Lecture 3: Chain Rules and Inequalities

Last lecture: entropy and mutual information
This time

— Chain rules

— Jensen’s inequality

— Log-sum inequality

— Concavity of entropy

— Convex/concavity of mutual information
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Logic order of things

Mutual Information

_ Entropy
Relagve Entropy H(X) = 1(X; Y) = H(X) - H(X]Y)
(plla) log|x|-D(p] u)

1(X; Y) = D(p(x, y)| | p(x)p(y))
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Chain rule for entropy

e Last time, simple chain rule H(X,Y) = H(X)+ H(Y|X)
e No matter how we play with chain rule, we get the same answer
HX,)Y)=HX)+HY|X)=H(Y)+ HX|Y)

“entropy of two experiments”
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Chain rule for entropy

e Entropy for a collection of RV's is the sum of the conditional entropies

e More generally: H(Xl,XQ, T ,Xn) = Z?:l H(X,L'|XZ'_1, s ,Xl)

Proof:
H(X1, Xs) = H(X)) + H(Xs| X))
H(X1, X9, X3) = H(X3, X5/ X1) + H(X7)
= H(X3| X2, X1) + H(X2|Xy) + H(X1)

Dr. Yao Xie, ECE587, Information Theory, Duke University



Implication on image compression

HX™ =Y HX Xy )

everything seen before
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Conditional mutual information

e Definition
I(X;Y|Z)=H(X|Z)—- HX|Y, Z)

e In our “asking native for weather” example

— We want to infer X: rainy or sunny

— Originally, we only know native's answer Y: yes or no. Value of
native's answer I(X;Y')

— If we also has a humidity meter with measurement Z. Value of
native's answer I(X;Y|Z)
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Chain rule for mutual information

e Chain rule for information

I<X17X27 T 7Xn7Y) — ZI<AXVZ,}/|AXV,L_17 .

Proof:

(X1, X9, , X Y)=H(Xq, -, X,) — H(Xq, -

Apply chain rules for entropy on both sides.
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e Interpretation 1: “Filtration of information”

Filter paper
Original Mixture

Test—
tu b

—5 Filtrate
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e |[nterpretation 2: by observing Y, how many possible inputs
(X1,---,Xg) can be distinguished:
resolvability of X; as observed by Y
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Conditional relative entropy

e Definition:

Dip(i)laole) = o) s (y|z) log LUI2)

q(y|z)

e Chain rule for relative entropy

D(p(z,y)llq(x,y)) = D(p(z)|la(z)) + D(p(y|=)|lq(y|z))

Distance between joint pdfs = distances between margins + distance
between conditional pdfs
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Why do we need inequalities in information theory?

Dr. Yao Xie, ECE587, Information Theory, Duke University 10



Convexity

e A function f(x) is convex over an interval (a,b) if for every z,y € (a,b)
and 0 < \ <1,

FOz+(1=Ny) < Af(z) + (1= A)f(y).

Strictly convex if equality holds only if A = 0.

7

/@ , F(y)
-

o
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e If a function f has second order derivative > 0(> 0), the function is
convex (strictly convex).

e Vector valued function: Hessian matrix is nonnegative definite.
e Examples: 22, e*

e A function f is concave if —f is convex.

e Linear function ax + b is both convex and concave.
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How to show a function is convex

e By definition: f(Ax + (1 — AN)y) < Af(z) + (1 — A) f(y) (function must
be continous)

e Verify f"”(x) > 0 (or nonnegative definite)

e By composition rules:

— Composition of affine function f(Ax + b) is convex if f is convex
— Composition with a scalar function: ¢ : R® - R and h: R — R,
f(x) = h(g(x)), then f is convex if
(1) g convex, h convex, h nondecreasing
(2) g concave, h convex, h nonincreasing
Extended-value extension f(z) = f(z), € X, otherwise is 0o
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Jensen’s inequality

e Due to Danish mathematician Johan Jensen, 1906

e Widely used in mathematics and information theory

e Convex transformation of a mean
< mean after convex transformation
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Theorem. (Jensen’s inequality) If f is a convexr function,
Ef(X) > f(EX).
If f strictly convex, equality holds when

X = constant.

Proof: Let x* = EX. Expand f(x) by Taylor's Theorem at z*:

F(a) = F@) + £ - 2+ L0

f convex: f"(z) > 0. So f(x) > f(x*) + f'(«*)(x — x*). Take
expectation on both size: Ef(X) > f(z*).
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Consequences
e f(x)=2x% EX?>[EX]?% variance is nonnegative
o f(x)=e® Ee® > elf@

e Arithmetic mean > Geometric mean > Harmonic mean

1+ To2+ -+ Ty n

> Yx1xe X
n = R

Vv

Proof using Jensen's inequality: f(z) = xlogx is convex.
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Information inequality

D(pllq) > 0,

equality iff p(x) = q(x) for all x.

Proof:
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e /(X;Y) >0, equality iff X and Y are independent.
Since I(X;Y) = D(p(z, y)|lp(x)p(y))-

e Conditional relative entropy and mutual information are also
nonnegative
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Conditioning reduces entropy

Information cannot hurt:
H(X|Y) < H(X)
e Since I(X;Y)=H(X)—-H(X|Y)>0
e Knowing another RV Y only reduces uncertainty in X on average

e H(X|Y =y) may be larger than H(X): in court, knowing a new
evidence sometimes can increase uncertainty
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Independence bound on entropy

H(Xy, -, Xn) <) H(X;).
n=1
equality iff X; independent.

e From chain rule:

H(Xy,- -, Xp) =Y H(Xi|Xi1, -, X1) <> H(X,).
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Maximum entropy

Uniform distribution has maximum entropy among all distributions with
finite discrete support.

Theorem. H(X) < log |X|, where X is the number of elements in the
set. Equality iff X has uniform distribution.

Proof: Let U be a uniform distributed RV, u(z) = 1/|X|

0 < D(pllw) = Y- pla) o ) (1)

=) p(x)log|X| — (=) _p(x)logp(x)) =log|X| — H(X) (2)
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Log sum inequality

e Consequence of concavity of log

Theorem. For nonnegative a1, --- ,a, and by,--- ,by,
n n n
A D i @i
a;log— > a; | log =——.
Equality iff a;/b; = constant.

e Proof by Jensen's inequality using convexity of f(x) = xlogxz. Write
the right-hand-side as

ik (Z?:l b]) b; - a; bi . aj
(; a7;> (Z?ﬂ a;) (Z?1 b ; bi) o (Z?1 b; ; bi)
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e Very handy in proof: e.g., prove D(p||q) > 0

D(pllg) = ) p(z)log g

. P()
Zp )log >, q(x)
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Convexity of relative entropy
Theorem. D(pl||q) is convex in the pair (p,q): given two pairs of pdf,

D(Ap1 + (1 = A)p2||Ag1 + (1 — N)g2) < AD(p1|q1) + (1 — A)D(p2||g2)

for all 0 < \ < 1.
Proof: By definition and log-sum inequality

D(Ap1 + (1 = X)p2|[Ag1 + (1 — A)g2)
Ap1+ (1= A)p2

Agi+ (1= A)ge
Ap1

1—A
< Ap1 log)\—ql—k (1 —X)log El — )\;Z

= AD(p1llq1) + (1 — A)D(p2||g2)

= (Ap1 + (1 — X\)p2) log
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Concavity of entropy

= —) pilogp

Entropy

IS concave Iin p
Proof 1:

—) pilogpi=—> p; log

1€X 1eX
— szlog— — > pilogu
1€EX 1€X
= ~D(pllu) ~log 5 sz
zEX

= log |X'| — D(pl||u)
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Proof 2: We want to prove H(Ap1 + (1 — X)p2) > AH (p1) + (1 — X\)H(p2).
A neat idea: introduce auxiliary RV:

0 _ 1, w. p. A
1 2, w.op. 1=\

Let Z = Xy, distribution of Z is Ap1 + (1 — A)pa.
Conditioning reduces entropy:

H(Z)> H(Z|0)
By their definitions

H(Apr+ (1 = N)p2) =2 AH(p1) + (1 = A)H(p2).
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Concavity and convexity of mutual information

Mutual information I(X;Y) is:

(a) concave function of p(x) for fixed p(y|x)

(b) convex function of p(y|x) for fixed p(x)

Mixing two gases of equal entropy results in a gas with higher entropy.
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Proof: write I(X;Y) as a function of p(x) and p(y|x):

Zp y|:r; lOg (y‘.ﬁlﬁ) _

p(y)

= > _p(@)p(ylz)logp(ylz) — ) {S: (2)p(ylz) }10% {ZP yla)p }

T,y Y x
(a): Fixing p(y|x), first linear in p(x), second term concave in p(x)

(b): Fixing p(x), complicated in p(y|x). Instead of verify it directly, we will
relate it to something we know.
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Our strategy is to introduce auxiliary RV

~

Y
with a mixing distribution

p(ylr) = Ap1(ylz) + (1 — A)p2(y|x).

To prove convexity, we need to prove:

~

I(X;Y) <AL (X;Y) + (1= AL, (X;Y)
Since

I(X;Y) = D( Ip(x)p(y))

We want to use the fact that D(p||q) is convex in the pair (p,q).
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What we need is to find out the pdfs:

p(@) =Y piylz)p(@) + (1= Npa(ylz)p(x)] = Apa(y) +

T

We also need

~

(1= N)p2(y)

= p(g|lz)p(z) = Ap1(z,y) + (1 — N)pa2(z,y)

Finally, we get, from convexity of D(p||q):

D( Ip(x)p(y

)
=D(Ap1(ylz)p(z) + (1 — N)p2(y|z)p(z)|[Ap(z)p1(y) + (1 — A)p(z)p2(y))
(

<AD(p1(z,y)||lp(x)p1(y)]) + (L = A)D(p2(, y)||p(z)p2(y))
:)‘Ipl(X3 Y) + (1 - )‘)]p2(X7 Y)
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Summary of some proof techniques

e Conditioning p(x,y) = p(z|y)p(y), sometimes do this iteratively
e Use Jensen's inequality — identify what is the “average”

f(EX) < Ef(X)

e Prove convexity: several approaches

e Introduce auxiliary random variable — e.g. uniform RV U, indexing RV 6
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Summary of important results

e Mutual information is nonnegative
e Conditioning reduces entropy
e Uniform distribution maximizes entropy

e Properties

= D(pllg) convex in (p,q)
— Entropy H(p) concave in p

— Mutual information I(X;Y) concave in p(x) (fixing p(y|x)), and
convex in p(y|z) (fixing p(x))
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