
Lecture 3: Chain Rules and Inequalities

• Last lecture: entropy and mutual information

• This time

– Chain rules
– Jensen’s inequality
– Log-sum inequality
– Concavity of entropy
– Convex/concavity of mutual information
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Logic order of things
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Chain rule for entropy

• Last time, simple chain rule H(X,Y ) = H(X) +H(Y |X)

• No matter how we play with chain rule, we get the same answer

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y )

“entropy of two experiments”
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Chain rule for entropy

• Entropy for a collection of RV’s is the sum of the conditional entropies

• More generally: H(X1, X2, · · · , Xn) =
∑n

i=1H(Xi|Xi−1, · · · , X1)

Proof:
H(X1, X2) = H(X1) +H(X2|X1)

H(X1, X2, X3) = H(X3, X2|X1) +H(X1)

= H(X3|X2, X1) +H(X2|X1) +H(X1)
...
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Implication on image compression

H(Xn) =

n∑
i=1

H(Xi| X−i︸︷︷︸
everything seen before

)
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Conditional mutual information

• Definition
I(X;Y |Z) = H(X|Z)−H(X|Y, Z)

• In our “asking native for weather” example

– We want to infer X: rainy or sunny
– Originally, we only know native’s answer Y : yes or no. Value of

native’s answer I(X;Y )
– If we also has a humidity meter with measurement Z. Value of

native’s answer I(X;Y |Z)
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Chain rule for mutual information

• Chain rule for information

I(X1, X2, · · · , Xn;Y ) =

n∑
i=1

I(Xi;Y |Xi−1, · · · , X1)

Proof:

I(X1, X2, · · · , Xn;Y ) = H(X1, · · · , Xn)−H(X1, · · · , Xn|Y )

Apply chain rules for entropy on both sides.
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• Interpretation 1: “Filtration of information”
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• Interpretation 2: by observing Y , how many possible inputs
(X1, · · · , X8) can be distinguished:
resolvability of Xi as observed by Y
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Conditional relative entropy

• Definition:

D(p(y|x)||q(y|x)) =
∑
x

p(x)
∑
y

p(y|x) log p(y|x)
q(y|x)

• Chain rule for relative entropy

D(p(x, y)||q(x, y)) = D(p(x)||q(x)) +D(p(y|x)||q(y|x))

Distance between joint pdfs = distances between margins + distance
between conditional pdfs
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Why do we need inequalities in information theory?
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Convexity

• A function f(x) is convex over an interval (a, b) if for every x, y ∈ (a, b)
and 0 ≤ λ ≤ 1,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Strictly convex if equality holds only if λ = 0.
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• If a function f has second order derivative ≥ 0(> 0), the function is
convex (strictly convex).

• Vector valued function: Hessian matrix is nonnegative definite.

• Examples: x2, ex, |x|, x log x(x ≥ 0), ∥x∥2.

• A function f is concave if −f is convex.

• Linear function ax+ b is both convex and concave.
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How to show a function is convex

• By definition: f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (function must
be continous)

• Verify f ′′(x) ≥ 0 (or nonnegative definite)

• By composition rules:

– Composition of affine function f(Ax+ b) is convex if f is convex
– Composition with a scalar function: g : Rn → R and h : R → R,

f(x) = h(g(x)), then f is convex if
(1) g convex, h convex, h̃ nondecreasing
(2) g concave, h convex, h̃ nonincreasing
Extended-value extension f̃(x) = f(x), x ∈ X , otherwise is ∞
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Jensen’s inequality

• Due to Danish mathematician Johan Jensen, 1906

• Widely used in mathematics and information theory

• Convex transformation of a mean
≤ mean after convex transformation
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Theorem. (Jensen’s inequality) If f is a convex function,

Ef(X) ≥ f(EX).

If f strictly convex, equality holds when

X = constant.

Proof: Let x⋆ = EX. Expand f(x) by Taylor’s Theorem at x⋆:

f(x) = f(x⋆) + f ′(x⋆)(x− x⋆) +
f ′′(z)

2
(x− x⋆)2, z ∈ (x, x⋆)

f convex: f ′′(z) ≥ 0. So f(x) ≥ f(x⋆) + f ′(x⋆)(x− x⋆). Take
expectation on both size: Ef(X) ≥ f(x⋆).
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Consequences

• f(x) = x2, EX2 ≥ [EX]2: variance is nonnegative

• f(x) = ex, Eex ≥ eE(x)

• Arithmetic mean ≥ Geometric mean ≥ Harmonic mean

x1 + x2 + · · ·+ xn

n
≥ n

√
x1x2 · · ·xn ≥ n

1
x1

+ 1
x2

+ · · ·+ 1
xn

Proof using Jensen’s inequality: f(x) = x log x is convex.
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Information inequality

D(p||q) ≥ 0,

equality iff p(x) = q(x) for all x.
Proof:

D(p||q) =
∑
x

p(x) log
p(x)

q(x)

= −
∑
x

p(x) log
q(x)

p(x)

≥ log
∑
x

p(x)
q(x)

p(x)

= log
∑
x

q(x) = 0.
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• I(X;Y ) ≥ 0, equality iff X and Y are independent.
Since I(X;Y ) = D(p(x, y)||p(x)p(y)).

• Conditional relative entropy and mutual information are also
nonnegative
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Conditioning reduces entropy

Information cannot hurt:

H(X|Y ) ≤ H(X)

• Since I(X;Y ) = H(X)−H(X|Y ) ≥ 0

• Knowing another RV Y only reduces uncertainty in X on average

• H(X|Y = y) may be larger than H(X): in court, knowing a new
evidence sometimes can increase uncertainty
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Independence bound on entropy

H(X1, · · · , Xn) ≤
n∑

n=1

H(Xi).

equality iff Xi independent.

• From chain rule:

H(X1, · · · , Xn) =

n∑
i=1

H(Xi|Xi−1, · · · , X1) ≤
n∑

i=1

H(Xi).
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Maximum entropy

Uniform distribution has maximum entropy among all distributions with
finite discrete support.

Theorem.H(X) ≤ log |X |, where X is the number of elements in the
set. Equality iff X has uniform distribution.

Proof: Let U be a uniform distributed RV, u(x) = 1/|X |

0 ≤ D(p||u) =
∑

p(x) log
p(x)

u(x)
(1)

=
∑

p(x) log |X | − (−
∑

p(x) log p(x)) = log |X | −H(X) (2)

Dr. Yao Xie, ECE587, Information Theory, Duke University 21



Log sum inequality

• Consequence of concavity of log

Theorem. For nonnegative a1, · · · , an and b1, · · · , bn
n∑

i=1

ai log
ai
bi

≥

(
n∑

i=1

ai

)
log

∑n
i=1 ai∑n
i=1 bi

.

Equality iff ai/bi = constant.

• Proof by Jensen’s inequality using convexity of f(x) = x log x. Write
the right-hand-side as(

n∑
i=1

ai

) (∑n
j=1 bj

)
(
∑n

i=1 ai)

(
bi∑n
j=1 bj

n∑
i=1

ai
bi

)
log

(
bi∑n
j=1 bj

n∑
i=1

ai
bi

)
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• Very handy in proof: e.g., prove D(p||q) ≥ 0:

D(p||q) =
∑

p(x) log
p(x)

q(x)

≥ (
∑
x

p(x)) log

∑
x p(x)∑
x q(x)

= 1 log 1 = 0.
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Convexity of relative entropy
Theorem.D(p||q) is convex in the pair (p, q): given two pairs of pdf,

D(λp1 + (1− λ)p2||λq1 + (1− λ)q2) ≤ λD(p1||q1) + (1− λ)D(p2||q2)

for all 0 ≤ λ ≤ 1.
Proof: By definition and log-sum inequality

D(λp1 + (1− λ)p2||λq1 + (1− λ)q2)

= (λp1 + (1− λ)p2) log
λp1 + (1− λ)p2
λq1 + (1− λ)q2

≤ λp1 log
λp1
λq1

+ (1− λ) log
(1− λ)p2
(1− λ)q2

= λD(p1||q1) + (1− λ)D(p2||q2)
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Concavity of entropy

Entropy

H(p) = −
∑
i

pi log pi

is concave in p
Proof 1:

H(p) = −
∑
i∈X

pi log pi = −
∑
i∈X

pi log
pi
ui
ui

= −
∑
i∈X

pi log
pi
ui

−
∑
i∈X

pi log ui

= −D(p||u)− log
1

|X |
∑
i∈X

pi

= log |X | −D(p||u)
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Proof 2: We want to prove H(λp1+ (1− λ)p2) ≥ λH(p1) + (1− λ)H(p2).
A neat idea: introduce auxiliary RV:

θ =

{
1, w. p. λ
2, w. p. 1− λ.

Let Z = Xθ, distribution of Z is λp1 + (1− λ)p2.
Conditioning reduces entropy:

H(Z) ≥ H(Z|θ)

By their definitions

H(λp1 + (1− λ)p2) ≥ λH(p1) + (1− λ)H(p2).
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Concavity and convexity of mutual information

Mutual information I(X;Y ) is:

(a) concave function of p(x) for fixed p(y|x)

(b) convex function of p(y|x) for fixed p(x)

Mixing two gases of equal entropy results in a gas with higher entropy.
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Proof: write I(X;Y ) as a function of p(x) and p(y|x):

I(X;Y ) =
∑
x,y

p(x)p(y|x) log p(y|x)
p(y)

=

=
∑
x,y

p(x)p(y|x) log p(y|x)−
∑
y

{∑
x

p(x)p(y|x)

}
log

{∑
x

p(y|x)p(x)

}

(a): Fixing p(y|x), first linear in p(x), second term concave in p(x)

(b): Fixing p(x), complicated in p(y|x). Instead of verify it directly, we will
relate it to something we know.
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Our strategy is to introduce auxiliary RV

Ỹ

with a mixing distribution

p(ỹ|x) = λp1(y|x) + (1− λ)p2(y|x).

To prove convexity, we need to prove:

I(X; Ỹ ) ≤ λIp1(X;Y ) + (1− λ)Ip2(X;Y )

Since

I(X; Ỹ ) = D(p(x, ỹ)||p(x)p(ỹ))

We want to use the fact that D(p||q) is convex in the pair (p, q).
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What we need is to find out the pdfs:

p(ỹ) =
∑
x

[λp1(y|x)p(x) + (1− λ)p2(y|x)p(x)] = λp1(y) + (1− λ)p2(y)

We also need

p(x, ỹ) = p(ỹ|x)p(x) = λp1(x, y) + (1− λ)p2(x, y)

Finally, we get, from convexity of D(p||q):

D(p(x, ỹ)||p(x)p(ỹ))
=D(λp1(y|x)p(x) + (1− λ)p2(y|x)p(x)||λp(x)p1(y) + (1− λ)p(x)p2(y))

≤λD(p1(x, y)||p(x)p1(y)|) + (1− λ)D(p2(x, y)||p(x)p2(y))
=λIp1(X;Y ) + (1− λ)Ip2(X;Y )
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Summary of some proof techniques

• Conditioning p(x, y) = p(x|y)p(y), sometimes do this iteratively

• Use Jensen’s inequality – identify what is the “average”

f(EX) ≤ Ef(X)

• Prove convexity: several approaches

• Introduce auxiliary random variable – e.g. uniform RV U , indexing RV θ
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Summary of important results

• Mutual information is nonnegative

• Conditioning reduces entropy

• Uniform distribution maximizes entropy

• Properties

– D(p||q) convex in (p, q)
– Entropy H(p) concave in p
– Mutual information I(X;Y ) concave in p(x) (fixing p(y|x)), and

convex in p(y|x) (fixing p(x))
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