
Lecture 20: Quantization and Rate-Distortion

• Quantization

• Introduction to rate-distortion theorem
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Approximating continuous signals...
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Lossy source coding

• we have seen an information source cannot be losslessly compressed
beyond its entropy

• in speech, image and video compression, we may tolerate a certain
distortion to achieve better compression

• if source is continuous, any compression scheme which translates it into
bits will involve distortion

• consider lossy compression framework
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Quantization

• let X be a continuous random variable

• we approximate X by X̂(X)

• using R bits to represent X, then X̂(X) has 2nR possible values

• find the optimal set of values for X̂ and associated regions of each value
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linear scalar quantizer
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Example: quantizing Gaussian random variable

• let X ∼ N (0, σ2)

• minimize mean square error E(X − X̂(X))2

• if we use 1 bit to represent X, we should let the bit to distinguish the
sign of X

• the estimated X̂ = {E(X|X ≥ 0), E(X|X < 0)}

X̂ =


√

2
πσ; x ≥ 0

−
√

2
πσ; x ≤ 0
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• if we are given 2 bits to represent

• we want to divide the real line into 4 regions and use points within each
region to represent the sample

• a more complicated optimization problem: boundaries, reconstruction
points

• two properties of optimal boundaries and reconstruction points

1) given reconstruction points {X̂}, distortion is minimized by assigned
values to its closest point – Voronoi or Dirichlet partition

2) given partition: reconstruction point should be conditional mean

• iterate these two steps is Lloyd algorithm
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Voronoi partitions

Dr. Yao Xie, ECE587, Information Theory, Duke University 9



Lloyd algorithmSimple example:
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Vector quantization

• given a set of n samples are i.i.d. from Gaussian

• we want to jointly quantize the vector [X1, . . . , Xn]

• represent these vectors using nR bits

• represent entire sequence by a single index taking 2nR values

• vector quantization achieve lower distortion than linear quantization
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vector quantizer
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Rate-distortion tradeoff

• intuition: more bits used, lower quantization error

• can we quantize this tradeoff

• what is the fundamental lower-bound on distortion for a given rate R
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Rate-distortion code

• assume a source produces a i.i.d. sequences: X1, . . . , Xn, Xn ∼ p(x)

• encoder describes the source sequence Xn by encoding function

• encoding function: fn : X̂n → {1, . . . , 2nR} maps a sequence to an
index

• decoder: represent Xn by an estimate X̂n

• decoding function: gn : {1, . . . , 2nR} → X̂n maps an index to
reconstructed sequence

• define this (2nR, n)-rate distortion code
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Distortion function

• distortion function: cost of representing symbol by its quantized version

d : X × X̂ → R+

• assume maxx∈X ,x̂∈X d(x, x̂) < ∞

• example: Hamming distortion d(x, x̂) =

{
0, x = x̂
1, x ̸= x̂

Ed(X, X̂) = P (X ̸= X̂)

• example: squared-error distortion d(x, x̂) = (x− x̂)2

• example: Itakura-Saito distance: relative entropy between multivariable
normal processes
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• for a sequence

d(xn, x̂n) =
1

n

n∑
i=1

d(xi, x̂i)

• distortion for a (2nR, n) code:

D = Ed(Xn, gn(fn(X
n))) =

∑
xn

p(xn)d(xn, gn(fn(x
n)))

• a rate distortion pair (R,D) is said to be achievable if there exists a
sequence of (2nR, n)-rate distortion codes (fn, gn) with

lim
n→

Ed(Xn, gn(fn(X
n))) ≤ D
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Rate-distortion theorem

• the rate distortion region for a source is the closure of the set of
achievable rate distortion pairs (R,D)

• rate-distortion function: R(D), is the infimum of rates R such that
(R,D) is in the rate distortion region of the source for a given
distortion D

Theorem. The rate distortion function for an i.i.d. source X with
distribution p(x) and bounded d(x, x̂) is equal to

R(D) = min
p(x̂|x):

∑
(x,x̂) p(x)p(x̂|x)d(x,x̂)≤D

I(X; X̂)
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FIGURE 10.4. Rate distortion function for a Bernoulli ( 1
2
) source.
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