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Abstract— We present a new approach to address the “missing
data” issue in the distributed ambient noise seismic imaging
(ANSI) system, where completing the missing cross-correlation
due to communication constraints or weak signals is required to
use conventional ambient noise imaging methods. We show that
the problem can be formulated as a low-rank matrix completion
problem, and leverage the recent advances in this field to
present an efficient algorithm. Simulated and real-data examples
demonstrate the promising performance of our approach. 1

I. INTRODUCTION

ANSI (Ambient Noise Seismic Imaging) is a promising new
paradigm for seismic imaging. ANSI makes use of ambient
noises recorded by sensors. The most crucial step in imaging is
to compute pairwise cross-correlation functions between sen-
sors, and finding the location of “peak” of the cross-correlation
functions, which is used in the subsequent frequency-time
analysis to form images [1]. Compared with conventional
active imaging, which usually requires strong sources that
are artificially introduced (such as dynamite explosion), ANSI
uses natural sources of “signals”, which is non-invasive and
more environmentally friendly. ANSI is particularly useful for
imaging shallow earth structures.

In the recently developed distributed ANSI systems [2] for
real-time imaging, sensors perform pairwise cross-correlation
in real-time using continuous data streams. Due to commu-
nication and computation constraints, we may not be able to
require all sensors to communicate with each other (to form
an N(N − 1)/2 cross-correlation function, where N is the
number of sensors). Each sensor is only able to communicate
with its neighboring sensors. On the other hand, in practice,
there will be pairs of sensors where the “signal” is missing,
i.e., when performing cross-correlation between these pairs,
there is no significant “peak” in the cross-correlation, which
indicates somehow the signal might be missing (due to sensor
measurement errors, or the signal-to-noise ratio is too weak).
Due to the two above reasons, we are not able to obtain cross-
correlation functions between all pairs of sensors. However, the
conventional ambient noise imaging algorithms require cross-
correlation between all pairs of sensors. Therefore, we need
to complete the missing information related to the pairs of
sensors that we are not able to find cross-correlation.
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In this paper, we address the missing data problem in dis-
tributed ANSI, using low-rank matrix completion. In particular,
we show that the problem has a low-rank structure (which
could be explained by the fact that usually there is one strong
dominating signal source). This allows us to leverage the recent
advances in low-rank matrix completion (see, e.g., [3], [4]) to
solve this problem efficiently. We demonstrate the promising
performance of our approach using simulated examples and a
real data set measured at Yellowstone Old Faithful geyser.

On a high level, the problem we are facing in ANSI is related
to delay estimation. However, our problem differs from the
array signal processing (for instance, the well-known MUSIC
algorithm [5]), since we do not have a uniform linear array as
considered in these classic works. Our problem is also different
from the localization using delay estimate (e.g., [6]) since we
cannot measure the relative delay directly. Our problem can
be viewed as a special case of signal synchronization [7],
however, here we focus specially on problem of missing data.

II. FORMULATION

Assume there are N sensors. In ANSI, usually it is assumed
there is one unknown dominant ambient noise “source”, which
we represent using s(t). Each sensor observes a contaminated
and delayed version of the source signal:

xn(t) = ρns(t− τn) + ηn(t), t = 0, . . . , T − 1,∀n (1)

where T is the number of samples, and ηn(t) is Gaussian
noise.

In ANSI, the ambient noise source is usually very weak, so
we can only detect the signal by performing cross-correlation
two long recorded sequences (T is usually large). We are
interested in estimating the pairwise delays between sensors:

∆nm = τn − τm,

using cross-correlation function. The (zero-padded) cross-
correlation between a pair of sensors indexed by n and m
is given by

rnm(t) = xn(t) ? xm(t) ,
∑
`

xn(`)xm(t+ `).

where ? denotes cross-correlation. Note that due to communi-
cation constraint and missing data, we are only able to observe
a subset of cross-correlation functions in Ω ⊂ [1, . . . , N ] ×
[1, . . . , N ], i.e., we only know rnm for (n,m) ∈ Ω. Our



goal is to complete ∆nm, based on observations of rnm(t)
on (n,m) ∈ Ω.
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Fig. 1. Problem setup for ambient noise imaging, where rnm(t) denotes
pairwise cross-correlation functions, and we can only observe (n,m) ∈ Ω.

III. LOW-RANK MATRIX COMPLETION

First we show the low rank structure of the problem. Define
the discrete Fourier transform of signals

Xn(k) =
∑
`

xn(`)e−i2πfk , k = 0, 1, · · · , T − 1,∀n,

where fk , 2πk/T , and i =
√
−1. In the frequency domain,

cross-correlation becomes multiplication:

Rnm(k) = X∗n(k)Xm(k)

= |S(k)|2eifk∆nm +Nnm(k), k = 0, 1, · · · , T − 1.
(2)

where ∗ denotes the conjugate operation, and Nnm(k) denotes
noise terms, which may also depend on the signal. Define
matrices R(k) ∈ CN×N , k = 0, 1, 2, · · · , T − 1, whose entry
is given by Rnm(k). From (2), we can show that the matrix
is the sum of a low-rank matrix and a matrix related to noise.

Define the phase angle of a complex number to be θ, and
consider the phase angle of each R(k) ∈ CN×N , k =
0, 1, 2, · · · , T − 1, the formula gives an estimation of the lag
time ∆nm = θ(R(k))T/2πk. We construct a matrix R(k), in
which each entry Rnm(k) stands for the lag time between the
two sensors in a pair. We can show that:

R(k) = |S(k)|2hkhHk + N(k), k = 0, 1, · · · , T − 1, (3)

where N(k) is noise, hHk refers to the Hermitian of hk, and
the vector hk = (e−iτ1fk , e−iτ2fk , · · · , e−iτNfk)T . When the
noise is not very large, we can also find out that the matrix
is approximately low-rank even with noise. The result will be
showed in Section IV.

A. Low-rank matrix completion

Now formulation (3) will enable us to use low-rank ma-
trix completion (LRMC) to infer the missing entries. The
completed matrix can be solved using the following nuclear
minimization problem (for each k)

min
X

‖X‖∗
subject to

∑
(i,j)∈Ω(Xij −Rij(k))2 6 δ,

(4)

where ‖X‖∗ denote the nuclear norm of X, δ ≥ 0 is the
tolerance parameter [8]. We need to solve N − 1 LRMC
problems. There are various efficient algorithms to solve

the matrix completion problem (e.g., iterative singular value
thresholding [9], using non-convex formulation and alternating
minimization [10].)

B. Delay estimate based on completed matrices

Finally we relate the recovered matrices to relative delay
estimates. After solving T−1 matrix completion problems, we
obtain solutions R̂(k). We can extract the leading eigenvector
for each solution, which can be treated as an estimate for hk.
Let θ(z) denote the phase angle of a complex number z. Thus,
we have that

θ([R̂(k)]nm) ≈ 2π∆nmk

N
, k = 1, . . . , T − 1, ∀n,m.

Then for each (n,m), we have T − 1 equations for ∆nm. We
use least square to estimate ∆nm, i.e., fitting a line to relate
T − 1 points: (k, θ([R̂(k)]nm)), and the slope of the line will
be an estimate for 2π∆nm/N .

C. Maximal-likelihood delay estimation

We can also derive the maximum likelihood estimate (MLE)
for the delay, for each pair of sensors that we have data to
compute cross-correlation function (the derivation of MLE
can be found in the appendix). MLE, being an asymptotic
efficient estimator, may serve as a bench mark for the accuracy
of our low-rank matrix completion algorithm (as we show
in numerical example section). But the MLE based method
must rely on the distribution of the noise. Assume the noise in
observation (1) is Gaussian with zero mean and variance σ2.
Denote Ŝ(k) as the MLE of the signal. Using the definition
of the cross-correlation function (2), it can be shown that the
following quantity is approximately χ2 distributed with two
degree-of-freedom (denote its probability distribution function
as f ):

Gk(τ) = (Xn(k)− Ŝ(k)e−τf )∗(Xm(k)− Ŝ(k)).

We can estimate ∆nm by

τ̂ = arg max
τ

T−1∑
k=0

log f

(
|Gk(τ)|
σ0

)
,

where f(x) = x−
1
2 e−

x
2 /(
√

2γ( 1
2 )), which is the density func-

tion of a χ2 variable with freedom 2.

IV. NUMERICAL EXAMPLES

In this section, we verified the accuracy of our proposed
method using simulation and real-data. We assume that the
noise and signals in the simulation are Gaussian.

A. Simulation

The influence of noise variance on the error between the true
lag time and the lag time predicted by our method is studied
in the following simulations. We adopt the usual performance
metric RMSE = ((1/N)

∑N
i=1(τpredicted,i − τtrue,i)

2)1/2.

Comparison with MLE. First, we compare the accuracy of
the estimates obtained by low-rank matrix completion and that
by MLE. We show that the proposed approach can obtain good
accuracy that is close to MLE, but remember that the smaller



the size of delay is, the bigger the RMSE of MLE is, which
corresponds to the two lines in Fig.2(a). We generate N = 9
sensors, with random positive delays τi. The source s is a
Gaussian-shaped signal. The results show that the larger the
variance of the noise between each pair of signals, the larger
the error between lag time predicted using our method and
the real lag time we set. What’s more, the RMSE of MLE
is only a little bit smaller than our method, which means our
method is accurate and easy enough. And the reason why we
do not use MLE on real data is that MLE is based on an exact
distribution of noise, while the practical noise of real signals
is unknown.

RMSE with randomly missing data. We generate instances
with randomly missed entries. The results are shown in Fig.
2(b), which show the MSE for relative delay estimate for three
pairs of sensors (denoted by ∆1, ∆2, and ∆3).

RMSE with missing data due to distance. In this section,
we simulated a scenario, where sensors are arbitrarily places in
three dimensional spaces. We assume sensors that are more far
apart, with distance greater than certain threshold, whose cross-
correlation functions are missing. This is to mimic the situation
in distributed ANSI, the sensors are only able to communicate
with their neighbors, since signals are transmitted wirelessly
and the channels between far away sensors is usually not
available due to path loss and mutual interference. The results
are shown in Fig.2(c). Note that the MSE of the estimated
delay are quite reasonable.

B. Real-data

In this section, we use a real dataset to demonstrate the
good performance of our method. From 2015/11/06 on and
for a week, 16 geophone sensors are placed around Old
Faithful Geyser in Yellowstone National Park to record signal
continuously (the sampling frequency is 500 Hz). Sensors are
indexed 001, 002,· · · 016 below. The locations of the sensors
are shown in Fig. 3.

First, we perform band-pass filtering in 1-5 Hz (which,
according to geophysicts’ experience, contain interesting in-
formation). When performing cross-correlation, we truncated
the signal into 5-minute segments, and there are 120 segments.
We perform cross-correlation for the 5 minute segments, and
average the cross-correlation functions over all segments (for
each pair of sensors). The averaging is shown to be essential
in boosting the signal.

Signal detection. As a first step, we have to decide whether
there is a “peak” between a pair of sensors. We did this by
computing the cross-correlation functions between all pairs of
sensors. We then examine the peaks of the cross-correlation
functions, and find out the maximum peak values across all
cross-correlation functions. Then we set a threshold, which is
7% of the maximum peak value. We decide all pairs whose
peak values are below the threshold to be the ones that does
not contain a “peak”, i.e., the signal is missing. This create
a missing pattern, as shown in the black holes in Fig. 5(a).
The cross-correlation functions for all sensors are shown in
appendix. We also find that sensor 007 does not contain any

Fig. 2. The lines with different ∆ indicate different lag times between
signals, and ∆1 < ∆2 < ∆3. The y axis is the RMSE between the lag
time we predicted and the real lag time we set to each signal. And the
noise standard deviation means the standard deviation of noise we add to
signals. (a) Comparison with MLE; (b) random missing; (c) missing due to
long distance.

Fig. 3. Sensor deployment in Yellowstone National Park to collect ambient
noise signals. There are total of 135 sensors (labeled in picture) and we only
used the first 16 sensors in our study as a proof of concept.

signal in any of its cross-correlation functions, so we removed
it from study. This gives N = 15 sensors and a 15-by-15
matrix to complete.

Verify low-rank assumption. Now we form the R(k) matri-
ces using frequency samples of the cross-correlation functions.
We verify the low-rank property of these matrices as follows.
We fill the missing entries by zero, and compute the singular
value decomposition (in this case, the eigen-decomposition
also works since the matrix is Hermitian). The eigenvalues



of R̂(k) are real, since the matrices are all Hermitian. The
eigenvalues for R̂(1) is shown in Fig. 4, which clearly shows
that the matrix is nearly rank-one. The situation for all the
other matrices are similar. This means that we can indeed use
our approach to infer the missing entries.

Fig. 4. Top 10 eigenvalues of zero-filled R̂(1). This shows that our low rank
assumption holds.

Accuracy. Now we study the accuracy of our approach. Since
there is no ground truth in our study, we use the following
method. Fig. 6(a) shows the relative delay matrices, between
all 15 sensors (the value of the matrix is the relative delay).
Note that the matrix is per-symmetric. The blue entries are
missing, whose values are recovered using our method. Now
we cover up some randomly chosen entries, pretending their
cross-correlation functions are missing, using our method to
recover their values and compare with the observed values
(i.e., in Fig. 6(a)). Fig. 6(b) shows the matrix obtained this
way, where the green entries are the “covered-up” ones. Note
that indeed, the green entries matches pretty well with their
correspondence in Fig. 6(a).

(a) With missing entries (b) After matrix completion

Fig. 5. Heat map of the relative delay matrix ∆nm: (a) the missing entries
correspond to black holes; (b) recovered matrix using our method.

V. CONCLUSION

In this paper, we present a low-rank matrix completion based
approach, for the missing data issue in the distributed ambient
noise imaging systems. Simulated and real-data examples
demonstrate the good performance of our approach.
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APPENDIX

We propose another method to estimate the lag time re-
garding the maximal likelihood estimation. Also, we apply the



model displayed in 2.1.

xn(t) = s(t− τ) + ηn(t), t = 0, 1, 2, · · · , T − 1,

xm(t) = s(t) + ηm(t), t = 0, 1, 2, · · · , T − 1.

Suppose the noise detected by each sensor is Gaussian white
noise with variance σ2. Then the product of the two noise
follows the productive normal distribution, which has a density
function K0( |u|πσ2 ), and Kn(z) is a modified Bessel function
of the second kind. The maximal likelihood estimation of S of
each pair is

ŝ(t) =
1

2
(xn(t+ τ) + xm(t))

Also, we transfer to the frequency domain to get

Ŝ(k) =
1

2
(Xn(k)eτf +Xm(k)), k = 1, 2, · · · , T − 1.

The Fourier Transform of a Gaussian noise follows complex
Gaussian distribution, whose modulus follows Rayleigh distri-
bution. For a fixed k, define

Gk(τ) = Nn(k)∗Nm(k) = (Xn(k)Ŝ(k)e−τf )∗(Xm(k)−Ŝ(k)),

where Nn(k)andNm(k) are the Fourier Transform of Gaus-
sian noise. Gk(τ) is the product of two Rayleigh variables.
And the result comes out to be

Nn(k)∗Nm(k) = (Xn(k)− Ŝ(k)e−τf )∗(Xm(k)− Ŝ(k))

=
1

4
(Xn(k)−Xm(k)e−τf )(Xm(k)−Xn(k)eτf )

=
1

4
(Xn(k)∗Xm(k) +Xm(k)∗Xn(k)

−Xn(k)∗Xn(k)eτf −Xm(k)∗Xm(k)e−τf )

Suppose we get an estimation of the variance of the modulus
of Nn(k)∗Nm(k) to be σ2

0 , we calculate the modulus of
Gk(τ), and divide it by σ0, then it is standardized and we can
approximate the distribution of Gk(τ) to be the χ2 distribution
with the degree of freedom 2. We do Monte-Carlo simulation
with 20,000,000 points, and show the distribution of the
product of two Rayleigh variable and a variable that follows χ2

distribution with the degree of freedom 2 in Figure 6. The blue
line represents the variable that follows the χ2 distribution and
the red line is the distribution of the product of two Rayleigh
variables.

As is shown in the figure, the distribution of the product
of two Rayleigh variables can be approximated by the χ2

distribution, that is
|Gk(τ)|
σ0

∼ χ2
2

Since the samples are independent, the joint likelihood func-
tion of Gk(0), Gk(1), Gk(2), · · · , Gk(T − 1) is defined to be

h(τ) =

N−1∑
k=0

log f

(
|Gk(τ)|
σ0

)
And we should find the τ which makes h(τ ) reach the max
value where f(x) = x− 1

2 e
− x

2√
2γ( 1

2 )
, which is the density function

Fig. 7. Monte-Carlo simulation with 20,000,000 points

of a χ2 variable. The estimation of τ is

τ̂ = arg max
τ

T−1∑
k=0

log f

(
|Gk(τ)|
σ0

)
Then we get a maximal likelihood estimation of the lag time.
Also, if only the real or the image part of the product is
considered, w.l.o.g the real part, is a sum of two productive
normal variables. Then we can calculate the density function
of it and find the τ maximizing the likelihood function as well.

The cross-correlation functions between pairs of sensors,
which contain signal (“peak”) and do not contain signal.

(a) No “peak”

(b) Contains “peak”

Fig. 8. Results of signal detection under α = 0.1 – cross-correlation function


