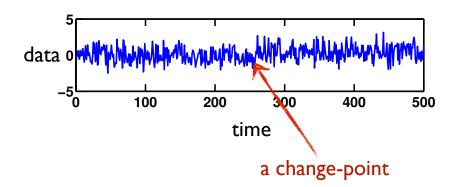
Change-point detection

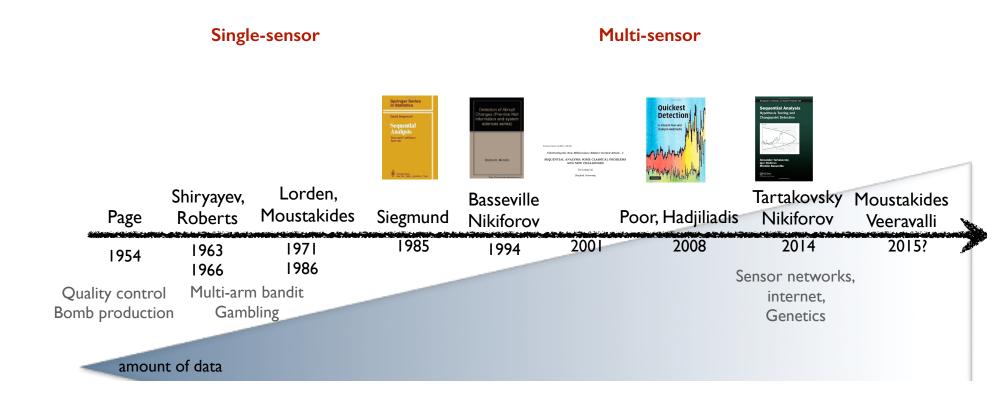
"... to detect abrupt changes in the statistical behavior of an observed signal or time series."

> -Quickest detection by Poor and Hadjiliadis, 2008

- change-point represents an interesting event or anomaly seismic event, solar flare, human activity
- wish to detect change-point online



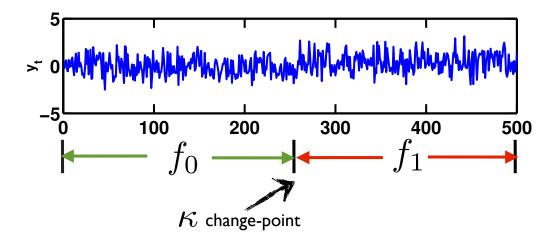
A brief history of change-point detection



Single-sensor change-point detection

Classic "change-point" detection in statistics and quality-control

ightharpoonup a sequence of i.i.d. observations $y_1, y_2, \dots \in \mathbb{R}$



sequential hypothesis testing

$$\mathsf{H}_0: \ y_t \sim f_0, \ t = 1, 2, \dots$$
 $\mathsf{H}_1: \ y_t \sim f_0, \ t = 1, \dots, \kappa,$
 $y_t \sim f_1, \ t = \kappa + 1, \dots$

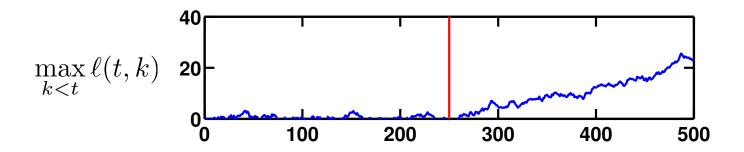
unknown change-point $\kappa > 0$

goal: detect change-point as quickly as possible

Single-sensor likelihood procedure

• for a hypothesized $\kappa = k$:

$$\ell(t,k) = \log \frac{\prod_{i=1}^{k} f_0(y_i) \cdot \prod_{i=k+1}^{t} f_1(y_i)}{\prod_{i=1}^{t} f_0(y_i)} = \sum_{i=k+1}^{t} \log \frac{f_1(y_i)}{f_0(y_i)}$$



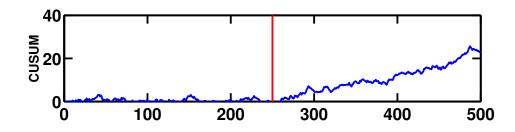
stop the first time hitting a threshold b

$$T = \inf\{t : \max_{k < t} \ell(t, k) \ge b\}$$

Gaussian case

$$f_0 = \mathcal{N}(0,1), \ f_1 = \mathcal{N}(\mu,1), \ \mu > 0$$

CUSUM procedure [P54]:
$$T = \inf\{t : \max_{k < t} \sum_{i=k+1}^{t} (\mu y_i - \frac{\mu^2}{2}) \ge b\}$$



 \triangleright when μ unknown, replace it with maximum likelihood estimator

GLR procedure [SV86]:
$$T = \inf\{t : \max_{k < t} \frac{(\sum_{i=k+1}^{t} y_i)^2}{t - k} \ge b\}$$

