken  to  be  generated  by  a  shift-register  process [2]. 

We  might  also  note  that  other  types of transmission  codes 
(e.g.,  dc-free  codes,  run-length-limited  codes,  and  others)  can 
be  modeled as outputs of a  finite-state  machine  and  hence fall 
into  our  general  setup [49]. 
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B.  Intersymbol  Interference 
In  digital  transmission  through  analog  channels,  we  fre- 

quently  encounter  the  following  situation.  The  input  se- 
quence u, discrete-time  and  discrete-valued as in  the  shift- 
register  model,  is  used to  modulate  some  continuous  waveform 
which  is  transmitted  through a channel  and  then  sampled. 
Ideally,  samples z k  would  equal  the  corresponding U k ,  or  some 
simple  function  thereof;  in  fact,  however,  the  samples ,zk a re  
perturbed  both  by noise and  by  neighboring  inputs U p .  T h e  
latter  effect  is  called  intersymbol  interference.  Sometimes 
intersymbol  interference  is  introduced  deliberately  for  pur- 
poses of spectral  shaping,  in  so-called  partial-response  sys- 
tems. 

In  such  cases  the  output  samples  can  often  be modeled as 

z k  = y k  + nk 

where y k  is  a deterministic  function of a finite  number of in- 
puts,  say, y k  = f ( U k ,  * * . , Uk-y) ,  and n k  is a white  Gaussian 
noise  sequence.  This  is  precisely  Fig. 2. 

To be  still  more  specific,  in  pulse-amplitude  modulation 
(PAM) the  signal  sequence y may  be  taken as the  convolu- 
tion of the  input  sequence u with  some  discrete-time  channel 
impulse-response  sequence (ho,  hl, * * ) :  

y k  = hi24k-i .  
i 

If h, =O for i>v (finite  impulse  response),  then  we  obtain  our 
shift-register  model. An illustration of such a model  in  which 
intersymbol  interference  spans  three  time  units ( v =  2)  ap- 
pears  in  Fig. 4. 

I t   was  shown  in  [29] that  even  problems  where  time  is 
actually continuous-Le., the  received  signal r ( t )  has  the  form 

r ( t )  = U k h ( 1  - KT) + n(1) 

for  some  impulse  response h ( t ) ,  signaling  interval T ,  and  reali- 
zation n(t) of a white  Gaussian noise  process-can be  reduced 
without loss of optimality  to  the  aforementioned  discrete-time 
form  (via a "whitened  matched  filter"). 

K 

k=O 

C. Continuous-Phase FSK 
This  example  is  cited  not  for  its  practical  importance,  but 

because,  first,  it  leads  to a simple  model  we  shall  later  use  in 
an  example,  and,  second,  it  shows  how  the VA may  lead  to 
fresh  insight  even  in  the  most  traditional  situations. 

In   FSK, a digital  input  sequence u selects  one of m fre- 
quencies (if z& is  m-ary)  in  each  signaling  interval of length T ;  
that  is,  the  transmitted  signal q( t )  is 

where O ( U k )  is  the  frequency  selected  by U k ,  and e k  is  some 
phase  angle. It  is  desirable  for  reasons  both of spectral  shap- 
ing  and of modulator  simplicity  that  the  phase  be  continuous 
at the  transition  interval;  that is, t ha t  

w ( U k - 1 ) k T  + ek-1 E w ( u k ) k T  + e k  modulo 27r. 

This  is  called  continuous-phase  FSK. 
The  continuity of the  phase  introduces  memory  into  the 

modulation  process; i.e., it  makes  the  signal  actually  trans- 
mitted  in  the  kth  interval  dependent on previous  signals. T o  
take  the  simplest possible  case  ("deviation  ratio" = a ) ,  let the  

JEi-J-E+ 
Yh + 

h0 

Fig. 4. Model of PAM system subject to intersymbol 
interference and  white Gaussian noise. 

"k L9-jw-g SIGNAL 

+ 
"lk 

Fig. 5. Model for binary  continuous-phase FSK with  deviation  ratio 
3 and  coherent  detection  in  white Gaussian noise. 

input  sequence u be  binary  and  let w ( 0 )  and w(1) be  chosen so 
tha t  w ( 0 )  goes  through  an  integer  number of cycles  in T 
seconds  and w(1) through  an  odd  half-integer  number; i.e., 
w(O)T=Oandw(l)T=7rmodulo27r. Thenif  e o = O ,  O1=Oorr, 
according  to  whether uo equals  zero or one,  and  similarly 
& = O  or r ,  according  to  whether  an  even  or  odd  number of 
ones  has  been  transmitted. 

Here  we  have a two-state process, with X = (0,  7r 1. The  
transmitted  signal y k  is a function of both  the  current  input 
u k  and  the  s ta te  x k :  

y k  = cos [ W ( U k ) t  + X k ]  = cos cos w(Uk)f, 

KT t < ( R  + 1)T.  

Since  transitions & = ( x k + l ,  %$ are  one-to-one  functions of the  
current  state x k  and  input U k ,  we  may  alternately  regard y k  as 
being  determined  by ( k .  

If we  take qo(t) &os w(0)t  and vl(t) &os w(1)t  as bases of 
the  signal  space,  we  may  write 

y k  = yOk'?O(l) + ylkvl(t) 

where  the  coordinates ( y o ,  ylk) are  given  by 

I 
( (0 ,  - I ) ,  if U k  = 1 ,  Xk = 

Finally, if the  received  signal ( ( t )  is q( t )  plus  white  Gaussian 
noise v ( t ) ,  then  by  correlating  the  received  signal  against  both 
q o ( t )  and ql( t )  in  each  signal  interval  (coherent  detection),  we 
may  arrive  without loss of information a t  a discrete-time  out- 
put  signal 

z k  = (ZW, Z l k )  = (yak, y l k )  + (nokt flu) 

where no and n1 are  independent  equal-variance  white  Gaus- 
sian noise  sequences. This model  appears  in  Fig. 5, where  the 
signal  generator  generates ( y ~ ,  y a )  according  to  the  aforemen- 
tioned  rules. 

D .  Text  Recognition 
\Ve include  this  example  to  show  that  the VA is  not  limited 

to  digital  communication.  In  optical-character-recognition 
(OCR) readers,  individual  characters  are  scanned,  salient 
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PROCESS 

ENGLISH 

OCR OUTPU O C R  CHARACTERS 
MARKOV 

REPRESENTING zI DEVICE yI * 

Fig. 6. Use of VA to improve character 
recognition by exploiting  context. 

features  isolated,  and  some  decision  made as to   what   le t ter   or  
other  character  lies  below  the  reader.  When  the  characters 
actually  occur as part  of natural-language  text,  it   has  long 
been  recognized that  contextual  information  can  be  used  to 
assist  the  reader  in  resolving  ambiguities. 

One  way of modeling  contextual  constraints is to   t reat  a 
natural  language  like  English as though  it  were a discrete- 
time  Markov  process.  For  instance,  we  can  suppose  that  the 
probability of occurrence of each  letter  depends  on  the v 
previous  letters,  and  estimate  these  probabilities  from  the 
frequencies of (vf1)-letter  combinations  [(v+l)-grams]. 
While  such  models  do  not  fully  describe  the  generation of 
natural  language (for examples of digram  and  trigram  English, 
see  Shannon [45], [46]), they  account  for a large  part of the  
statistical  dependencies  in  the  language  and  are  easily 
handled. 

With  such a model,  English  letters  are  viewed as the  out-  
puts of an  m’-state Markov  process,  where m is   the  number of 
distinguishable  characters,  such as 27 (the 26 letters  and a 
space). If i t   is   further  assumed  that   the  OCR  output zk is 
dependent  only on the  corresponding  input  character yk, then 
the  OCR  reader  is  a memoryless  channel to whose  output se- 
quence  we  may  apply  the  VA to exploit  contextual  con- 
straints;  see  Fig. 6. Here  the ‘‘OCR output”  may  be  anything 
from  the  raw  sensor  data,  possibly a grid of zeros  and  ones,  to 
the  actual  decision  which  would  be  made  by  the  reader  in  the 
absence of contextual  clues.  Generally,  the  more  raw  the  data, 
the  more  useful  the VA will be. 

E .  Othw 
Recognizing  certain  similarities  between  magnetic  record- 

ing  media  and  intersymbol  interference  channels,  Kobayashi 
[SO] has  proposed  applying  the  VA to digital  magnetic  re- 
cording  systems.  Timor [SI] has  applied  the  algorithm  to a 
sequential  ranging  system.  Use of the  algorithm  in  source 
coding  has  been  proposed [52]. Finally,   Preparata  and  Ray 
[53] have  suggested  using  the  algorithm to search  ‘‘semantic 
maps”  in  syntactic  pattern  recognition.  These  exhaust  the 
applications  known to the  author.  

111. THE ALGORITHM 
We now  show that  the  MAP  sequence  estimation  problem 

01 

IO 2K:::w 
1 1  

(b) 

Fig. 7. (a) State diagram of a four-state shift-register process. (b) Trellis 
f o r  a four-state shift-register process. 

instant of time.  The  trellis  begins  and  ends at the  known states 
x. and XK. Its   most  important  property  is   that  to every possi- 
ble.state  sequence x there  corresponds a unique  path  through 
the  trellis,  and  vice  versa. 

Now  we  show  how,  given a sequence of observations I, 
every  path  may  be  assigned a “length”  proportional  to -In 
P(x ,  z), where x is  the  state  sequence  associated  with  that 
path.  This will allow us t o  solve  the  problem of finding t h e  
state  sequence  for  which P(xl z) is  maximum, or equivalently 
for which P ( x ,  z) = P ( x i  z ) P ( z )  is  maximum,  by  finding  the 
path  whose  length --in P ( x ,  Z) is  minimum,  since In P(x,  t) is  
a monotonic  function of P ( x ,  Z) and  there  is  a one-to-one cor- 
respondence  between  paths  and  sequences.  We  simply ob- 
serve  that  due  to  the  Markov  and  memoryless  properties, 
P(x ,  z) factors as follows: 

P(x,  2 )  = P(x)P(z  1 x )  

Hence if we  assign  each  branch  (transition)  the ‘‘length” 

then  the  total  length of the  path  corresponding  to  some x is 

k=O 

previously  stated  is  formally  identical  to  the  problem of find- 
ing  the  shortest  route  through a certain  graph.  The VA then 
arises as a natural  recursive  solution. 

\Ye are  accustomed  to  associating  with a discrete-time 
finite-state  Markov  process a state  diagram of the  type  shown 
in  Fig.  7(a), for a four-state  shift-register  process  like  that of 
Fig. 3 or Fig. 4 (in this  case, a de  Bruijn  diagram [54]). Here  The shortest-route problem . . . can be solved very  simply 
~ K ~ d e s  represent  states,  branches  represent  transitions,  and where knots represent cities and string lengths represnt dis- 

. . . as follows: Build a string model of the  travel network, 

over  the  course of time  the  process  traces  some  path  from  state tances (or costs). Seize the  knot ‘Los Angeles”  in your left 
to state  through  the  state  diagram. hand  and  the  knot  ’Boston” in your  right  and pull them  apart. 

as claimed. 
Finding  the  shortest  route  through a graph  is  an  old  prob- 

lem  in  operations  research.  The  most  succinct  solution  was 
given  by  Minty  in a quarter-page  correspondence  in 1957 
[ 5 5 ] ,  which  we  quote  almost  in  its  entirety: 
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Unfortunately,  the  Minty  algorithm  is  not well adapted 
to  modern  methods of machine  computation, nor are  assis- 
tants as pliable as formerly. I t  therefore  becomes  necessary to 
move  on  to  the VA, which  is  also well known  in  operations 
research [ 5 6 ] .  I t  requires  one  additional  observation. 

We denote  by xok a segment (xo, xl, . , xk)  consisting of 
the  states  to  t ime  k of the  state  sequence x = (xo, x 1 ,  * , x k ) .  

In   t he  trellis xok corresponds  to a path  segment  starting at the  
node x0 and  terminating at Xk. For  any  particular  time-k  node 
%kt there will in  general  be  several  such  path  segments,  each 
with  some  length 

k-1 

U X O k >  = m > .  
6 0  

The shortest  such  path  segment  is  called  the surriuor corre- 
sponding to the  node x k ,  and  is  denoted ? ( X k ) .  For  any  t ime 
k>O,  there  are M survivors  in  all,  one  for  each x k .  The  obser- 
vation  is  this:  the  shortest  complete  path i must  begin  with 
one of these  survivors. (If it  did  not,  but  went  through  state 
Zk at time k ,  then  we  could  replace  its  initial  segment  by 
f ( x k )  to get a shorter  path-contradiction.) 

Thus  at any  time  k  we  need  remember  only  the M sur- 
vivors f (xk)  and  their  lengths l'(xk) pX[f (xk)] .  To get to t ime 
k f l ,  we  need  only  extend  all  time-k  survivors  by  one  time 
unit,  compute  the  lengths of the  extended  path  segments,  and 
for each  node xk+l select  the  shortest  extended  path  segment 
terminating  in xk+1 as the  corresponding  time-(kfl)  sur- 
vivor.  Recursion  proceeds  indefinitely  without  the  number of 
survivors  ever  exceeding M. 

Many  readers will recognize  this  algorithm as a simple 
version of forward  dynamic  programming [57], [%I. By  this 
or any  other  name,  the  algorithm  is  elementary  once  the 
problem  has  been  cast  in  the  shortest  route  form. 

We illustrate  the  algorithm for a simple  four-state  trellis 
covering 5 time  units  in  Fig. 8. Fig. 8(a)  shows  the  com- 
plete  trellis,  with  each  branch  labeled  with a length. (In a real 
application,  the  lengths  would  be  functions of the  received 
data.)  Fig.  8(b)  shows  the 5 recursive  steps  by  which  the 
algorithm  determines  the  shortest  path  from  the  initial  to  the 
final  node. At  each  stage only the  4 (or fewer)  survivors  are 
shown,  along  with  their  lengths. 

A formal  statement of the  algorithm follows: 

Viterbi  Algorithm 

Storage: 
k  (time  index) ; 
? ( x k ) ,  1 < x k < & f  (survivor  terminating  in x k ) :  

r ( x k ) ,  1 < x k  < M  (survivor  length). 

Initialization: 

k = 0.; 

X(xo) = x o ;  i (m)  arb i t ra ry ,  m # xo; 

r(Xo) = 0 ;  r(m) = Q), m # xo. 

Recursion: Compute 

for all = (xk+l,  x k ) .  

Find 

1 

1 
1 

7' 

k =  5 \ r3 
(b)  

Fig. 8. (a) Trellis  labeled with branch lengths; M = 4, K = 5. 
(b) Recursive determination of the shortest  path  via  the VA. 

for  each x k + l ;  store r ( x r + l )  and  the  corresponding  survivor 
i ( X k + l ) .  

Set  k to k+1  and  repeat  until k = K .  
With  finite  state  sequences x the  algorithm  terminates at 

t ime K with  the  shortest  complete  path  stored as the  survivor 
?(xK). 

Certain  trivial  modifications  are  necessary  in  practice. 
When  state  sequences  are  very  long  or  infinite,  it  is  necessary 
to truncate  survivors to some  manageable  length 6. In other 
words,  the  algorithm  must  come  to a definite  decision on 
nodes  up  to  time k-6 at t ime k. Note  that  in  Fig.  8(b) all 
time-4  survivors  go  through  the  same  nodes  up to  time  2. In 
general, if the  truncation  depth 6 is  chosen  large  enough, 
there  is a high  probability  that all time-k  survivors will go 
through  the  same  nodes  up to time k - 6 ,  so that  the  init ial  
segment of the  maximum-likelihood  path  is  known  up  to  time 
k-6 and  can  be  put  out as the  algorithm's firm  decision; in 
this  case,  truncation  costs  nothing. In the  rare  cases  when 
survivors  disagree,  any  reasonable  strategy  for  determining 
the  algorithm's  time-(k-6)  decision will work [20], [21]: 
choose an  arbitrary  time-(k-6)  node,  or  the  node  associated 
with  the  shortest  survivor,  or a node  chosen  by  majority  vote, 
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etc. If 6 is  large  enough,  the  effect on performance  is  negligi- 
ble. 

Also, if k becomes  large,  it  is  necessary  to  renormalize  the 
lengths r ( m )  from  time  to  time  by  subtracting a constant 
from all of them. 

Finally,  the  algorithm  may  be  required to get  started  with- 
out  knowledge of the  initial state xg. In  this  case  it   may  be 
initialized  with  any  reasonable  assignment of initial  node 
lengths,  such as r(m) =0, all m, or else r(m) = -In r,,, if t he  
states  are  known to have a priori probabilities r,,,. Usually, 
after  an  initial  transient,  there  is a high  probability  that all 
survivors will  merge  with  the  correct  path.  Thus  the  algorithm 
synchronizes  itself  without  any  special  procedures. 

The  complexity of the  algorithm  is  easily  estimated.  First, 
memory:  the  algorithm  requires M storage  locations,  one  for 
each state, where  each  location  must  be  capable of storing a 
“length” r ( m )  and a truncated  survivor  listing %(m)  of 6 
symbols.  Second,  computation:  in  each  unit of t ime  the 
algorithm  must  make IEI additions,  one  for  each  transition, 
and M comparisons  among  the ] E l  results.  Thus  the  amount 
of storage  is  proportional  to  the  number of states, and  the 
amount of computation  to  the  number of transitions. \\‘ith a 
shift-register  process, M =  my and 1 El = mV+l, so that   the   com- 
plexity  increases  exponentially  with  the  length v of the  shift 
register. 

In  the  previous  paragraph, we have  ignored  the  complexity 
involved  in  generating  the  incremental  lengths X(&).  In a 
shift-register  process,  it  is  typically  true  that P(xk+lI  xk) is 
e i ther   l /m or 0, depending on whether xk+l is an  allowable  suc- 
cessor t o  xk or not;   then all allowable  transitions  have  the 
same  value of -In P(xk+lI xk) and  this  component of X(&) 
may  be  ignored.  Note  that  in  more  general  cases P(xk+l I xk) is 
known  in  advance:  hence  this  component  can  be  precomputed 
and  ‘wired  in.” The  component -In P ( z k /  4;c) is  the  only  com- 
ponent  that  depends on the  data;   again,   i t  is typical  that 
many f k  lead  to  the  same  output yk, and  hence  the  value 
-In P ( z k  1 yk) need  be  computed or looked  up  for all these .$x. 
only  once,  given z k .  (\Then  the noise is  Gaussian, -In P ( z k  I y k )  

is  proportional  simply  to ( z k - y k ) * . )  Finally, all of this  can  be 
done  outside  the  central  recursion  (“pipelined”).  Hence  the 
complexity of this  computation  tends  not  to  be  significant. 

Furthermore,  note  that  once  the X&) are  computed,  the 
observation Zk need  not  be  stored  further,  an  attractive  fea- 
ture  in  real-time  applications. 

A closer  look at the  trellis of a shift-register  process  reveals 
additional  detail  that  can  be  exploited  in  implementation.  For 
a binary  shift  register,  the  transitions  in  any  unit of t ime  can 
be  segregated  into 2y-1 disjoint  groups of four,  each  originat- 
ing  in a common  pair of states  and  terminating  in  another 
common  pair. A typical  such cell is  illustrated  in  Fig. 9, with 
the  time-k  states  labeled x’0 and  x‘l   and  the  t ime-(k+l)  states 
labelled Ox‘ and lx’, where x’ stands  for a sequence of v - 1 bits 
that   is   constant  within  any one cell. For  example,  each  time 
unit  in  the  trellis of Fig. 8 is  made  up of two  such cells. \Ye 
note  that  only  quantities  within  the  same cell interact  in  any 
one  recursion.  Fig. 10 shows a basic  logic m i t  that  imple- 
ments  the  computation  within  any  one cell. A high-speed 
parallel  implementation of the  algorithm  can  be  built  around 
2-l such  identical  logic  units; a low-speed  implementation, 
around  one  such  unit,  time-shared; or a software  version, 
around  the  corresponding  subroutine. 

Many  readers will have  noticed  that  the  trellis of Fig.  7(b) 
reminds  them of the  computational flow diagram of the  fast  

Fig. 9. Typical cell of a shift-register process trellis. 

I I  4 
/ , ,  I I  i (U i i , - .  1, , ,  &r l l  i(Cii,-. 

SELECT 
1-OF-  2 

SELECT 
I-OF-2 

SELECT 
I-OF-2 

SELECT 
1-OF-2 9 !+ 9 {*; 

\---y--l 
TO  ANOTHER LOGIC UNIT 
- 
TO  ANOTHER LOGIC UNIT 

Fig, 10. Basic VA logic unit for binary  shift-register process. 

Fourier  transform  (FFT).  In  fact,  it  is  identical,  except for 
length,  and  indeed  the FFT is also  ordinarily  organized  cell- 
wise. Li‘hile the  add-and-compare  computations  of  the VA 
are  unlike  those  involved  in  the  FFT,  some of the  memory- 
organization  tricks  developed  for  the FFT may  be  expected 
to  be  equally useful  here. 

Because of its  highly  parallel  structure  and  need  for  only 
add,  compare,  and  select  operations,  the VA is well suited  to 
high-speed  applications. A convolutional  decoder  for a v = 6 
code (Ji= 64, / E l  = 128) t ha t  is  built  out of 356 transistor- 
transistor logic  circuits  and  that  can  operate at up   to  2 
Mbits/s  perhaps  represents  the  current  state  of  the  art [22]. 
Even a software  decoder  for a similar  code  can  be run at a 
rate  the  order of 1000 bits/s  on a minicomputer.  Such 
moderate  complexity  qualifies  the VA for  inclusion  in  many 
signal-processing  systems. 

For  further  details of implementation,  see [22],  [23], and 
the  references  therein. 

IV. ASALYSIS OF PERFORMAXE 
Just  as important as the  straightforwardness of imple- 

mentation of the  VA is  the  straightforwardness  with  which  its 
performance  can  be  analyzed.  In  many  cases,  tight  upper  and 
lower  bounds  for  error  probability  can  be  derived.  Even  when 
the  VA is  not  actually  implemented,  calculation of its  per- 
formance  shows  how  far  the  performance of less  complex 
schemes  is  from  ideal,  and  often  suggests  simple  suboptimum 
schemes  that  attain  nearly  optimal  performance. 

The  key  concept  in  performance  analysis  is  that of a n  
error  event.  Let x be the  actual  state  sequence,  and 4 the  
state  sequence  actually  chosen  by  the VA. Over a long  time x 
and i will typically  diverge  and  remerge a number of times, 
as illustrated  in  Fig. 11 .  Each  distinct  separation  is  called a n  
error  event.  Error  events  may  in  general  be of unbounded 
length if x is  infinite,  but  the  probability of a n  infinite  error 
event will usually  be  zero. 

The  importance of error  events  is  that  they  are  prob- 
abilistically  independent of one another;  in  the  language of 
probability  theory  they  are recurrent. Furthermore,  they  allow 
us to  calculate  error  probability  per  unit  time,  which is neces- 
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-u W w -  
Fig. 11. Typical correct path X (heavy line) and estimated  path 2 

(lighter  line) in  the  trellis,  showing three  error events. 

sary  since  usually  the  probability of any error  in MAP estima- 
tion of a block of length K goes to  1 as K goes to  infinity. 
Instead we  calculate  the  probability of an  error  event  starting 
at some  given  time,  given  that  the  starting  state  is  correct, 
i.e., that  an  error  event  is  not  already  in  progress  at  that  time. 

Given  the  correct  path X ,  the   set  &k of all possible error 
events  starting at some  time k is a treelike  trellis  which  starts 
at x k  and  each of whose  branches  ends  on  the  correct  path,  as 
illustrated  in  Fig. 12, for  the  trellis of Fig.  7(b).  In  coding 
theory  this  is  called  the  incorrect  subset  (at  time R ) .  

The  probability of any  particular  error  event  is  easily  cal- 
culated;  it   is  simply  the  probability  that  the  observations will 
be  such  that  over  the  time  span  during  which 4 is  different 
from X ,  f is more  likely  than X .  If the  error  event  has  length T, 
this  is  simply a two-hypothesis  decision  problem  between  two 
sequences of length T, and  typically  has  a  standard  solution. 

The  probability P ( & k )  t ha t  any error  event  in &k occurs  can 
then  be  upper-bounded,  usually  tightly,  by a union  bound, 
i.e., by  the  sum of the  probabilities of all error  events  in &k.  

While  this  sum  may well be  infinite,  it  is  typically  dominated 
by  one  or a few  large  leading  terms  representing  particularly 
likely  error  events,  whose  sum  then  forms a good  approxima- 
tion  to P(&k). True  upper  bounds  can  often  be  obtained  by 
flow-graph  techniques [4], [SI, [%I. 

On  the  other  hand, a lower  bound to  error-event  prob- 
ability,  again  frequently  tight,  can  be  obtained  by  a  genie 
argument.  Take  the  particular  error  event  that  has  the  great- 
est probability of all those  in &k. Suppose  that  a friendly  genie 
tells  you  that  the  true  state  sequence  is  one of two possibili- 
ties:  the  actual  correct  path, or the  incorrect  path  correspond- 
ing  to  that  error  event.  Even  with  this  side  information,  you 
will  still  make  an  error if the  incorrect  path is  more  likely 
given z, so your  probability of error  is  still  no  better  than  the 
probability of this  particular  error  event.  In  the  absence of the 
genie,  your  error  probability  must  be  worse  still,  since  one of 
the  strategies  you  have,  given  the genie’s information,  is  to 
ignore  it.  In  summary,  the  probability of any  particular  error 
event  is a lower  bound  to P ( & k ) .  

An  important  side  observation  is  that  this  lower  bound 
applies  to  any  decision  scheme,  not  just  the VA. Simple  exten- 
sions  give  lower  bounds to  related  quantities  like  bit  prob- 
ability of error. If the VA gives  performance  approaching 
these  bounds,  then  it  may  be  claimed  that  it  is  effectively  opti- 
mum  with  respect  to  these  related  quantities  as well [3O]. 

In  conclusion,  the  probability of any  error  event  starting 
at time k may  be  upper-  and  lower-bounded as follows: 

max  P(error   event)  5 P(&k) 5 max  P(error   event)  

+ other  terms. 

With  luck  these  bounds will be  close. 

Example 
For  concreteness,  and  because  the  result is instructive, we 

carry  through  the  calculation  for  continuous-phase  FSK of 
the  particularly  simple  type defined  earlier.  The  two-state 
trellis  for  this  process  is  shown  in  Fig. 13, and  the first part  of 

Fig. 12. Typical correct path X (heavy line)  and time-k incorrect 
subset for trellis of Fig. 7(b). 

. .. . .. 

Fig. 13. Trellis for continuous-phase FSK. 

Fig. 14. Typical incorrect subset. Heavy  line: correct path. 
Lighter lines: incorrect subset. 

a  typical  incorrect  subset  in  Fig. 14. The  shortest  possible 
error  event  is of length 2 and  consists of a decision tha t   t he  
signal  was  {cos w(l)t, -cos o(1)t)  rather  than  {cos w(O)t, 
cos w ( 0 ) t  1, or in  our  coordinate  notation  that { (0, l),  (0, - 1) ] 
is  chosen  over { (1, 0), (1, 0) 1. This is a two-hypothesis  de- 
cision  problem  in a four-dimensional  signal  space [59].  I n  
Gaussian  noise of variance u* per dimension,  only  the  Euclid- 
ean  distance d between  the  two  signals  matters;  in  this case- 
d = 4 3 ,  and  therefore  the  probability of this  particular  error 
event  is Q(d/%)=Q(l/ad/Z), where Q(x) is  the  Gaussian 
error  probability  function  defined  by 

By  examination of Fig. 14 we see that  the  error  events of 
lengths 3, 4, . . lie at   distances 4 6 ,  dG, . from  the 
correct  path;  hence  we  arrive at upper  and  lower  bounds  on 
P ( & k )  of 

Q ( 4 2 / 2 u )  2 P(&k) 5 Q ( d 2 / 2 ~ )  + Q(d6 /eu)  
+ Q ( 4 i 6 / 2 u )  + . . * . 

I n  view of the  rapid  decrease of Q ( x )  with x ,  this  implies  that 
P ( & k )  is  accurately  estimated as Q(d/2/2u) for any  reasonable 
noise variance a*. I t  is  easily  verified  from  Fig. 13 that   th is  
result  is  independent of the  correct  path x or the  t ime K. 

This  result  is  interesting  in  that  the best one  can  do  with 
coherent  detection  in a single  symbol  interval  is Q(1/2a) for 
orthogonal  signals.  Thus  exploiting  the  memory  doubles  the 
effective  signal  energy, or improves  the  signal-to-noise  ratio 
by 3 dB.  It  may  therefore  be  claimed  that  continuous-phase 
FSK  is  inherently 3 dB  better  than  noncontinuous  for  devia- 
tion  ratio 3, or as good as antipodal  phase-shift  keying.  (While 
we have  proved  this  only for a deviation  ratio of ), it  holds for 
nearly  any  deviation  ratio.)  Even  though  the VA is  quite  sim- 
ple for a two-state  trellis,  the  fact  that  only  one  type of error 
event  has  any  significant  probability  permits  still  simpler  sub- 
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optimum  schemes  to  achieve  effectively  the  same  performance 
[431,  [441.’ 

V. APPLICATIONS 
We conclude  with a review of the  results,  both  theoretical 

and  practical,  obtained  with  the  VA  to  date. 

A ,  Convolutional  Codes 
It  was  for  convolutional  codes  that  the  algorithm  was  first 

developed,  and  naturally  it   has  had  its  greatest  impact  here. 
The  principal  theoretical  result  is  contained  in  Viterbi’s 

original  paper [l];  see  also [SI-[7]. I t  shows  that  for a suita- 
bly  defined  ensemble of random  trellis  codes  and  MAP  decod- 
ing,  the  error  probability  can  be  made  to  decrease  exponen- 
tially  with  the  constraint  length v at  all  code  rates R less t han  
channel  capacity.  Furthermore,  the  rate of decrease  is  con- 
siderably  faster  than  for  block  codes  with  comparable  decod- 
ing  complexity  (although  the  same as that  for  block  codes 
with  the  same  decoding  delay).   In  our  view,  the  most  tel l ing 
comparison  between  block  and  convolutional  codes  is  that  an 
effectively  optimum  block  code of a n y  specified length  and 
rate  can  be  created  by  suitably  terminating a convolutional 
(trellis)  code, but   with a lower  rate  for  the  block  code of 
course [7] .  In  fact, if convolutional  codes  were  any  better, 
they  could  be  terminated  to  yield  better  block  codes  than  are 
theoretically  possible-an  observation  which  shows  that  the 
bounds  on  convolutional  code  performance  must  be  tight. 

For fixed binary  convolutional  codes of nonasymptotic 
length on symmetric  memoryless  channels,  the  principal 
result [6] is   that  P ( & k )  is  approximately  given  by 

P ( & k )  ;\r,2-dD 

where d is  the  free  distance, Le., the  minimum  Hamming  dis- 
tance of any  path  in  the  incorrect  subset &h from  the  correct 
path: N d  is the  number of such  paths;   and D is   the  Bhat- 
tacharyya  distance 

D = logs P(z  1 O)l’*P(z  I 1) l I 2  
Z 

where  the  sum  is  over  all  outputs z in  the  channel  output  space 
2. 

On  Gaussian  channels 

where & / N O  is  the  signal-to-noise  ratio  per  information  bit. 
The  tightness of this  bound  is  confirmed  by  simulations [8], 
[9],  [22]. For a v =6,  d =  10, R=+ code,  for  example,  error 
probabilities of l e * ,  lC5, and le7 are  achieved at Eb/No 
=3.0, 4.3, and 5.5  dB,  respectively,  which is within a few 
tenths  of a dceibel of this  bound [22]. 

Channels  available  for  space  communications  are  fre- 
quently  accurately  modeled as white  Gaussian  channels.  The 
VA  is  attractive  for  such  channels  because  it  gives  per- 

* De Buda [44] actually proves that  an  optimum decision on  the 
phase x t  at time k can be made by examining the received waveform only 

likelihood ratio 
at times k- 1 and k; Le., ( z o . ~ - I ,  z ~ t - l ) ,  (ZU, w ) .  The proof is  that  the log 

P ( Z 0 . k - 1 ,  Z1.k- I ,  ZOk, Zlk I Xk-1, X k  0, 
-In 

P(Z0. t -1 ,  Z1.t-1, Z O t ,  &t-1, Xk = *, Y t + d  

is proportional to - z ~ , t - l + z ~ . ~ - 1 - z u - - ~ ~  for any  values of the pair of 
states ( ~ l t - 1 ~  xk+1).  For this phase decision (which differs slightly from our 
sequence decision) the error probability is exactly Q(&/2n). 

formance  superior  to  all  other  coding  schemes  save  sequential 
decoding,  and  does  this at high  speeds,  with  modest  com- 
plexity,  and  with  considerable  robustness  against  varying 
channel  parameters. A number of prototype  systems  have 
been  implemented  and  tested [21]-[26], some  quite  original, 
and  it  seems  likely  that  Viterbi  decoders will become  common 
in  space  communication  systems. 

Finally,  Viterbi  decoders  have  been used as elements  in 
very-high-performance  concatenated  coding  schemes [lo]- 
[12], [27]  and  in  decoding of convolutional  codes  in  the 
presence of intersymbol  interference [35], [6O]. 

B.  Intersymbol  Interference 
Application of the  VA  to  intersymbol  interference  prob- 

lems i s  more  recent,  and  the  main  achievements  have  been 
theoretical.  The  principal  result,  for  PAM  in  white  Gaussian 
noise,  is t ha t  P ( & k )  can  be  tightly  bounded  as follows: 

K ~ Q ( d m i n / 2 ~ )  I P ( & k )  I KrQ(drnirJ2~) 

where K L  and Kv are  small  constants, Q(x) is  the  Gaussian 
error  probability  function  defined  earlier, u? is t he  noise  vari- 
ance,  and dmin is  the  minimum  Euclidean  distance  between 
any  two  distinct  signals [29]. This  result  implies  that  on  most 
channels  intersymbol  interference  need  not  lead  to  any sig- 
nificant  degradation  in  performance,  which  comes as rather a 
surprise. 

For  example,  with  the  most  common  partial  response 
systems,  the VA recovers  the  3-dB loss sustained  by  conven- 
tional  detectors  relative  to  full-response  systems [29],  [32]. 
Simple  suboptimum  processors [29],  [33] can  do  nearly as 
well. 

Several  workers [34],  [35],  [42] have  proposed  adaptive 
versions of the  algorithm  for  unknown  and  time-varying 
channels.  Ungerboeck [41],  [42] and  hlackechnie [35] 
have  shown  that  only a matched  filter  rather  than a whitened 
matched  filter  is  needed  in  PAM. 

I t  seems  most  likely  that  the  greatest effect of the  VA on 
digital  modulation  systems will be t o  reveal  those  instances  in 
which  conventional  detection  techniques  fall  significantly 
short of optimum,  and  to  suggest  effective  suboptimum 
methods of closing  the  gap.  PAM  channels  that  cannot  be 
linearly  equalized  without  excessive  noise  enhancement  due 
t o  nulls  or  near nulls in  the  transmission  band  are  the  likeliest 
candidates  for  nonlinear  techniques of this  kind. 

C. Text Recognition 
An  experiment  was  run  in  which  digram  statistics  were 

used t o  correct  garbled  text  produced  by  a  simulated  noisy 
character  recognizer [47]. Results  were  similar  to  those of 
Raviv [48] (using  digram  statistics),  although  the  algorithm 
was  simpler  and  only  had  hard  decisions  rather  than confi- 
dence  levels t o  work  with. I t   appears  that   the  algorithm  may 
be a useful adjunct to  sophisticated  character-recognition  sys- 
tems  for  resolving  ambiguities  when  confidence  levels  for 
different  characters  are  available. 

VI.  CONCLUSIOK 
The  VA  has  already  had a significant  impact on our  under- 

standing of certain  problems,  notably  in  the  theories of convo- 
lutional  codes  and of intersymbol  interference. I t  is beginning 
to  have a substantial  practical  impact as well in  the  engineer- 
ing of space-communication  links.  The  amount of work  it  has 
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inspired  in  the  intersymbol  interference  area  suggests  that 
here  too  practical  applications  are  not  far off. The  generality 
of the model t o  which it  applies  and  the  straightforwardness 
with  which  it  can  be  analyzed  and  implemented  lead  one  to 
believe that  in  both  theory  and  practice  it will  find increasing 
application  in  the  years  ahead. 

APPENDIX 
RELATED  ALGORITHMS 

In  this  Appendix we  mention  some  processing  structures 
that   are  closely  related to   the  VA,  chiefly sequential  decoding 
and  minimum-bit-error-probability  algorithms.  We  also  men- 
tion  extensions of the  algorithm  to  generate  reliability  infor- 
mation,  erasures,  and  lists. 

When  the  trellis  becomes  large,  it  is  natural  to  abandon 
the  exhaustive  search of the  VA  in  favor of a  sequential  trial- 
and-error  search  that  selectively  examines  only  those  paths 
likely t o  be  the  shortest.  In  the  coding  literature,  such al- 
gorithms  are  collectively  known  as  sequential  decoding [Is]- 
[l6].  The  simplest  to  explain  is  the  'stack"  algorithm [IS], 
[16], in  which a list  is  maintained of the  shortest  partial  paths 
found  to  date,   the  path  on  the  top of the  list  is  extended,  and 
its  successors  reordered  in  the  list  until  some  path  is  found 
tha t  reaches  the &eLminal  node, or else  decreases  without 
limit.  (That  some  path will eventually  do so is  ensured  in  cod- 
ing  applications  by  the  subtraction of a bias  term  such  that 
the  length of the  correct  path  tends  to  decrease  while  that of 
all  incorrect  paths  tends  to  increase.)  Searches  that  start  from 
either  end of a finite  trellis [I71 are  also useful. 

In  coding  applications,  sequential  decoding  has  many of 
the  same  properties  as  Viterbi  decoding,  including  the  same 
error  probability. I t  allows  the  decoding of longer  and  there- 
fore  more  powerful  codes, at the  cost of a variable  amount of 
computation  necessitating  buffer  storage  for  the  incoming 
da ta  z. It  is  probably  less useful  outside of coding,  since i t  
depends  on  the  decoder's  ability  to recognize  when the  best 
path  has  been  found  without  examining  other  paths,  and 
therefore  requires  either a finite  trellis or a  very  large  distance 
between  the  correct  path  and possible  error  events. 

In  the  intersymbol  interference  literature,  many of the 
early  attempts  to find optimum  nonlinear  algorithms  used  bit- 
error  probability as the  optimality  criterion.  The  Markov 
property of the process leads  to  algorithms  that  are  manage- 
able  but less attractive  than  the  Viterbi [36]-[42]. 

The  general  principle of several of these  algorithms  is  as 
follows.8 First, we  calculate  the  joint  probability P ( x k ,  z) for 
every  state x k  in  the  trellis, or alternately P(&, z) for  every 
transition &. This  is  done  by  observing  that 

p ( z k ,  2) = p ( x k ,  ZO"')p(ZkK I x k ,  20"') 

= p ( x k ,  ZOk1)p(zkK I xk) 
since,  given Xk, the  outputs zkK from  time k t o  K are  indepen- 
dent  of the  outputs zoL-' from  time 0 t o  K - 1 .  Similarly 

'The author is indebted to Bahl et al. 1181 for  a  particularly lucid 
exposition of this type of algorithm. 

Now  we  note  the  recursive  formula 

p(%, zOL-') = p ( z k ,   x k - 1 ,  ZO"') 
Zk-1 

= p ( z k - 1 ,   Z O " ' ) p ( z k ,   4 - 1  1 z k - 1 )  
zk-1 

which  allows us to  calculate  the M quantities P(%, ~0"') from 
the M quantities P ( x ~ 1 ,  zo"*) with IZI multiplications  and 
additions  using  the  exponentiated  lengths 

= p ( z k  I % k - l ) P ( z k - l  I & - I ) .  

Similarly  we  have  the  backward  recursion 

p(Zk"  1 x k )  = p(zkK, x k + l  I Z k )  
Z W 1  

= p ( z k ,   x k + l  I x k ) p ( z k + l "  I Z k + d  
Z k i l  

which  has a similar  complexity.  Completion of these  forward 
and  backward  recursions  for  all  nodes  allows P ( x k ,  Z) and/or 
P(&, z) t o  be  calculated  for  all  nodes. 

Now,  to  be specific, let us consider a shift-register  process 
and let S(uk) be the  set  of all states zel whose  first  component 
is %k. Then 

p ( u k ,  2) = p(xk+l ,  2)- 
Z k + l E S ( U t )  

Since P(uk, z) =P(ukI z )P( z ) ,  MAP estimation of u k  reduces 
t o  finding  the  maximum of this  quantity.  Similarly, if we 
wish t o  find the  MAP  estimate of an  output  y k ,  say,  then  let 
S(p) be the  set  of all & that  lead to yk and  compute 

P(Yk,  4 = p ( f k ,  2). 
€t= kt) 

A  similar  procedure  can be used to  estimate  any  quantity 
which  is a deterministic  function of states or transitions. 

Besides  requiring  multiplications,  this  algorithm  is  less 
attractive  than  the  VA  in  requiring a backward as well as a 
forward  recursion  and  consequently  storage of all  data.  The 
following amended  algorithm [39], [48] eliminates  the  latter 
ugly feature at the  cost of suboptimal  performance  and  addi- 
tional  computation.  Let us restrict  ourselves  to a shift-register 
process with  input  sequence u and  agree  to use only  observa- 
tions  up  to  time k+6  in  estimating U k ,  say,  where 6 2v- 1. We 
then  have 

P ( u k ,  20") = ' * * p ( U k k * ,  ZOw"). 
uti1 U t i 6  

The  quantit ies in the  sum  can be determined  recursively 
by 

p ( U k k M ,  ZOk*) = p ( U k - l k " ,  Z O k M )  

UL-1 

= p ( u k - l k u l ,  ZOku' 1 
ut-1 

p ( u k + d ,  &+d I W k Y l ,  ' * uk+6-r). 

While  the  recursion  is  now  forward only, we  now must  store 
m*' quantities  rather  than m'. If I is  large,  this  is  most  un- 
attractive; if 6 is close to  v-1, the  estimate  may well be de- 
cidedly  suboptimum. 

These  variations  thus  seem  considerably  less  attractive 
than   the  VA.  Nonetheless,  something  like this may  need  to 
be  hybridized  with  the  VA  in  certain  situations  such as track- 



FORNEY: THE VITERBI ALGORITHM 277 

ing a finite-state  source  over a finite-state  channel,  where  only 
the  state  sequence of the  source  is  of interest. 

Finally,  we  can  consider  augmented  outputs  from  the VA. 
A good  general  indication of how well the  algorithm  is  doing 
is   the   depth at which all paths  are  merged;  this  can  be used to 
establish  whether or not a communications  channel  is  on  the 
air,  in  synchronism,  etc. [ll], [28]. A more  selective  indicator 
of how  reliable  particular  segments  are is the  difference  in 
lengths  between  the  best  and  the  next-best  paths at the  point 
of merging;  this  reliability  indicator  can  be  quantized  into  an 
erasure  output.  Lastly,  the  algorithm  can  be  altered  to  store 
the  L best  paths,  rather  than  the  single  best  path, as the  sur- 
vivors  in  each  recursion,  thus  eventually  generating a list of 
t he  L most  likely  path  sequences. 
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