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Abstract—Seismic event picking plays a key role in seismol-
ogy studies. The goal of seismic event picking is to detect the
onset of a seismic event, which typically causes an increase
in the amplitude of the recorded signal. In this paper, we
present a sequential change-point detection method for online
seismic event detection, based on the generalized maximum
likelihood statistic. We assume that the signals prior to the
event are i.i.d. Gaussian random variables with zero mean
and known variance, and after the event are i.i.d. Gaussian
with zero mean and an increased unknown variance. We
form a generalized likelihood ratio (GLR) based statistic by
replacing the unknown variance with its maximum likelihood
estimate, which takes a simple form and has a recursive
implementation. An event is detected whenever the statistic
exceeds a prescribed threshold. We compare the performance
of our GLR procedure relative to the commonly used short-
term-average/long-term-average (STA/LTA) algorithm, which
is the state-of-the-art for seismic event detection, using large-
scale seismic dataset and demonstrate the benefits of our GLR
statistic. We also present a joint detection method to utilize
the capability of seismic sensors to record signals through
three independent channels, to achieve much better detection
performance. We also present a method to combine GLR
procedure with P-wave and S-wave filtering.

Index Terms—Seismic event detection, sequential change-
point detection, generalized likelihood ratio

I. INTRODUCTION

Seismic event detection and onset time estimation play
key roles in geophysical explorations. For example, it is
commonly used in determining the state of a volcano and
predicting volcanic eruptions (e.g, [3] and [4]), and in travel-
time tomography [7]. A widely used detection algorithm
is the STA/LTA algorithm presented in [4]. It has been
applied in real seismic event detection networks [5], [7]
(STA/LTA stands for short-term average and long-term
average). STA/LTA is based on a simple moving average
of the amplitudes of the signals over a short window that
captures short-term signal variations and a long window that
captures more long-term background signal levels. However,
STA/LTA has limited precision estimating the onset time
and may not react to weak seismic signals quickly.

In this paper, we develop a generalized likelihood-ratio
(GLR) based sequential change-point detection procedure

for quick seismic event detection and precise onset time
estimation. It is based on an empirical observation that a
seismic event can be well modeled via an increase in the
variance. We consider a procedure that detects an increase
in the variance of i.i.d. Gaussian distributed observations.
We assume the variance prior to the change is known (since
there is typically a large amount of background data and
this parameter can be estimated fairly accurately), and the
variance after the change is unknown (since this represents
the unknown event). The GLR procedure computes a statistic
for every time unit and detects an event when the statistic
exceeds a pre-determined threshold. Computation of the
statistic is quite simple and can be implemented recursively;
we do not have keep the complete history of data. After
an event is detected, the maximum likelihood estimate for
the onset time is reported. The GLR procedure has superior
performance relative to the STA/LTA algorithm, in the
expected detection delay and the accuracy in estimating
the onset time as demonstrated using simulations and real
seismic data.

We also extend our method for joint P-wave and S-wave
detection. Seismic waves are a superposition of the P-wave
and S-wave, which contain different information about the
geological structure (Chapter 11 of [1]). P-waves travel
faster, and if we directly apply our method on the original
sequence, what we detect is the P-wave. Then we apply
a filtering method [5] on the original signal to separate P-
waves and S-waves, to estimate the onset of the S-wave as
well. We demonstrate this method on a fairly large seismic
dataset (Parkfield data).

Change-point detection for seismic event picking using
likelihood ratios has been considered in the past. One such
example is Section 2.2 in [2], but the procedure studied
therein is offline (rather than sequential), and the formulation
is also different, where the variance prior to the change and
after the change are both unknown. For our problem, we
may assume the variance prior to the change is known since
we have a large amount of background data. Since our
problem is one-sided (meaning we are only interested in
an increase in the variance), we may also apply a positive



thresholding in the detection statistics and further improve
performance.

In seismology literature, other methods have also been
considered (but less commonly used) including the wavelet
based method [9] (which may not have a simple online
implementation) and AR-AIC picking using a joint AR
modeling of the noise and the seismic signal and the Akaike
Information Criterion (AIC) [6]. AR-AIC requires estimating
a more sophisticated AR model which has much higher
complexity than our GLR procedure. Statistical properties
of these algorithms have not been rigorously studied. On
the other hand, due to the simple structure of our GLR
statistic, we may characterize its statistical properties which
is our ongoing work. These two existing pickers also did not
utilizes the sequential change-point framework (i.e., they
do not search for the unknown change-point location in the
detection statistic).

Our work provides a first attempt to bringing advances in
statistical sequential change-point detection to seismic data
analysis. Compared to prior work, our contributions include:
(1) Presenting a statistical change-point detection approach
for online seismic event picking, using the generalized
likelihood ratio (GLR) statistic. Although a related approach
has been suggested in the literature (Section 1.2.3 in [1]
and reference therein), however, only the likelihood ratio
based CUSUM statistic is considered, which assumes the
post-change parameter to be known. It is known in [8] that
CUSUM procedure is sensitive to the error of estimating
the parameters. Our GLR statistic assumes the post-change
parameter is unknown, which is more robust than the
CUSUM statistics. (2) To the best of our knowledge, this
work is the first paper in studying the performance of
the statistical change-point detection approach, compared
with the short-term-average/long-term-average (STA/LTA)
method, which is the state-of-the-art in the seismology field.
(3) Our work is the first effect in performing such study
using modern large-scale modern seismic dataset (Parkfield
field dataset). (4) To fully utilizes the capability of seismic
sensors to record vibrations in three directions (Z, East-West,
and North-South directions), we present a new approach
joint three-channel event detection. When an event occurs,
typically all three channels are affected simultaneously (with
different amplitudes of change), and these channels are
independent of each other. Hence, this provides diversity for
detection and much improves the detection performance.

II. PROBLEM FORMULATION

Suppose we are given a sequence of observations yi, i =
1, 2, . . .. Under the hypothesis of no change, the observations
follow i.i.d normal distributions with zero mean and a known
variance σ2

0 . Probability and expectation in this case are
denoted by P∞ and E∞, respectively. Alternatively, there
exists an unknown change-point that occurs at time κ, 0 ≤
κ < ∞, such that the variance of yi is shifted from σ2

0

to some unknown parameter value σ2
1 for all i > κ. The

probability and expectation in this case are denoted by Pκ
and Eκ, respectively. The above setting can be formulated
as the following hypothesis testing problem:

H0 : yi ∼ N (0, σ2
0), i = 1, 2, . . . ,

H1 : yi ∼ N (0, σ2
0), i = 1, 2, . . . , κ,

yi ∼ N (0, σ2
1), i = κ+ 1, κ+ 2, . . . .

(1)

Our goal is to establish a stopping rule (called detection
procedure) that stops as soon as possible after a change-
point occurs and avoids raising false alarms when there is
no change.

III. GENERALIZED-LIKELIHOOD RATIO (GLR)
PROCEDURE

We derive a generalized likelihood ratio (GLR) based
statistic for detecting the change. Since the observations
are independent, for an assumed value of the change-point
κ = k, the log-likelihood for observations by time t > k is
given by
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Since the post-change variance σ2
1 is unknown, we may

replace it by its maximum likelihood estimator. Given
the current number of observations t and putative change-
point time k, by setting the derivative of the log-likelihood
function (2) with respect to σ2

1 to be 0, we may solve for
the maximum likelihood estimator:

σ̂2
1 =

∑t
i=k+1 y

2
i

t− k
.

Substituting this back into (2), we obtain the generalized
likelihood ratio (GLR) statistic
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We raise an alarm whenever the GLR statistic exceeds a
prescribed threshold b > 0. Define

Uk,t ,

∑t
i=k+1(yi/σ0)2

t− k
=
σ̂2
1

σ2
0

, (3)

then the GLR detection procedure is given by

T1 = inf

{
t : max

t−w≤k<t−w′

t− k
2

(Uk,t − logUk,t − 1) > b

}
.

where w > 0 is a use chosen window-size and w′ is the
minimum number of samples required for detection. By
searching only over a window of the past w samples, this



reduces the memory requirements to implement the stopping
rule, and it also sets a minimum level of change that we want
to detect. A practical choice of the window length w should
be larger than the largest detection delay we expect. The
other parameter w′ is the minimum number of observations
needed for computing the maximum likelihood estimator
for parameters. In our case, we just set w′ = 1.

Since an increase in the variance of observations will
appear when a seismic event occurs, we are only interested
in the case where the estimated post-change variance σ̂1
is larger than σ0. This means Uk,t in (3) should be greater
than 1; otherwise we should truncate it to be 1. For this
consideration, define a statistic

Vk,t , max{Uk,t, 1}.

and consider the following variant of T1:

T2 = inf

{
t : max

t−w≤k<t−w′

t− k
2

(Vk,t − log Vk,t − 1) > b

}
.

In addition to detecting the change-point and reporting
the seismic event, we are also interested in determining
the arrival time of the seismic event. In other words, we
are interested in estimating κ. We determine this by a
maximum likelihood estimate when the procedure stops.
Assume detection procedure T1 stops at time t1. Then the
estimated change-point location k∗ of the event determined
by applying T1 is given by:

k∗ = arg max
t1−w≤k<t1−w′

t1 − k
2

(Uk,t1 − 1− logUk,t1) .

(4)
Similarly, if we apply T2 to detect the change, we obtain
the estimated change-point location by replacing Uk,t with
Vk,t in (4).

The statistics involved in both T1 and T2 can be computed
recursively:

Uk,t+1 =
t− k

t− k + 1
Uk,t+

(yt+1/σ0)2

t− k + 1
, t−w ≤ k ≤ t−w′,

where Ut,t , 0.

IV. PERFORMANCE EVALUATIONS

A. Performance metrics

We use two standard performance metrics (1) the expected
value of the stopping time when there is no change, the
average run length (ARL); (2) the expected detection delay
(EDD), defined in our case to be the expected stopping time
in the extreme case where a change occurs immediately
at κ = 0. Specifically, for any detection procedure T , we
can use E∞{T} and E0{T} to denote ARL and EDD,
respectively.

Large ARL means rare false alarm and EDD provides an
upper bound on the expected delay after a change-point until
the detection procedure stops. Thus, an efficient detection
procedure should have a large ARL and a small EDD. The

choice of threshold b as a balancing parameter plays a
key role in establishing an efficient detection procedure.
Typically, we set b large enough so that ARL is a large
number (5000 or 10000) since we prefer a robust detection
procedure.

In the problem of seismic event detection, in addition to
ARL and EDD, another important metric is the precision
of estimating the change-point location which we measure
using the mean-square errors.

B. STA/LTA algorithm

Similar with T1 and T2, the STA/LTA algorithm is also a
stopping rule. Let m be number of observations per second.
Assume we observe (y(i−1)m+1, . . . , yim) in ith seconds,
then a measure for seismic amplitude in [4] is given by:

Ri ,

∑im
j=(i−1)m+1(yj − ȳi−1)

m
,

where ȳi−1 is defined as the average observation value in
(i− 1)th seconds. Then STA and LTA is updated based on
the equation:

Xi =

∑W−1
j=0 Ri−j

W
,

where W denotes the STA or LTA time window size. LTA
shows the long term background signal level while the STA
responds to short term signal variation. The ratio of STA
over LTA is constantly monitored. Once the ratio exceeds a
certain prescribed threshold, the STA/LTA algorithm stops
and record this stopping time as the starting time of the
seismic event. In the following, we assume that the STA
window is 5 seconds and LTA window is 30 seconds.

To compare our proposed methods with the classical
STA/LTA algorithm, we take the maximum in T1 and T2
every time when we have m observations. But it should be
noted that our methods can work at a finer temporal grid
than STA/LTA algorithm since they can return one result
every 1/m seconds. In the following numerical examples,
we set m = 40. In order words, we obtain one observation
every 0.025 seconds.

C. Simulated data

Through simulation, we compare the expected detection
delays for T1, T2 and the STA/LTA algorithm when their
ARLs are all approximately 105 seconds (this means the
ARL is longer than a day, i.e., we do not expect to make
one false alarm in one day). We set the window size
w = 2000. In the simulation, for each Monte Carlo trial,
we generate a sequence of observations of which the first
4000 observations (100 seconds) follow the standard normal
distribution and then the variance increases from 1 to ρ.
Then we run each detection procedure on this sequence and
record the number (t− 100) as the simulated EDD, where t
is the first stopping time after 100 seconds. In addition, for
T1 and T2, we record k∗ in (4) as the estimated change-point



location. For the STA/LTA algorithm, k∗ is just the stopping
time. Since k∗ may not always be larger than 100, we use
mean squared error (MSE) as the measure of performance,
which is given by:

MSE =
1

K

K∑
i=1

(k∗i − 100)2, (5)

where k∗i is the estimated change-point location at ith Monte
Carlo trial and K is the number of Monte Carlo trials. We
set K = 1000 in the following.

TABLE I: Simulated EDDs for STA/LTA, T1 and T2. The number
in parentheses is the standard deviation of the EDDs of the Monte
Carlo trials. The trigger thresholds for STA/LTA algorithm, T1

and T2 are 0.966, 11.2 and 9.60, respectively. The time unit is
second.

ρ = 1.1 ρ = 1.3 ρ = 1.5 ρ = 2
STA/LTA 1499 (1286) 28.19 (24.51) 7.49 (4.01) 3.54 (0.92)
T1 226.7 (191.0) 14.87 (6.51) 6.23 (2.71) 2.47 (0.99)
T2 142.5 (120.4) 12.28 (5.80) 5.59 (2.57) 2.22 (0.95)

Table I shows the simulated EDDs for the STA/LTA
algorithm detection procedure T1 and T2 with different
values of ρ. Compared to the STA/LTA algorithm, T1 and
T2 have smaller detection delays, especially for the case
when only a small increase occurs in the variance of the
signal (e.g, ρ = 1.1). Moreover, T1 and T2 seem to be
more robust than the STA/LTA algorithm since the standard
deviation of EDDs obtained from 1000 Monte Carlo trials
of T1 and T2 are basically smaller than that of the STA/LTA
algorithm. Similarly, we may say that T2 is better than T1
in detecting the increase in the variance.

In addition to comparing the EDDs, we also compare
the accuracy of estimating the change-point location. MSEs
obtained from 1000 Monte Carlo trials are shown in Table
II, from which we can see that T1 and T2 can estimate
the change-point location much more accurately than the
STA/LTA algorithm. The reason for this is that STA/LTA
regards the stopping time as the starting of the event without
any computation for k∗ like that in (4).

TABLE II: Simulated MSEs for estimating the change-point lo-
cation when applying STA/LTA, T1 and T2. The trigger thresholds
for STA/LTA algorithm, T1 and T2 are 0.966, 11.2 and 9.60,
respectively.

ρ = 1.3 ρ = 1.5 ρ = 2
STA/LTA 1411 63.44 13.79
T1 12.09 2.56 0.40
T2 13.32 3.27 0.57

D. Study Parkfield dataset

We evaluate our approach on real seismic data: the
continuous GPS monitoring at Parkfield1 and compare it
with the hand-picked event time2. We first preprocess the

1http://earthquake.usgs.gov/monitoring/edm/parkfield/continuous.php
2http://www.mit.edu/∼hjzhang/Parkfield/abs.dat

data by filtering out the low (<1Hz) and high (>10Hz)
frequency component and then normalize the signals by
the estimated signal variance under null. There are a total
number of 10 seismic events, and for each event, the signals
were recorded by 36 stations, each with three channels.
Hence, we have 36×3×10 = 1080 sequences. Among these
sequences, removing some channels that are not affected
by the event, we left with 618 sequences for our study.
We compare our proposed GLR-based detection procedure
T1 and T2 with the commonly used STA/LTA algorithm.
Here we use the window-limited version of T1 and T2
with window size w = 2000. And we choose thresholds
in order to make the ARL of all detection procedures
to be approximately 105 seconds. See Table III for the
comparative results. The detection rate shows the number
of sequences that the method uses to successfully detect the
occurrence of a seismic event within 2000 observations (50
seconds) after the event happens.

Table III also shows that our proposed detection procedure
T1 and T2 also have better performance than the STA/LTA
algorithm in practical settings. The EDDs and MSEs for
estimating the change-point location obtained by applying
T1 and T2 are both smaller than that of the STA/LTA
algorithm, and T1 and T2 has larger detection rates. T2
seems to perform better than T1 in estimating the change-
point location even if the detection rate is lower.

E. Joint-detection by combining signals from three channels.

We may also exploit the fact that each seismic sensor
records signal in three channels and when event occurs,
it is usually observed (to different degrees) in all three
channels, to combine signals recorded by three channels.
The three channels are Z-channel, East-West channel, and
North-South channel, which records the vibrations in three
directions, respectively. This diversity provides additional
power in detection and we found that it can great improve
the performance of our detection algorith,.

We try two ways in combining information from three
channels for event detection: (1) summing signals from
three channels; this boosts SNR and it improves the overall
performance including EDD, MSE, and detection rate, as
demonstrated in the second panel in Table III, denoted by
“combined”; (2) detecting an event whenever any of the three
channels detects a change; this has the highest detection rate,
but EDD and MSE may not be improved, as demonstrated
in the third panel in Table III, denoted by “one-in-three”.

V. P-WAVE AND S-WAVE SEPARATION AND DETECTION

The standard sensor equipment of a seismic station can
offer the records of seismograms with three channels, the
east-west (E), north-south (N), and vertical (Z) channels.
From the three channels, P-waves and S-waves can be
separated using the technique proposed in [5]. Since P-
waves arrive first, we can use the detection procedures
proposed above to first determine the arrival time of the



TABLE III: EDDs, MSEs for estimating the change-point location
and detection rate for STA/LTA, T1 and T2. The number in
parentheses is the standard deviation of the EDDs obtained from
618 sequences of observations. The trigger thresholds for STA/LTA
algorithm, T1 and T2 are 0.966, 11.2 and 9.60, respectively.

EDD (sec) MSE Detection Rate
STA/LTA 6.24 (1.92) 42.55 459/618
T1 4.64 (6.43) 6.29 482/618
T2 3.36 (2.25) 4.35 455/618

STA/LTA (combined) 6.04 (0.22) 36.49 492/618
T1 (combined) 3.77 (5.14) 3.26 504/618
T2 (combined) 3.29 (3.75) 2.14 489/618

STA/LTA (one-in-three) 6.31 (2.49) 45.99 540/618
T1 (one-in-three) 3.81 (5.10) 6.71 558/618
T2 (one-in-three) 3.04 (2.43) 5.95 537/618

P-wave. Then we apply an S-wave filter to separate the
P-wave and S-wave. We run again the detection procedure
to determine the arrival time of the S-wave.

Next, we introduce how to compute the P-wave filter and
S-wave filter at time t. Define Nt , (yt+1, yt+2, . . . , yt+M ),
where {yi}t+Mi=t+1 are observations from channel N between
time t+ 1 to t+M . Similarly, we define Et and Zt be the
M -dimensional vector of observations from channel E and
channel Z between time t+ 1 to t+M . Then, we compute
the covariance matrix at time t as follows:

Σt =

cov(Nt, Nt) cov(Nt, Et) cov(Nt, Zt)
cov(Et, Nt) cov(Et, Et) cov(Et, Zt)
cov(Zt, Nt) cov(Zt, Et) cov(Zt, Zt)


where cov(X,Y ) = 1

M

∑M
i=1 xiyi is the covariance be-

tween vector X and Y . Define the degree of linear polariza-
tion rt as rt = 1− (λ2 + λ3)/(2λ1), where λ1 ≥ λ2 ≥ λ3,
and u1, u2 and u3 are the eigenvalues and the corresponding
eigenvectors of Σt, respectively. Let u11 be the first entry
of u1. Then the P-wave filter and the S-wave filter at time
t are given by:

pt = rtu11, st = rt(1− u11),

respectively. Then, we multiply pt to the tth observation of
Channel N to obtain the filtered P-wave observation. And
we multiply st to the sum of tth observation of Channel E
and Channel Z to obtain the filtered S-wave observation. Fig.
1 demonstrates the P-wave and S-wave separation outcome
on a real seismic event. In this example, we set M = 40.

VI. CONCLUSION

We formulate the problem of picking seismic events as
the detection of increase of variance in Gaussian settings.
We present a new generalized likelihood ratio (GLR) based
method for online event picking from streaming seismic
data, and demonstrate its advantage over the commonly
used STA/LTA algorithm for detecting the seismic events.
The GLR statistic can be computated recursively, which is
convenient for online implementation. We perform extensive
numerical study of the performance of the GLR statistic
using simulation as we as large-scale seismic dataset (the
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Fig. 1: An example of a separated P-wave and S-wave: (a) Channel
N, the North component velocity seismogram; (b) Channel E, the
East component velocity seismogram; (c) Channel Z, the vertical
component velocity seismogram; (d) the separated P-wave by
applying the P-wave filter on the signal from Channel Z, where the
pink bar marks the estimated change-point time; (e) the separated
S-wave by applying the S-wave filter to the sum of signals from
Channel E and Channel Z, where the pink bar marks the estimated
change-point time; (f) the computed P-wave filter; (g) the computed
S-wave filter.

famous Parkfield dataset). Our comparisons are in terms
of two performance metrics: (1) the expected detection
delay (EDD) for fixed false-alarm rate, which is represented
by average-run-length (ARL) when there is no event, and
(2) the mean-square-error (MSE) of estimating the change-
point time, which is an important parameter for subsequent
seismology study. Moreover, we also present a new joint
detection approach, to combine signals from three channels
of the seismic sensors to achieve much quicker detection.
Finally, we also show how to perform P-wave and S-wave
separation jointly with event detection, which is an important
tool for seismology study.
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