
ROBUST STATISTICAL INFERENCE THROUGH THE LENS OF
OPTIMIZATION

A Dissertation
Presented to

The Academic Faculty

By

Liyan Xie

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
H. Milton Stewart School of Industrial and Systems Engineering

Georgia Institute of Technology

August 2021

c© Liyan Xie 2021



ROBUST STATISTICAL INFERENCE THROUGH THE LENS OF
OPTIMIZATION

Thesis committee:

Dr. Yao Xie, Advisor
H. Milton Stewart School of Industrial and
Systems Engineering
Georgia Institute of Technology

Dr. George V. Moustakides
Department of Electrical and Computer
Engineering
University of Patras

Dr. Arkadi Nemirovski
H. Milton Stewart School of Industrial and
Systems Engineering
Georgia Institute of Technology

Dr. Jianjun Shi
H. Milton Stewart School of Industrial and
Systems Engineering
Georgia Institute of Technology

Dr. Jeff Wu
H. Milton Stewart School of Industrial and
Systems Engineering
Georgia Institute of Technology

Date Approved:



To my parents.



ACKNOWLEDGMENTS

My deepest gratitude goes to my advisor, Prof. Yao Xie, for guiding me to the research

field of statistical signal processing, especially change-point detection and its applications

in various domains, and for her constant support during my Ph.D. study. I have been very

fortunate to work with her on exciting research topics. It is hard to imagine this thesis

without her guidance and support. I am constantly amazed by her passion for research and

her insights and vision into both practical problems and theoretical results. She can always

find the perfect balance between theory and practice, which greatly enriched my research

experience during my Ph.D. study. I cannot overstate my appreciation for her constant

encouragement whenever I have encountered any difficulty in research and life.

I would like to thank the committee members for their time and effort serving in my the-

sis committee and for their help in the preparation of this work – Prof. George Moustakides,

Prof. Arkadi Nemirovski, Prof. Jeff Wu, and Prof. Jianjun Shi. I would like to thank Prof.

George Moustakides for his support and guidance in my research on change-point detec-

tion problems and during my job hunting. As an expert in change-point detection, he has

taught me how to approach a problem from the theoretical side and also how to imple-

ment the algorithms efficiently. Moreover, I am also amazed by his insights and vision into

machine learning problems and his innovative ideas of combining machine learning with

change-point detection in certain contexts. I would like to thank Prof. Arkadi Nemirovski

for his guidance in optimization-related research. He is always willing to explain the re-

search problems and his ideas with great patience whenever I have a question. I also would

like to thank him for his support in my fellowship applications and job hunting process. I

would like to thank Prof. Jeff Wu for encouraging me a lot to pursue the academic career

and for providing me valuable suggestions for my career path. I still remember that I felt

much more confident about choosing the academia path after talking to him before my the-

sis proposal. I would like to thank Prof. Jianjun Shi for his guidance and insights for my

iv



research, especially possible applications of change detection algorithms. After my thesis

proposal, Prof. Jianjun Shi has discussed with me a variety of possible improvements and

research topics about my research proposal, which has provided me a lot of potential future

directions and exciting problems to think about in my future career. I have benefitted a lot

from my communication with all my thesis committee members, and I am very fortunate

to have them on my committee.

I would like to thank the H. Milton Stewart School of Industrial and Systems Engineer-

ing. The students, faculties, and staffs here have provided me with a wonderful study and

work environment. Many thanks go to Santanu S. Dey, Alan Erera, Amanda Ford, Dawn

Strickland, and Sandra Bryant-Turner for the assistance in a lot of administrative proce-

dures. I also want to thank the Transdisciplinary Research Institute for Advancing Data

Science (TRIAD) and the Algorithms & Randomness Center at Georgia Tech for provid-

ing financial support through the IDEaS-TRIAD and ARC fellowship.

I would like to thank all my colleagues and collaborators who made this work possible.

Special thanks to Prof. Rui Gao at UT-Austin for his guidance on distributionally robust

optimization ever since when he was still at Georgia Tech. Special thanks to Prof. Wenzhan

Song at UGA for his guidance on signal processing for seismic sensors and in health care.

Special thanks to all my colleagues in Yao’s group, including Yang Cao, Junzhuo Chen,

Shuang Li, Haoyun Wang, Jie Wang, Song Wei, Chen Xu, Minghe Zhang, Rui Zhang,

Shixiang Zhu, etc. I have either collaborated with them or have learned a lot from them.

I would like to thank all my friends, and I’m glad we could accompany and support each

other on this journey. Special thanks go to Shanshan Cao, Jialei Chen, Zhehui Chen, Ana
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SUMMARY

Robust statistical inference is an important and fundamental problem in modern data

science. Many classical works in sequential analysis are designed for the case when we

have full knowledge of the underlying data-generating distributions, such as the well-

known Neyman-Pearson lemma for hypothesis testing and the cumulative sum (CUSUM)

algorithm for sequential change-point detection. However, there are many cases when we

do not have sufficient prior knowledge about the true distributions. In such cases, we need

robust statistical methods that can guarantee the worst-case performance. Moreover, we

also need algorithms that can be implemented efficiently in the online setting where data

comes sequentially.

Such kind of problem is frequently seen and is widely applicable to a variety of appli-

cations. For example, in health care applications, we might do not have much information

about the anomaly data (such as a new disease), and we would like to develop a method that

can detect anomaly pattern quickly from data; In sensor network modeling such as social

networks and seismic sensors, the goal is to detect any structural or correlation changes

among sensors as quickly as possible.

This thesis tackles the robust statistical inference from three aspects. Chapter 3 and 4

study the sequential change-point detection problem with unknown distributions, from both

the parametric side and non-parametric sides. Chapter 5 studies a data-driven setting of the

robust hypothesis testing problem when the only information we have is data. Chapter 6

studies the spatio-temporal modeling of event data over networks. Useful preliminaries

and important background information are summarized in Chapter 2 and all the proofs are

delegated to the Appendices.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Statistical signal processing and hypothesis testing are fundamental problems in modern

data science and engineering applications. The development of modern data acquisition

enables us to have an increasing amount of data that can be accessed with high speed and

high resolution. This has brought new opportunities for us to build more reliable machine

learning models to perform estimation, prediction, and decision-making. However, this

also poses several new challenges, as explained below.

(1) High-dimensionality. Sequential data in modern applications is usually high di-

mensional. For example, in sensor networks, the Long Beach 3D seismic array consists

of approximately 5300 seismic sensors that record data continuously for seismic activity

detection and analysis; and in multi-stage manufacturing processes [181], we usually have

a huge amount of dependent data sequences as well. We need more efficient online al-

gorithms to deal with a large amount of high-dimensional data and to detect the anomaly

pattern in an online manner. Usually, changes in high-dimensional time series exhibit low-

dimensional structures in the form of sparsity, low-rankness, and subset structures, which

can be exploited to enhance the capability to detect weak signals quickly and efficiently.

(2) Data uncertainties. In certain cases, we might have enough training data from one

category but very limited data from another category, causing certain biases in our decision-

making. For example, in health care applications, we usually have enough data for normal

people or known diseases/medicine, but much fewer samples for new diseases/patients. We

need robust data-driven hypothesis testing/classification algorithms that can achieve the

optimal worst-case performance even when the true data-generating distribution deviates

from our estimate.

(3) Complex data distributions. Modern sequential data is more involved in nature. It

1



is much more challenging to come up with a simple parametric form to describe the data

distribution, as commonly done in the traditional setting. Therefore, the non-parametric

methods have been studied and extended a lot recently. Moreover, in modern applica-

tions, sequential data could have complex spatial and temporal dependencies, for instance,

induced by the network structure [165, 81, 15]. For example, in social networks, depen-

dencies are usually due to interaction and information diffusion [123]. We need a general

modeling framework for spatio-temporal event data and efficient algorithms with strong

theoretical guarantees.

This thesis mainly focuses on developing new theories and algorithms for three research

problems in the area of statistical inference, aiming to tackle the above challenges. The

first problem we study is sequential (quickest) change detection. We consider a subspace

change for high-dimensional data sequences, which is a fundamental problem since sub-

space structure is commonly used for modeling high-dimensional data. We also consider a

non-parametric setting that can be useful when the data distributions cannot be represented

by simple parametric families, and the weighted `2 divergence is proposed to detect the

change. The second problem we study is data-driven robust hypothesis testing when the

true date-generating distributions are all unknown and we only have access to a limited

number of training samples. The third problem is parameter recovery for spatio-temporal

models, with applications in modeling crime events and COVID-19 cases.

The structure of this thesis is organized as follows. Chapter 1 introduces the background

and motivation for each topic as explained below. Chapter 2 reviews some preliminary and

fundamental results in sequential change detection, distributionally robust optimization,

and variational inequalities. Those basics can help readers understand the problem set-up

and proof strategies in the Appendices.

In Chapter 3, we consider the online monitoring of multivariate streaming data for

changes that are characterized by an unknown subspace structure manifested in the covari-

ance matrix. In particular, we consider the covariance structure changes from an identity
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matrix to an unknown spiked covariance model. We assume the post-change distribution

is unknown, and propose two detection procedures: the Largest-Eigenvalue Shewhart chart

and the Subspace-CUSUM detection procedure. We present theoretical approximations to

the average run length and the expected detection delay for the Largest-Eigenvalue She-

whart chart, as well as the asymptotic optimality analysis for the Subspace-CUSUM pro-

cedure. The performance of the proposed methods is illustrated using simulation and real

data for human gesture detection and seismic event detection.

In Chapter 4, we present a new non-parametric statistic, called the weighed `2 diver-

gence, based on empirical distributions for sequential change detection. We start by con-

structing the weighed `2 divergence as a fundamental building block for two-sample tests

and change detection. The proposed statistic is proved to attain the optimal sample com-

plexity in the offline setting. We then study the sequential change detection using the

weighed `2 divergence and characterize the fundamental performance metrics, including

the average run length and the expected detection delay. We also present practical al-

gorithms to find the optimal projection to handle high-dimensional data and the optimal

weights, which is critical to quick detection since, in such settings, there are not many

post-change samples. Simulation results and real data examples are provided to validate

the good performance of the proposed method.

In Chapter 5, we consider a data-driven robust hypothesis test where the optimal test

will minimize the worst-case performance regarding distributions close to the empirical

distributions with respect to the Wasserstein distance. This leads to a new non-parametric

hypothesis testing framework based on distributionally robust optimization, which is more

robust when there are limited samples for one or both hypotheses. Such a scenario often

arises from applications such as health care, online change-point detection, and anomaly

detection. We study the computational and statistical properties of the proposed test by

presenting a tractable convex reformulation of the original infinite-dimensional variational

problem exploiting Wasserstein’s properties and characterizing the optimal radius for the
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uncertainty sets to control the generalization error. We also demonstrate the good perfor-

mance of our method on synthetic and real data.

In Chapter 6, we introduce a new general modeling approach for multivariate discrete

event data with categorical interacting marks, which we refer to as marked Bernoulli pro-

cesses. In the proposed model, the probability of an event of a specific category to take

place in a location may be influenced by past events at this and other locations. We do not

restrict interactions to be positive or decaying over time as it is commonly adopted, allow-

ing us to capture an arbitrary shape of influence from historical events, locations, and events

of different categories. In our modeling, prior knowledge is incorporated by allowing gen-

eral convex constraints on model parameters. We develop two parameter estimation pro-

cedures utilizing the constrained least square and maximum likelihood estimation, which

can be solved as convex problems based on variational inequalities. We discuss different

applications of our approach and illustrate the performance of proposed recovery routines

on synthetic examples and real-world data.

1.1 Sequential Subspace Change Detection

Detecting the change from high-dimensional streaming data is a fundamental problem in

various applications such as video surveillance [200], sensor networks [223], wearable

sensors [197], and seismic events detection [124]. In many scenarios, the change happens

to the covariance structure and can be represented as a low-rank subspace to capture the

similarity of signal waveforms observed at multiple sensors. In Chapter 3, we consider the

fundamental problem of detecting such a change in the covariance matrix that shifts from

an identity matrix to a spiked covariance model [97]. Different from the offline hypothesis

test considered in [22], we assume a sequential setting, where the goal is to detect such a

change as quickly as possible after it occurs.

A formal description of the problem is as follows. Assume a sequence of multivariate

observations x1, x2, . . . , xt, . . ., where xt ∈ Rk and k is the data dimension. At a cer-
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tain time τ , the distribution of the observation changes. In particular, we are interested in

structural changes that happen to the covariance matrix, which we describe below: (1) the

emerging subspace, meaning the change is a subspace emerging from a noisy background

and thus the covariance matrix changes from an identity matrix to a spiked covariance ma-

trix; (2) the switching subspace, meaning that the signals are along with different subspaces

before and after the change, resulting the covariance matrix to change from one spiked co-

variance matrix to another. The emerging subspace problem can arise, for instance, from

weak signal detection for seismic sensor arrays [197], and the switching subspace detec-

tion can arise from monitoring principal component analysis (PCA) for streaming data

[14]. The switching subspace problem, as we will show, can be reduced to the emerging

subspace problem; therefore, we focus on the emerging subspace problem.

The main contribution of this work is two-fold. From the methodology perspective,

we propose two sequential detection procedures: the Largest-Eigenvalue Shewhart chart

and the Subspace-CUSUM procedure. The Largest-Eigenvalue Shewhart chart computes

the largest eigenvalue of the sample covariance matrix over a sliding window and detects a

change when the statistic exceeds the threshold. The Subspace-CUSUM is derived based

on the likelihood ratio following the approach of classical CUSUM [146], but instead of

assuming the parameters are fully specified, we estimate the parameters and plug-in, which

is analogous to the generalized likelihood ratio (GLR) statistic [108]. From the theoretical

perspective, we provide a theoretical analysis of the proposed procedures, which facilitates

efficient calibration of the parameters. We consider two commonly used metrics: the aver-

age run length (ARL) and the expected detection delay (EDD). Theoretical approximations

can help us determine the threshold in the detection procedure efficiently. Moreover, build-

ing on Anderson’s results for the distribution of eigenvectors [7], we provide theoretical

guidelines on how to choose the parameters involved in the Subspace-CUSUM procedure.

Through proper parameter optimization, we prove that the resulted procedure is first-order

asymptotically optimal in the sense that the ratio of its expected detection delay with the
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corresponding of the optimum CUSUM (that has complete knowledge of the pre- and post-

change statistics) tends to one as the average run length tends to infinity.

The proposed detection procedures are computationally efficient since they only re-

quire computing the leading eigenvalue and eigenvector of the sample covariance matrix,

respectively. They are widely applicable to real data whenever there is a low-rank sub-

space change. For example, we have demonstrated its use in human activity detection from

wearable sensors data and seismic event detection.

Related Work

In change-point detection and industrial quality control, commonly used methods include

Shewhart chart, cumulative sum (CUSUM), generalized likelihood ratio (GLR) types of

detection procedures, etc.

Shewhart charts can be viewed as scan statistics over time. A change is detected when

the process is out of control, i.e., the detection statistic falls out of the control limit. A

commonly used Shewhart chart for multivariate observations is the Hotelling’s T 2 control

chart [88], which can detect both mean and covariance shifts and the control limits are

set through chi-square distributions. Modified T 2 charts based on principal component

analysis are considered in [92, 93]. The U2 multivariate control chart in [174] considers

detecting the mean shift in a known subspace. Those work does not consider the largest

eigenvalue as a detection statistic.

While Shewhart charts use the current subgroup samples to compute the detection

statistic, the CUSUM procedure utilizes all past samples and updates the detection statistic

recursively based on the log-likelihood ratio [146]. Multivariate CUSUM procedure for

detecting mean shift has been developed in [152] and a more recent work [28] presents

CUSUM based on projected data. In classic CUSUM, the pre-change and post-change dis-

tributions are specified completely. The proposed Subspace-CUSUM procedure here is not

a typical CUSUM since we estimate the unknown subspace after the change.
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Usually, the post-change distributions or their parameters are unknown and hard to pre-

specify. One solution is to set the post-change parameter to represent the “smallest possible

change” of interest. However, when there is a parameter mismatch, the CUSUM proce-

dure suffers from a performance loss. The generalized likelihood ratio (GLR) procedure

is introduced to handle unknown post-change distributions [108]. The Subspace-CUSUM

procedure here is different from the GLR procedure since we do not estimate the full log-

likelihood function; instead, we only estimate the subspace and introduce an additional

parameter to control the performance.

Covariance shift detection has been considered in the past literature using various de-

tection statistics. A multivariate CUSUM based on likelihood functions of multivariate

Gaussian is studied in [86] considering a specific setting where the covariance changes

from Σ to cΣ for a constant c. The determinant of the sample covariance matrix was used

in [3] and [4] to detect the covariance change. [36] considers a CUSUM chart for monitor-

ing covariance shift using the projection pursuit [90] and likelihood ratio, with simulation

studies on the performance of the proposed methods. Offline change detection of covari-

ance change is studied in [40] using the Schwarz information criterion [177], where the

change-point location must satisfy certain regularity condition to ensure the existence of

the maximum likelihood estimator. Recently, [212] uses the wide binary segmentation

through independent projection (WBSIP) to recover the change-points for the covariance

matrix in the offline setting. [11] uses the distance between empirical precision matrices

to detect abrupt changes in covariance for the offline case. Classical approaches usually

consider the general setting, and here we are interested in detecting the structural change,

i.e., spiked covariance matrix.

Recent work has also considered other types of structured covariance changes. The

detection of a shift in an off-diagonal sub-matrix of the covariance matrix is studied in [9]

using likelihood ratios. The detection of switching subspaces is studied in [95] based on a

CUSUM type procedure, but they only estimate the pre-change subspace using historical
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data and assume the post-change subspace is known, this is different from our work since

we also estimate the post-change subspace. [230] develops an offline modeling framework

for multivariate functional data based on sparse subspace clustering.

The Largest-Eigenvalue Shewhart Chart is related to [22], which studies the sparse prin-

cipal component test based on sparse eigenvalue statistics. The largest eigenvalue statistic

is shown to be asymptotically minimax optimal in [22] for detecting whether there exists a

sparse and low-rank component. A natural sequential version of this idea is to use a sliding

window and estimate the largest eigenvalue of the corresponding sample covariance matrix.

However, this sequential version does not enjoy any form of (asymptotic) optimality.

1.2 Sequential Change Detection by Weighted `2 Divergence

Many classic results and procedures for sequential change detection have been developed,

see [157, 17, 205]. However, many widely used methods assume a parametric form of

the distributions before and after the change. For high-dimensional data, such parametric

methods can be difficult to implement in certain scenarios since the post-change distribu-

tion is typically unknown and complicated. Recently, there have been many interests in

developing non-parametric change detection procedures for high-dimensional streaming

data.

We focus on a type of distribution-free methods based on empirical distributions. Com-

pared with parametric methods, such non-parametric tests are more flexible and can be

more applicable for various real-world situations. They tend to perform better when (i) the

data does not follow a parametric distribution or (ii) we do not have enough historical sam-

ples to estimate the underlying distribution reliably. However, one particular challenge is to

establish performance guarantees and improve the sample efficiency of the non-parametric

test statistic [166].

In Chapter 4, we develop a new data-driven distribution-free sequential change detec-

tion procedure based on the weighted `2 divergence between empirical distributions as the
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test statistic, which is related to the idea of testing closeness between two distributions

[19]. More specifically, we start by considering the problem of testing closeness between

two discrete distributions from samples observed. Suppose we are given two independent

sample sets x1
1, . . . , x

1
n1

iid∼ p and x2
1, . . . , x

2
n2

iid∼ q, where p and q are discrete distributions

defined on the finite observation space and they can be both unknown. Our goal is to design

a test which, given these two sample sets, claims whether p = q or there is a significant

difference between p and q. We use the `2 norm ‖p − q‖2 to characterize the difference

between two distributions. Note that the `1 norm is also commonly used in literature.

We propose a new type of test by considering a family of distance-based divergence

between empirical distributions of the two sets of observations. More specifically, the pro-

posed test rejects p = q whenever the distance-based divergence between empirical distri-

butions is larger than a data-dependent (random) threshold `. We introduce “weights” that

are design parameters, which can be particularly important in achieving good performance

in practice when we do not have a large number of samples. We show the optimality of

the proposed procedure in achieving the theoretical lower bound of the sample complexity

required for a low-risk test that meets the specifications. Moreover, we develop practical

optimization procedures for selecting the optimal weights and the low-dimensional projec-

tions for high-dimensional data. Finally, we extend the proposed test to sequential change

detection and characterize theoretical performances in both offline and online settings.

The proposed non-parametric test can fit into many potential applications, such as wet-

land and dryland classification [51], sensor network monitoring of cascades failures [41],

spatial crime rate change detection [233], personalize healthcare [45], etc.

Related Work

There is a long history of studying similar problems in both statistics and computer science.

In statistics, a two-sample test is a fundamental problem in which one aims to decide if

two sets of observations are drawn from the same distribution [119], with a wide range
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of applications [115]. Available approaches to the two-sample test can be largely divided

into two categories: parametric and non-parametric. The parametric approach assumes

that the data distribution belongs to certain parametric families, but the parameters can

be unknown [49]. The non-parametric setting does not impose any assumption on the

underlying distribution and therefore is widely applicable to real scenarios.

Classical approaches focus on the so-called “goodness-of-fit” test to decide whether

the observations follow a pre-specified distribution. Non-parametric goodness-of-fit tests

can be generalized for two-sample (and multi-sample) tests; in this case, the focus is the

asymptotic analysis when the sample size goes to infinity. For instance, the Kolmogorov-

Smirnov test [196], and the Anderson-Darling test [79] focus on univariate distributions

and compute divergences between the empirical cumulative distributions of two (and multi)

samples. The Wilcoxon-Mann-Whitney test [130, 102] is based on the data ranks and is

also limited to univariate distributions. Van der Waerden tests are based on asymptotic

approximation using quantiles of the standard Gaussian distribution [48, 176]. The nearest

neighbors test for multivariate data is based on the proportion of neighbors belonging to

the same sample [175].

There is much work aimed at extending univariate tests to the multivariate setting. A

distribution-free generalization of the Smirnov two-sample test is proposed in [24] by con-

ditioning on the empirical distribution functions. Wald-Wolfowitz run test and Smirnov

two-sample test are generalized to multivariate setting using minimal spanning trees in

[65]. A class of distribution-free multivariate tests based on nearest neighbors is studied in

[25, 87, 175], and a multivariate k-sample test based on Euclidean distance between sam-

ple elements is proposed in [201]. Some recent work includes methods based on maximum

mean discrepancy (MMD) [75] and the Wasserstein distance [167]. In particular, the `2

test enables us to draw a conclusion directly based on comparing empirical distributions.

Compared with existing methods such as the MMD test, which requires a huge gram ma-

trix when the sample size is large, the `2 test enables us to choose weights flexibly to better
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serve the testing task.

Another line of research in theoretical computer science deals with closeness testing. It

is first studied in [19, 20], in which the testing algorithm with sub-linear sample complexity

is presented; the lower bound to the sample complexity is given in [207]; a test that meets

the optimal sample complexity is proposed in [37]; see [171] and [32] for recent surveys.

The `2 case has also been studied in [19, 73, 37], and optimal algorithms are given. Many

variants of closeness testing have also been studied recently. In [1], sublinear algorithms

are provided for generalized closeness testing. In [23], the closeness testing is studied

under the case where sample sizes are unequal for two distributions. In [52], a nearly

optimal algorithm for closeness testing for discrete histograms is given. In [2], the problem

is studied from a differentially private setting.

Outstanding early contributions of sequential change detection mainly focus on para-

metric methods [146, 145, 183, 127] and is well-summarized in recent books [110, 205].

Recently, there have been growing interests in the non-parametric hypothesis test used in

change detection problems. In [29], the “QuantTree” framework is proposed to define

the bins in high-dimensional cases recursively, and the resulted histograms are used for

change detection. In [39], a sequential change detection procedure using nearest neighbors

is proposed. In the seminal work [116], a binning strategy is developed to discretize the

sample space to construct the detection statistic to approximate the well-known general-

ized likelihood ratio test. The binned detection statistic’s asymptotic properties are studied,

and it is shown to be asymptotically optimal when the pre-and post-change distributions

are discrete. Note that here we do not rely on likelihood ratios and assume the pre- and

post-change distributions are unknown, and all we have are some possible “training data.”

1.3 Robust Hypothesis Testing with Wasserstein Uncertainty Sets

Hypothesis testing is a fundamental problem in statistics and an essential building block

for machine learning problems such as classification and anomaly detection. The goal
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of hypothesis testing is to find a decision rule to discriminate between two hypotheses

given new data while achieving a small probability of errors. However, the exact optimal

test is difficult to obtain when the underlying distributions are unknown. This issue is

particularly challenging when the number of samples is limited, and we cannot obtain

accurate estimations of the distributions. The limited sample scenario (for one or both

hypotheses) commonly arises in many real-world applications such as medical imaging

diagnosis [8], online change-point detection [156], and online anomaly detection [38].

For hypothesis testing, the well-known Neyman-Pearson Lemma [142] establishes that

the likelihood ratio gives the optimal test for two simple hypotheses. This requires to

specify a priori two true distribution functions P1 and P2 for the two hypotheses, which,

however, are usually unknown in practice. When the assumed distributions deviate from

true distributions, the likelihood ratio test may experience a significant performance loss.

Typically there are “training” samples available for both hypotheses. A commonly used

approach is the generalized likelihood ratio test (GLRT) [215], which assumes parametric

forms for the distributions and estimates parameters using data and plug into the likelihood

ratio statistic. Another popular method is the density ratio estimation [199]. However, in

many scenarios, the training samples for one or both hypotheses can be small. For instance,

we tend to have a small sample size for patients in healthcare applications. In limited-

sample scenarios, it can be challenging to estimate parameters for GLRT (especially in the

high dimensional case) or to estimate density ratios accurately. Without reliable estimation

of the underlying distributions, various forms of robust hypothesis testing [89, 91, 121, 77]

have been developed by considering different “uncertainty sets”. Huber’s seminar work

[89] sets the uncertainty set as the ε-contamination sets that contain distributions close to

a nominal distribution defined by total-variation distance. In [91], the optimal tests are

characterized under majorization conditions, which, however, are intractable in general.

Thus, there remains a computational challenge to find the optimal test, especially when

the data is multi-dimensional. This has become a significant obstacle in applying robust
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hypothesis tests in practice.

We consider a setting where the sample size is small. When there are limited sam-

ples, the empirical distribution may have “holes” in the sample space: places where we

do not have samples yet, but there is a non-negligible probability for the data to occur, as

illustrated in Figure 1.1. Thus, we may not want to restrict the true distribution to be on

the same support of the empirical distribution. However, many commonly used distance

divergences for probability distributions, such as Kullback-Leibler divergence, are defined

for distributions with common support. Thus, in our setting, it can be restrictive if we

were to construct uncertainty sets using the Kullback-Leibler divergence (e.g., [121] and

[77]). Similarly, total-variational norm-induced uncertainty sets will have this issue since

they encourage distributions with the same support as the empirical distribution. This mo-

tivates us to consider an uncertainty set formed by the Wasserstein distance. It measures

the distance between distributions using optimal transport metric, which is more suitable

for distributions without common support.
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Figure 1.1: Left: Empirical distributions of two sets of training samples (5 samples each), gener-
ated from N (0, 1) and N (2, 1.2), respectively. Middle: Least Favorable Distributions (LFD) solve
from Lemma 5.2 with radius equal to 0.1. Right: Kernel smoothed versions of LFD (with kernel
bandwidth h = 0.3).

In Chapter 5, we present a new non-parametric minimax hypothesis test assuming the

distributions under each hypothesis belong to two disjoint “uncertainty sets” constructed

using the Wasserstein distance. Specifically, the uncertainty sets contain all distributions

close to the empirical distributions formed by the training samples in Wasserstein distance.
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This approach is more robust in small sample sizes when we cannot estimate the true dis-

tributions accurately.

A notable feature of our approach is the computational tractability and explicit char-

acterization of the optimal test. The optimal test is based on a pair of least favorable

distributions (LFD) from the uncertainty sets, which is a reminiscence of Huber’s robust

test. However, here the optimal test form is different, and our LFDs are computationally

tractable in general. An outstanding challenge in finding the minimax test is that we face

an infinite-dimensional optimization problem (finding the saddle point for optimal test and

LFDs), which is hard to solve in general. To tackle the challenge, we make a connection

to recent advances in distributionally robust optimization. In particular, we decouple the

original minimax problem into two sub-problems using strong duality, which enables us

first to find the optimal test for a given pair of distribution P1 and P2, and then find the

LFDs P ∗1 and P ∗2 by solving a finite-dimensional convex optimization problem. We further

characterize the general optimal test and extend the test to the “batch” setting containing

multiple test samples. We also characterize the optimal radii of the uncertainty sets, which

is an important question that affects the optimal test’s generalization property. Finally, we

show our method’s good performance using simulated and real data, and demonstrate its

applicability for sequential human activity detection.

Related Work

Robust hypothesis testing has been developed under the minimax framework by consid-

ering various forms of “uncertainty sets”. Seminal work by Huber [89] considers the

ε-contamination sets that contain distributions close to a nominal distribution defined by

total-variation distance. Huber and Strassen later generalized the results in [91] based on

the observation that the ε-contamination sets can be described using the so-called alternat-

ing capacities. It is claimed that under this capacity assumption, there is a representative

pair (namely the LFDs) such that the Neyman-Pearson test between this pair is minimax
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optimal. Although Huber provides an explicit characterization of the robust hypothesis test

in the form of a truncated likelihood ratio, the “capacities” condition is required to obtain

the optimality result; the LFDs are difficult to obtain in general. Our result is consistent

with [89] in that our robust test also depends on the least favorable distributions, but we

find the LFDs from data by solving a tractable optimization problem.

More recently, [121] and [77] consider uncertainty sets induced by Kullback-Leibler

(KL) divergence in the one-dimensional setting without specifying parametric forms; the

optimal test is obtained using the strong duality of problem induced by the KL divergence.

Aiming to develop a computationally efficient procedure, [72, 33] consider a convex opti-

mization framework for hypothesis testing, assuming parametric forms for the distributions

and the parameters under the null and the alternative hypothese belong to convex sets. We

consider a new way to construct uncertainty sets using Wasserstein metrics and empiri-

cal distributions to achieve distributional robustness. Using Wasserstein metric to achieve

robustness is a popular technique and has been applied to many areas, including computer

vision [172, 120, 161], generative adversarial networks [10, 78], and two-sample test [167].

Our work is also closely related to the distributional robust optimization (DRO) frame-

work [58, 68, 27, 194, 178]. However, we cannot obtain our results using a simple ex-

tension of the existing DRO framework. In particular, we need new techniques to obtain

tractable reformulation in our problem. Existing DRO problems typically involve only one

class of empirical samples. In contrast, our problem involves two classes and we can-

not rely on existing strong duality results in DRO [27, 58, 68]. Besides, we provide new

insights regarding our solution’s structural properties that are different from those that oc-

curred in other DRO problems. Another line of work in DRO aims to characterize the size

of uncertainty sets. The robust Wasserstein profile inference (RWPI) is one tool to provide

the asymptotic distribution of the sufficient radius. It is first proposed and applied in the

finite-dimensional case in [26] and is generalized to the infinite-dimensional case in [185].

The non-asymptotic concentration bound for the uncertainty set size is given in [67].

15



1.4 Convex Parameter Recovery for Interacting Marked Processes

Discrete events are a type of sequential data, where each data point is a tuple consisting

of event time, location, and possibly category. Such event data is ubiquitous in modern

applications, such as police data [132], electronic health records [96], and social network

data [198, 105]. In modeling discrete events, we are particularly interested in estimating

the interactions of events, such as triggering or inhibiting effects of past events on future

events. For example, in crime event modeling, the triggering effect has been empirically

verified; when a crime event happens, it makes the future events more likely to happen in

the neighborhood. Similar empirical observations have been made for other applications

such as in biological neural networks, social networks [232, 123], financial networks [56],

and spatio-temporal epidemiological processes [103].

A popular model for capturing interactions between discrete events is the so-called

Hawkes processes [84, 83, 85, 168]. The Hawkes process is a type of mutually-exciting

non-homogeneous point process with intensity function consisting of a deterministic part

and a stochastic part depending on the past event. The stochastic part of the intensity

function can capture the interactions of past events and the current event, and it may be

parameterized in different ways. In a certain sense, Hawkes processes may be viewed as a

point process analog to classical autoregression in time series analysis. Hawkes process has

received a lot of attention since it is quite general and can conveniently model interactions.

For instance, in a network Hawkes process, interactions between nodes are modeled using

a directed weighted graph in which direction and magnitude of edges indicate direction and

strength of influence of one node on another. Along this line, there are various generaliza-

tions that allow for other types of point process modeling, where different “link” functions

are considered, such as self-correcting process, reactive process, and specialized process

(see [168] for an overview).

Estimating the interactions of the past events and the current event is a fundamental

16



problem for Bernoulli processes since it reveals the underlying temporal and spatial struc-

tures and allows for predicting future events. There has been much prior work in estimating

model parameters, assuming that interactions are shift-invariant and captured through ker-

nel functions. Furthermore, various simplifying assumptions are typically made for the

kernel functions, e.g., that the spatio-temporal interactions are decoupled (e.g., [232]), im-

plying that the interaction kernel function is a product of the interaction over time and

interaction over locations and can be estimated separately. It is often assumed that the tem-

poral kernel function decays exponentially over time with an unknown decay rate [123], or

it is completely specified [80]; thus, the problem focus is on estimating spatial interaction

between locations. It is also commonly assumed that the interactions are positive, i.e., the

interaction triggers rather than inhibit future events [229]. Such simplification, however,

may impede capturing complex interaction effects between events. For instance, negative

interaction or inhibition is well known to play a major role in neuronal connectivity [55].

The study of more complex modeling of spatial aspects, especially jointly with discrete

marks, is still in infancy.

In Chapter 6, we present a general computational framework for estimating marked

spatio-temporal processes with categorical marks. Motivated by Hawkes processes, we

consider a model of a discrete-time process on a finite spatio-temporal grid, which we refer

to as Bernoulli processes. A brief description of the proposed modeling is as follows. At

each time t a site k of the grid of the M -state Bernoulli process can be in one of M + 1

states – a ground state, in which “nothing happens,” or an event state if an event of one

of M given types at every (discrete) time instant t takes place at the site. We assume that

the probability distribution of the events at each location at time t is a (linear or nonlinear)

function on the process history – past events at different sites at times from t− d to t− 1,

d being the memory depth parameter of the process. For instance, each site of a 1-state

linear (vanilla) Bernoulli process can be in one of two states – 0 (no event) or 1 (event takes

place).
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From the point of view of time series, this process can be seen as a vector autoregressive

process with observations at sites of the grid at time t being Bernoulli random variables

with conditional expectation given the process history being a linear combination, with

coefficients which are unknown process parameters, of states of the process sites at times

t − d to t − 1. This model can be seen as a natural simplification of the continuous-time

Hawkes process where spatio-temporal cells are so small that one can ignore the chances

for two or more events occurring in a cell.

A notable feature of this model is that prior information on the structure of interactions

is represented by general convex constraints on the parameters, allowing for very general

types of structures of interactions. Here convexity is assumed for the sake of computa-

tional tractability. For instance, we can relax the nonnegativity restrictions on interaction

parameters and/or avoid assumptions of monotone or exponential time decay of interac-

tions commonly used in the literature; when the situation has a “network component” al-

lowing to assume that interacting sites are pairs neighboring nodes in a known graph, we

can incorporate this information, for instance, by restricting the interaction coefficients for

non-neighboring pairs of sites to be zero.

Related Work

The considered model is related to information diffusion processes over continuous time,

for example, nonlinear Hawkes model [42], self-exciting processes over networks (see

[168] for an overview), information diffusion networks [74], and multivariate stationary

Hawkes processes [55]. Compared to these well-known models, time and space discretiza-

tion leading to the spatio-temporal Bernoulli process is a considerable simplification that,

nonetheless, leads to practical estimation routines that can be used in “real world” scenar-

ios.

Various approaches to parametric and nonparametric estimation of spatio-temporal pro-

cesses have been proposed in the literature. A line of work [63, 229, 134] consider non-
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parametric Hawkes process estimation based on the Expectation-Maximization (EM) algo-

rithms and the Kernel method. Least-square estimates for link functions of continuous-time

multivariate stationary Hawkes process are studied in [55]. There is also much work [133,

57, 153] considering the estimation in the Bayesian framework. In particular, [159] con-

siders estimation in a Bernoulli model similar to the one we promote in this work using the

Bayesian approach and impose prior distributions on parameters. Several authors consider

the problem of sparse model estimation for point processes [82].

Our approach to processing the estimation problem is based on convex optimization,

which leads to computationally efficient procedures. We consider two classes of recovery

procedures based on the Least Squares (LS) (which, in hindsight, is resembling but not

identical to what is done in [55]) and Maximum Likelihood (ML) estimation. We cast

estimation into convex optimization using Variational Inequality (VI) formulation of the

corresponding statistical problems, which allows us to provide interpretable performance

bounds and confidence intervals for the estimates and leads to computationally efficient

numerical algorithms when processing large data sets.

The main contribution is in proposing models for the marked interacting processes

which allow for simple “computation-friendly” statistical analysis utilizing variational in-

equalities with monotone operators. To the best of our knowledge, except for [98], we do

not know other examples of using this approach in the statistical literature. The importance

of this approach becomes clear in the case of nonlinear link function. Assuming the link

to be a monotone vector field, our variational inequality-based approach reduces the esti-

mation problem to an efficiently solvable problem with convex structure. In contrast, the

ML and the LS estimation in the “nonlinear monotone link” case of our model result, in

general, lead to solving nonconvex optimization problems and thus are not computationally

friendly. It is also worth mentioning that concentration inequalities for martingales are not

standard: the corresponding bounds are expressed using observable characteristics, which

leads to confidence sets for the estimates expressed in terms of observations.
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CHAPTER 2

PRELIMINARIES

This chapter presents some preliminaries and useful background information in the filed of

sequential change detection, distributionally robust optimization, and variational inequali-

ties with monotone operators. The standard problem formulations are introduced and clas-

sical results are reviewed.

2.1 Sequential Change Detection

The efficient detection of abrupt changes in the statistical behavior of streaming data, re-

ferred to as sequential (quickest) change detection, is an important and fundamental re-

search topic in statistics, signal processing, and information theory. Such problems have

been studied under the theoretical framework [157, 205, 208], and has a wide range of

applications, such as power networks [43], internet traffic [113], cyber-physical systems

[143], sensor networks [162], social networks [163, 148], epidemic detection [16], scien-

tific imaging [160], genomic signal processing [180], seismology [6], video surveillance

[118], and wireless communications [106]. This section presents the basics of sequential

change detection and some related generalizations and extensions. Some detailed reviews

on this topic can be found in [222, 208, 111], etc.

2.1.1 Problem Definition

In the sequential change detection problem, the aim is to detect a possible change in the

data generating distribution of a sequence of observations {Xn, n = 1, 2, . . .}. The initial

distribution of the observations is the one corresponding to normal system operation. At

some unknown time ν (referred to as the change-point), due to some event, the distribution

of the random observations changes. The goal is to detect the change as quickly as possi-
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ble, subject to false-alarm constraints. We start by assuming that the observations Xn are

independent and identically distributed (i.i.d.) with probability density function (pdf) f0

before the change-point (n ≤ ν) and pdf f1 after the change-point (n > ν), respectively.

The generalization to non-i.i.d. settings is summarized in some recent books [205, 203].

A central problem when designing sequential change detection procedures is about the

tradeoff between false-alarm and detection delay. The goal in sequential change detection

theory is to find detection procedures that have guaranteed optimality properties in terms

of this tradeoff.

2.1.2 Mathematical Preliminaries

Sequential change detection is closely related to the problem of statistical hypothesis test-

ing, in which observations, whose distribution depends on the hypothesis, are used to de-

cide which of the hypotheses is true. For the special case of binary hypothesis testing,

we have two hypotheses, the null hypothesis and the alternative hypothesis. The classic

Neyman-Pearson Lemma [142] establishes the form of the optimal test for this problem. In

particular, consider the case of a single observation X , and suppose the pdf of X under the

null and alternative hypotheses are f0 and f1, respectively. Then, the test that minimizes the

false negative error (Type-II error), under the constraint of the false-positive error (Type-

I error), is to compare the likelihood ratio f1(X)/f0(X) to a threshold to decide which

hypothesis is true. The likelihood ratio test is also optimal under other criteria such as

Bayesian and minimax [136]. As we will see, the likelihood ratio also plays a key role in

the development of sequential change detection algorithms.

The goal of sequential change detection is to design a stopping time on the observation

sequence at which it is declared that a change has occurred. A stopping time is formally

defined as follows:

Definition 2.1 (Stopping time). A stopping time with respect to a random sequence {Xn, n =

1, 2, . . .} is a random variable τ such that for each n, the event {τ = n} ∈ σ(X1, . . . , Xn),
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where σ(X1, . . . , Xn) denotes the σ-algebra generated by (X1, . . . , Xn). Equivalently, the

event {τ = n} is a function of only X1, . . . , Xn.

The main results on stopping times that are most useful for sequential change detection

problems include Doob’s Optional Stopping Theorem [46] and Wald’s Identity [187].

A quantity that plays an important role in the performance of sequential change detec-

tion algorithms is the Kullback-Leibler (KL) divergence between two distributions.

Definition 2.2. (KL Divergence). The KL divergence between two pdfs f1 and f0 is defined

as D(f1‖f0) =
∫
f1(x) log(f1(x)/f0(x)) dx.

Note that D(f1‖f0) ≥ 0 with equality if and only if f1 = f0 almost surely. It is usually

assumed that 0 < D(f1‖f0) <∞.

Define the log-likelihood ratio for an observation X:

`(X) := log
f1(X)

f0(X)
. (2.1)

A fundamental property of the log-likelihood ratio, which is useful for constructing se-

quential change detection algorithms, is that before the change n ≤ ν, the expected value

of `(Xn) is equal to −D(f0||f1) < 0; and after the change, n > ν, the expected value of

`(Xn) is equal to D(f1||f0) > 0. As will be seen later, the KL divergence between the

pre- and post-change distributions is an important quantity that characterizes the tradeoff

between the average detection delay and the false-alarm rate.

2.1.3 Common Sequential Change Detection Procedures

We now present two commonly used sequential change detection procedures, the CUSUM

and GLR procedure, which will be used frequently in subsequent chapters.

The CUSUM procedure was first introduced by Page [144]. Although the CUSUM

procedure was developed heuristically, it was later shown in [127, 137, 170, 107] that it has

very strong optimality properties, which we will discuss further in Section 2.1.4.
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The CUSUM procedure utilizes the properties of the cumulative log-likelihood ratio

sequence:

Sn =
n∑

k=1

`(Xk).

Before the change occurs, the statistic has a negative drift because the expected value of

`(Xk) before the change is negative. After the change, it has a positive drift because the

expected value of `(Xk) after the change is positive. Thus, Sn roughly attains its minimum

at the change-point ν. The CUSUM procedure is then constructed to detect this change in

the drift of Sn. Specifically, the exceedance of Sn with respect to its past minimum is taken

and compared with a threshold b > 0:

τC = inf

{
n ≥ 1 : Wn =

(
Sn − min

0≤k≤n
Sk

)
≥ b

}
. (2.2)

The CUSUM statistic can also be rewritten as:

Wn = Sn − min
0≤k≤n

Sk = max
0≤k≤n

n∑

i=k+1

`(Xi) = max
1≤k≤n+1

n∑

i=k

`(Xi). (2.3)

Note that the maximization over all possible ν = k corresponds to plugging in a maximum

likelihood estimate of the unknown change-point location in the log-likelihood ratio of the

observations to form the CUSUM statistic. It can be shown that Wn can be computed

recursively:

Wn = (Wn−1 + `(Xn))+, W0 = 0,

where (x)+ = max{x, 0}. This recursion enables the efficient online implementation of

the CUSUM procedure in practice. In many cases, a slightly different recursion is also

frequently used:

Wn = (Wn−1)+ + `(Xn), W0 = 0. (2.4)

The CUSUM procedure requires full knowledge of pre- and post-change distributions
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to obtain the log-likelihood ratio `(X) used in computing the test statistics. In practice, the

post-change distribution f1 may be unknown. In the parametric setting, the post-change

distribution can be parametrized using fθ, where θ ∈ Θ is the unknown parameter. A

commonly used method for the situation here, which corresponds to the problem of com-

posite hypothesis testing, is the generalized likelihood ratio (GLR) approach. In the GLR

approach, a supremum over θ ∈ Θ is taken in constructing the test statistic. In particular,

the test statistic for the GLR-CUSUM algorithm is given by:

WG
n = max

1≤k≤n+1
sup
θ∈Θ

n∑

i=k

`θ(Xi), (2.5)

where `θ(X) = log(fθ(X)/f0(X)). Performance analyses of the GLR-CUSUM algorithm

for one-parameter exponential families can be found in [127, 129]. A major drawback of

the GLR approach is that the corresponding GLR statistic (e.g., the one given in (2.5)) can-

not be computed recursively in time, except in some special cases (e.g., when the parameter

set Θ has finite cardinality). To reduce the computational cost, a window-limited GLR ap-

proach was developed in [216] and generalized in [107, 112]. Window-limited versions

of the GLR algorithm can be shown to be asymptotically optimal in certain cases if the

window size is carefully chosen.

2.1.4 Optimality Results

We now briefly summarize optimality results in the existing literature for the above pro-

cedures. We only review the minimax (non-Bayesian) setting, where we do not assume a

prior distribution for the change-point ν. The Bayesian setting is not discussed here, more

details can be found in [182, 205, 222].

A fundamental problem in sequential change detection is to optimize the tradeoff be-

tween the false-alarm rate and the average detection delay. Controlling the false-alarm rate

is commonly achieved by setting an appropriate threshold on a test statistic such as the
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one in (2.2). But the threshold also affects the average detection delay. A larger threshold

incurs fewer false alarms and leads to a larger detection delay, and vice versa.

In minimax settings, the change-point is assumed to be a deterministic unknown vari-

able. In this case, the average run length (ARL) to false alarm is generally used as a perfor-

mance measure for false alarms:

ARL(τ) = E∞[τ ], (2.6)

where P∞ is the probability measure on the sequence of observations when the change

never occurs, and E∞ is the corresponding expectation. Denote the set of stopping times

that satisfy a constraint γ on the ARL by Dγ := {τ : ARL(τ) ≥ γ}.

Finding a uniformly powerful test that minimizes the delay over all possible values

of the change-point ν, subject to a ARL constraint, is generally intractable. Therefore,

it is more tractable to pose the problem in the so-called minimax setting. There are two

essential measures of the detection delay in the minimax setting, due to Lorden [127] and

Pollak [154], respectively.

Lorden considers the supremum of the average detection delay conditioned on the worst

possible realizations. In particular, Lorden defines:

WADD(τ) = sup
n≥0

ess sup En
[
(τ − n)+|X1, . . . , Xn

]
, (Lorden) (2.7)

where Pn denotes the probability measure on the observations when the change-point γ =

n, and En denotes the corresponding expectation. We then have the following Lorden’s

formulation:

minimize WADD(τ) subject to ARL(τ) ≥ γ. (2.8)

For the i.i.d. setting, Lorden showed that Page’s CUSUM procedure given in (2.2) is

asymptotically optimal as γ → ∞. It was later shown in [137] and [170] that the slight
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modification of the CUSUM procedure in (2.4) is exactly optimal for (2.8) for all γ > 0.

Although the CUSUM procedure is exactly optimal under Lorden’s formulation, WADD

is a pessimistic measure of detection delay since it considers the worst-case pre-change

samples. An alternative measure of detection delay was suggested by Pollak [154]:

CADD(τ) = sup
n≥0

En[τ − n|τ ≥ n], (Pollak) (2.9)

for all stopping times τ for which the expectation is well-defined. It is easy to see that

for any stopping time τ , WADD(τ) ≥ CADD(τ), and therefore, Pollak’s formulation is

less pessimistic. On the other hand, Pollak’s measure applies in the case where the change

imposing mechanism uses data that are independent from the observations, while Lorden’s

measure applies when the change imposing mechanism can use data dependent with the

observations. In terms of this perspective, the Lorden’s performance measure can be viewed

as less pessimistic since the corresponding limitation of its applicability is less obvious. We

will use the Lorden’s measure in remaining chapters.

In general, it may be challenging to exactly solve the problem in (2.8) and the corre-

sponding problem defined using CADD in (2.9). For this reason, asymptotically optimal

solutions for the above problems are often investigated in the literature. Specifically, a

stopping time τ is said to be first-order asymptotically optimal if it satisfies:

CADD(τ)

infτ∈Dγ CADD(τ)
→ 1, as γ →∞;

the notions can also be defined similarly for the problem in (2.8) defined using WADD.

Pollak’s formulation has been studied for the i.i.d. data in [154] and [204]. The first-

order asymptotic optimality for Lorden’s formulation can also be extended to Pollak’s for-

mulation. To show this, Lorden in [127] established a universal lower bound for WADD

and Lai in [107] proved the lower bound to CADD:
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Theorem 2.1 (Lower bound for CADD [107]). As γ → 0,

inf
τ∈Dγ

CADD(τ) ≥ log γ

D(f1||f0)
(1 + o(1)).

It can be shown that the CUSUM procedure with a threshold b = | log γ| is first-order

asymptotically optimum for both Lorden’s and Pollak’s formulations. In particular, as

γ →∞,

CADD(τC) = WADD(τC) ∼ log γ

D(f1||f0)
,

where ∼ means the ratio of the quantities on its two sides approaches 1 as γ →∞.

Moreover, an alternative detection method called the SRP algorithm (Pollak’s version

of the Shiryaev-Roberts algorithm that starts from a quasi-stationary distribution of the

Shiryaev-Roberts statistic) was proved to be third-order asymptotically optimal in [154],

namely the correspoonding stopping time τ satisfies CADD(τ)− infτ∈Dγ CADD(τ) = o(1)

as γ →∞. It was later shown by [155] that it is not strictly optimum.

Remark 2.1 (Evaluating the performance metrics). In the definition of the WADD metric

(2.7) and the CADD metric (2.9), it appears that we need to consider the supremum over

all possible past observations and all possible change-points. However, we can actually

show that for the CUSUM procedure, and some other algorithms, that the supremum over

all possible change-points in WADD and CADD is achieved at time n = 0, i.e., the change

happens before we take observations:

CADD(τC) = WADD(τC) = E0 [τC] .

Therefore, the CADD and the WADD can be conveniently evaluated by setting γ = 0,

without “taking the supremum”. In such cases, we can also use the term expected detection

delay (EDD) instead to denote E0 [τC], and it is equivalent to the worst-case detection delay

WADD in Lorden’s definition and the CADD in Pollak’s definition.
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2.2 Distributionally Robust Optimization

For many modern data-driven decision-making problems, we typically solve an optimiza-

tion problem to find the optimal decision variable. The performance of the decision is

usually affected by uncertainties for the underlying data-generating distribution. Classi-

cal optimization problems for a fixed distribution might perform poorly in practice when

the fixed distribution deviates significantly from the true distribution. In order to learn a

decision from limited training samples that will generalize well to unseen test samples,

the distributionally robust optimization (DRO) framework is commonly used and has gain

much attention recently [50, 71, 164, 53, 214]. We focus on the distributionally robust

optimization problem based on Wasserstein distances in the following [68, 26, 58].

2.2.1 Problem Definition

We start by considering the single-state stochastic program where the goal is to find a

decision variable x ∈ Rd which minimizes the expected risk Eξ∼P [Ψ(x, ξ)], where the

expectation is taken with respect to a random variable ξ taking values in the set Ω ⊂ Rm

following a distribution P and Ψ is the loss function. Let (Ω, c) be a metric space Ω

with metric c. The space of Borel probability measures on Ω is denoted by P(Ω) and

P ∈P(Ω). When the true underlying distribution P of the random variable ξ is unknown,

a possible solution is to use the distributionally robust optimization as an alternative.

In distributionally robust optimization problems, we typically construct an ambiguity

(uncertainty) set containing all possible distributions of the random variable ξ, denoted as

P ⊂ P(Ω). The goal is to find a decision variable x which minimizes the worst-case

expected risk defined as the supreme expected risk over the ambiguity set P:

sup
P∈P

Eξ∼P [Ψ(x, ξ)].
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Then the problem of solving the optimal robust decision variable x can be written as:

inf
x

sup
P∈P

Eξ∼P [Ψ(x, ξ)]. (2.10)

There are multiple ways to construct the ambiguity set P . We focus on the case when

we have a nominal distribution P0 and the ambiguity set P is the collection of probabilities

that are close to the nominal distribution P0 with respect to certain divergence measures:

P = {P ∈P(Ω) : D(P, P0) ≤ r},

where r ≥ 0 is the so-called radius parameter that controls the size of the ambiguity set.

If r is set to zero, then the ambiguity set is a singleton that only contains the nominal

distribution P0. Some commonly used divergence measures D(·, ·) include the Kullback-

Leibler divergence [77, 121], Total-Variation distance [89, 91], Wasserstein metric [68, 58,

69], etc. In the following subsection, we focus on the data-driven distributionally robust

optimization using Wasserstein metric and review some useful results.

2.2.2 Data-driven Formulation and Strong Duality

In particular, in the data-driven case, we may not know the true date-generating distribution

P for the random variable ξ exactly and the only information we have is historical samples

of the random variable ξ. Suppose we have a set of training samples {ξ1, . . . , ξn} that are

i.i.d. sampled from the unknown distribution P , then we can estimate the distribution P

using the empirical distribution defined as follows:

P̂n =
1

n

n∑

i=1

δξi ,

where δξ denotes the Dirac point mass concentrated on ξ for each ξ ∈ Rm, i.e., δξ(A) =

1{ξ∈A} for any Borel measurable set and 1{·} is the indicator function.
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In the following, we first define the Wasserstein metric and then construct the ambiguity

set P based on the Wasserstein metric.

Definition 2.3. (Wasserstein metric). The Wasserstein metric of order p for two given

distributions P,Q ∈P(Ω) is defined as:

Wp(P,Q) :=

(
min

γ∈Γ(P,Q)

{
E(ω,ω′)∼γ [cp(ω, ω′)]

})1/p

,

where c(·, ·) : Ω × Ω → R+ is a metric on Ω, and Γ(P,Q) is the collection of all Borel

probability measures on Ω× Ω with marginal distributions P and Q.

When both distributions P and Q are discrete measures, the Wasserstein metric is also

known as finding the optimal transport plan that maps P to Q [210]. The well-known

Kantorovich duality establishes the equivalent dual form for the Wasserstein metric that is

commonly used in practice.

Theorem 2.2 (Kantorovich Duality, [210]). Let (X , µ) and (Y , ν) be two Polish probability

spaces and let c : X ×Y → R∪ {+∞} be a lower semicontinuous cost function. Then we

have the duality

min
γ∈Π(µ,ν)

∫

X×Y
c(x, y)dγ(x, y) = sup

(φ,ψ)∈L1(µ)×L1(ν)
φ(x)+ψ(y)≤c(x,y), ∀x,y

(∫

X
φ(x)dµ+

∫

Y
ψ(y)dν

)
,

where γ ∈ Π(µ, ν) denotes the joint distribution on X × Y , with marginal distributions µ

and ν, respectively.

Note that when µ is a discrete distribution on {x1, . . . , xm}, then the function φ ∈ L1(µ)

can be viewed as a vector ξ := [φ(x1); . . . ;φ(xm)] ∈ Rm. And the above dual formulation

will be reduced to:

min
γ∈Π(µ,ν)

∫

X×Y
c(x, y)dγ(x, y) = sup

ξ∈Rm,ψ∈L1(ν)
ξi+ψ(y)≤c(xi,y)
∀1≤i≤m,∀y

(
m∑

i=1

ξiµ(xi) +

∫

Y
ψ(y)dν

)
,
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this is what we will use frequently in Chapter 5.

Based on the definition of the empirical distribution and the Wasserstein metric, the

ambiguity set can be constructed as all distributions whose Wasserstein distance of order p

with the nominal distribution P̂n is at most a given radius r:

Pp(P̂n, r) = {P ∈P(Ω) : Wp(P, P̂n) ≤ r}. (2.11)

We have the following strong duality result for solving the inner supreme in the Wasser-

stein distributionally robust optimization problem (2.10) when the ambiguity set is con-

structed from Wasserstein metric as in (2.11).

Theorem 2.3 (Theorem 1, [68]). Suppose Ω is the sample space for the random variable

ξ. Consider any ν ∈P(Ω) and Ψ ∈ L1(ν). Let p ∈ [1,∞) and θ > 0. Then we have:

sup
µ∈Pp(ν,θ)

∫

Ω

Ψ(ξ)µ(dξ) = inf
λ≥0

{
λθp −

∫
inf
ξ∈Ω

[λcp(ζ, ξ)−Ψ(ξ)]ν(dζ)

}
,

where Pp(ν, θ) is the ambiguity set induced by Wasserstein metric:

Pp(ν, θ) = {µ ∈ P(Ω) : Wp(µ, ν) ≤ θ}.

Due to the strong duality results, the optimal decisions can often be computed by solv-

ing tractable convex optimization problems which can be computed efficently through off-

the-shelf optimization software.

2.3 Variational Inequalities with Monotone Operators

Variational inequality (VI) with monotone operators is the principal computational tool

for optimization problems, and is a general method for solving convex optimization prob-

lems. The structural assumptions to be imposed on the variational inequality formulations

are weaker than those resulting in convex maximum likelihood based problems and their
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sample average approximations. For example, it can be shown that using a least-square es-

timation approach for parameter recovery in generalized linear models (GLM) sometimes

will lead to a non-convex optimization problem. However, using VI approach for param-

eter estimation will lead to a convex program. The solution to the VI can be found in a

computationally efficient way (more details can be found in [98]).

We start with the related preliminaries. A vector field F : X → RN defined on a

nonempty convex subset X of RN is called monotone, if

〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ X .

When N = 1, monotonicity means that the scalar function F is nondecreasing on X .

A basic example of a multivariate monotone vector field is the subgradient of a convex

function f : X → R, i.e., F (x) = ∂f(x) be defined as the set of all subgradients of f at

x. Since f is convex, for any x, x′ ∈ X and f ′(x) ∈ ∂f(x), f ′(x′) ∈ ∂f(x′), we have that

(f ′(x))>(x−x′) ≥ f(x)− f(x′) ≥ (f ′(x′))>(x−x′), thus (f ′(x)− f ′(x′))>(x−x′) ≥ 0.

We say that α ≥ 0 is a modulus of strong monotonicity of vector field F , when

〈F (x)− F (y), x− y〉 ≥ α‖x− y‖2
2, ∀x, y ∈ X ;

when α > 0, F is called strongly monotone.

A pair (X , F ) comprised of nonempty convex domain X and monotone vector field F

on this domain gives rise to variational inequality VI(F,X ). A weak solution to this VI is

a point x̄ ∈ X such that

〈F (x), x− x̄〉 ≥ 0, ∀x ∈ X .

A strong solution to this VI is a point x̄ ∈ X such that

〈F (x̄), x− x̄〉 ≥ 0, ∀x ∈ X .
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Whenever F is strongly monotone, weak solution, if exists, is unique. Every strong so-

lution is a weak one; when F is continuous on X , the inverse is also true. When X is a

convex compact set, VI(F,X ) always has weak solutions. When F is the gradient field of

a continuously differentiable convex function f on X , the weak and the strong solutions to

VI(F,X ) are exactly the minimizers of f on X .

Finally, we should stress that variational inequalities with monotone operators are the

most general “problems with convex structure;” under mild computability assumptions,

that can be efficiently solved to a high accuracy, see [98] for the stochastic algorithms and

convergence analysis.
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CHAPTER 3

SEQUENTIAL SUBSPACE CHANGE DETECTION

This chapter presents the work on sequential subspace change-point detection. This work

is mainly summarized in [221, 218, 220]. Section 3.1 introduces the problem set-up for se-

quential subspace change-point detection and shows a unified framework for the emerging

and switching subspace problems. Section 3.2 presents the proposed two sequential change

detection procedures: the Largest-Eigenvalue Shewhart chart and Subspace-CUSUM pro-

cedure. Section 3.3 presents theoretical approximations and bounds for the average run

length and the expected detection delay of the Largest-Eigenvalue Shewhart chart, as well

as asymptotic optimality of the Subspace-CUSUM procedure. Section 3.4 contains simula-

tion studies to demonstrate the performance of the proposed algorithms in different settings.

Section 3.5 shows two real data examples using human gesture detection and seismic event

detection.

3.1 Problem Setup

We first introduce the spiked covariance model considered in [97], which assumes that a

small number of directions explain most of the variance. For simplicity, we consider the

spiked covariance model of rank-one. The results can be generalized to the case where rank

is greater than one using similar ideas. In particular, the rank-one spiked covariance matrix

is given by

Σ = σ2Ik + θuu>,

where Ik denotes an identity matrix of size k; θ is the signal strength; u ∈ Rk represents

a basis for the subspace with unit norm ‖u‖ = 1; σ2 is the noise variance, which will be

considered known since it can be estimated from historical data. It is possible to consider σ2
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unknown as well and provide estimates of this parameter along with the necessary estimates

of u. However, to simplify our presentation, we decide to consider σ2 known. The Signal-

to-Noise Ratio (SNR) is defined as ρ = θ/σ2.

Formally, the emerging subspace problem can be cast as follows:

xt
iid∼ N (0, σ2Ik), t = 1, 2, . . . , τ,

xt
iid∼ N (0, σ2Ik + θuu>), t = τ + 1, τ + 2, . . .

(3.1)

where τ is the unknown change-point that we would like to detect from data that are ac-

quired sequentially. Similarly, the switching subspace problem can be formulated as fol-

lows
xt

iid∼ N (0, σ2Ik + θu1u
>
1 ), t = 1, 2, . . . , τ,

xt
iid∼ N (0, σ2Ik + θu2u

>
2 ), t = τ + 1, τ + 2, . . .

(3.2)

where u1, u2 ∈ Rk represent bases for the subspaces before and after the change, with

‖u1‖ = ‖u2‖ = 1 and u1 is considered known. In both settings, our goal is to detect

the change as quickly as possible, subject to the constraint that false detections occurring

before the true change-point are very rare.

The switching subspace problem in (3.2) can be reduced into the emerging subspace

problem in (3.1) by a simple data projection. In detail, we can select any orthonormal

matrix Q ∈ R(k−1)×k such that

Qu1 = 0, QQ> = Ik−1,

which means that all rows of Q are orthogonal to u1, and they are orthogonal to each other

and have unit norm. Then, we project each observation xt using the projection matrix Q

onto a k − 1 dimensional space and obtain a new sequence:

yt = Qxt ∈ Rk−1, t = 1, 2, . . . .
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Then yt is a zero-mean random vector with covariance matrix σ2Ik−1 before the change

and σ2Ik−1 + θQu2u
>
2 Q
> after the change. Let u = Qu2/ ‖Qu2‖, and

θ̃ = θ ‖Qu2‖2 = θ[1− (u>1 u2)2].

Thus, problem in (3.2) can be reduced to the following

yt
iid∼ N (0, σ2Ik−1), t = 1, 2, . . . , τ,

yt
iid∼ N (0, σ2Ik−1 + θ̃uu>), t = τ + 1, τ + 2, . . .

(3.3)

Note that this way the switching subspace problem is reduced into the emerging subspace

problem, where the new signal strength θ̃ depends on the angle between u1 and u2, which

is consistent with our intuition.

We would like to emphasize that by projecting the data onto a lower-dimensional space,

we lose information, suggesting that the two versions of the problem are not exactly equiv-

alent. Indeed, the optimum detector for the transformed data in (3.3) and the one for the

original data in (3.2) do not coincide. This can be easily verified by computing the corre-

sponding CUSUM tests and their optimum performance. Despite this difference, it is clear

that with the proposed approach, we put both problems under the same framework, offering

computationally simple methods to solve the original problem in (3.2). Consequently, in

the following analysis, we focus solely on problem in (3.1).

3.2 Detection Procedures

We propose two online methods: the Largest-Eigenvalue Shewhart chart and the Subspace-

CUSUM procedure. The notations are standard. Denote by Pτ and Eτ the probability and

expectation induced when there is a change-point at the time τ . Under this definition, P∞

and E∞ is the probability and the expectation under the nominal regime (change never

happens) while P0 and E0 the probability and expectation under the alternative regime
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(change happens before we take any data).

3.2.1 Largest-Eigenvalue Shewhart Chart

Motivated by the test statistic in [22], we consider a Shewhart chart by computing the

largest eigenvalue of the sample covariance matrix repeatedly over a sliding window. As-

sume the window length is w. For each time t > 0, the un-normalized sample covariance

matrix using the available samples is given by

Σ̂t,min{t,w} =




x1x

>
1 + · · ·+ xtx

>
t , for t < w;

xt−w+1x
>
t−w+1 + · · ·+ xtx

>
t , for t ≥ w.

(3.4)

We note that for t = 1 the matrix contains a single outer product and as time progresses the

number of outer products increases linearly until it reaches w. After this point, namely for

t ≥ w, the number of outer products remains equal to w.

Let λmax(X) denote the largest eigenvalue of a symmetric matrix X . We define the

Largest-Eigenvalue Shewhart chart, as the one that stops according to the following rule:

TE = inf{t > 0 : λmax(Σ̂t,min{t,w}) ≥ b}, (3.5)

where b > 0 is a constant threshold selected to meet a suitable false alarm constraint. We

need to emphasize that we do not divide by min{t, w} when forming the un-normalized

sample covariance matrix. As we will explain in Section 3.3.1, it is better for TE to always

divide by w instead of min{t, w}. Consequently, we can omit the normalization constant

w from our detection statistics by absorbing it into the threshold.

3.2.2 Subspace-CUSUM Procedure

The CUSUM procedure [146, 188] is the most popular sequential test for change detec-

tion. When the observations are independent and identically distributed before and after
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the change, CUSUM is known to be exactly optimum [138] in the sense that it solves a

very well defined constrained optimization problem introduced in [128], see Chapter 2.1

for useful preliminaries. However, the CUSUM procedure can only be applied when we

have exact knowledge of the pre- and post-change distributions. For our problem, this re-

quires complete specification of all parameters, namely the subspace u, noise power σ2,

and SNR ρ. In this section, we first derive the exact CUSUM statistic in our setting and

then present the proposed Subspace-CUSUM procedure.

To derive the CUSUM procedure, let f∞(·), f0(·) denote the pre- and post-change pdf

of the observations. Then recursive CUSUM statistics as defined in (2.4) is as follows:

St = (St−1)+ + log
f0(xt)

f∞(xt)
, (3.6)

and the CUSUM stopping time in turn is defined as

TC = inf{t > 0 : St ≥ b}, (3.7)

where b > 0 is a threshold selected to meet a suitable false alarm constraint.

For our problem of interest (3.1), we can derive that

log
f0(xt)

f∞(xt)
= log

[
[(2π)k|σ2Ik + θuu>|]−1/2

[(2π)kσ2k]−1/2
× exp{−x>t (σ2Ik + θuu>)−1xt/2}

exp{−x>t xt/(2σ2)}

]

= log

[∣∣Ik + ρuu>
∣∣− 1

2 exp

{
1

2

θ

θ + σ2

(u>xt)2

σ2

}]

=
ρ

2σ2(1 + ρ)

{
(u>xt)

2 − σ2

(
1 +

1

ρ

)
log(1 + ρ)

}
.

The second equality is due to the matrix inversion lemma [217] that allows us to write

(σ2Ik + θuu>)−1 =
1

σ2
Ik −

θ

θ + σ2

uu>

σ2
,

which, after substitution into the equation, yields the desired result. Note that the multi-
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plicative factor ρ/[2σ2(1 + ρ)] is positive, so we can omit it from the log-likelihood ratio

when forming the CUSUM statistic in (3.6). This leads to

St = (St−1)+ + (u>xt)
2 − σ2

(
1 +

1

ρ

)
log(1 + ρ). (3.8)

Remark 3.1. We can show that the increment term in (3.8), i.e.,

(u>xt)
2 − σ2

(
1 +

1

ρ

)
log(1 + ρ),

has the following property: its expected value is negative under the pre-change and positive

under the post-change probability measure. The proof relies on a simple argument based

on Jensen’s inequality [173]. Due to this property, before the change, the CUSUM statistics

St will oscillate near 0 while it will exhibit, on average, a positive drift after the occurrence

of the change forcing it, eventually, to hit or exceed the threshold.

Usually, the subspace u and SNR ρ are unknown. In this case it is impossible to form the

exact CUSUM statistic depicted in (3.8). One option is to estimate the unknown parameters

and substitute them back into the likelihood function. Here we propose to estimate only u

and introduce a new drift parameter d which plays the same role as σ2(1 + 1/ρ) log(1 + ρ),

this leads to the following Subspace-CUSUM update

St = (St−1)+ + (û>t xt)
2 − d, t ≥ 1 (3.9)

and S0 = 0. To apply (3.9), we need to specify d and of course provide the estimate

ût. Regarding the latter we simply use the unit-norm eigenvector corresponding to the

largest eigenvalue of the un-normalized sample covariance matrix Σ̂t+w,w depicted in (3.4).

We denote the estimator of u as ût because at time t the estimate will rely on the data

xt+1, . . . , xt+w that are in the “future” of t. Practically, this is always possible by properly
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delaying our data by w samples. Stopping occurs similarly to CUSUM, that is

TSC = inf{t > 0 : St ≥ b}. (3.10)

Of course, in order to be fair, at the time of stopping we must make the appropriate correc-

tion, namely if St exceeds the threshold at t for the first time, then the actual stopping takes

place at t + w. The reason we use estimates based on “future” data is to make xt and ût

independent which in turn will help us decide what is the appropriate choice for the drift

constant d in Section 3.3.3.

Remark 3.2. An alternative possibility is to use the generalized likelihood ratio (GLR)

statistic, where both ρ and u are estimated for each possible change location κ. The GLR

statistic is

max
κ<t

{
−t− κ

2
log(1 + ρ̂κ,t) +

1

2σ2

ρ̂κ,t
1 + ρ̂κ,t

t∑

i=κ+1

(û>κ,txi)
2

}
,

where ρ̂κ,t, ûκ,t are estimated from samples {xi}ti=κ+1. However, this computation is more

intensive since there is no recursive implementation for the GLR statistic, furthermore it

requires growing memory. There are finite memory versions [112], however are equally

complicated in their implementation. Therefore, we do not consider the GLR statistic here.

3.3 Theoretical Analysis

To fairly compare the detection procedures discussed in the previous section, we need to

calibrate them properly. The calibration process must be consistent with the performance

measure we are interested in. Recall from Chapter 2.1 that for a given stopping time T we

measure false alarms through the average run length (ARL) expressed with E∞[T ]. For the

detection capability of T we use the worst-case average detection delay (WADD) defined

in (2.7), which considers the worst possible data before the change and the worst possible
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change-point.

In this section, we first discuss the scenarios that lead to the worst-case detection delay

for the proposed procedures. Then we characterize the ARL and WADD of the Largest-

Eigenvalue Shewhart chart. The theoretical characterization of ARL is very important be-

cause it can serve as a guideline on how to choose the threshold b used in the detection

procedure. Without theoretical analysis, people usually use Monte Carlo simulation to set

the threshold, which can be time-consuming when the problem structure is complicated.

Therefore a theoretical way to choose the threshold can be beneficial, especially for online

change-point detection where computational efficiency is of great importance. We will also

provide performance estimates for the Subspace-CUSUM test. This will allow for the op-

timum design of the two parameters w, d and for demonstrating that the resulting detector

is asymptotically optimum.

3.3.1 Worst-Case Average Detection Delay

We now consider scenarios that lead to the worst-case detection delay. For the Largest-

Eigenvalue Shewhart chart, assume 1 ≤ t−w+ 1 ≤ τ < t. Since for the detection we use

λmax(Σ̂t,w) and compare it to a threshold, it is clear that the worst-case data before τ are

the ones that will make λmax(Σ̂t,w) as small as possible. We observe that

λmax(Σ̂t,w) = λmax(xt−w+1x
>
t−w+1 + · · ·+ xτx

>
τ + · · ·+ xtx

>
t )

≥ λmax(xτ+1x
>
τ+1 + · · ·+ xtx

>
t ) = λmax(Σ̂t,t−τ ),

which corresponds to the data xt−w+1, . . . , xτ , before the change, being all equal to zero. In

fact, the worst-case scenario at any time instant τ is equivalent to forgetting all data before

and including τ and restarting the procedure from τ + 1 using up to w outer products in the

un-normalized sample covariance matrix, exactly as we do when we start at time 0. Due to

stationarity, this suggests that we can limit ourselves to the case τ = 0 and compute E0[TE]

and this will constitute the worst-case average detection delay. Furthermore, the fact that
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in the beginning we do not normalize with the number of outer products, is beneficial for

TE since it improves its ARL.

We should emphasize that if we do not force the data before the change to become zero

and use simulations to evaluate the detector with a change occurring at some time different

from 0, then it is possible to arrive at misleading conclusions. Indeed, it is not uncommon

for this test to appear outperforming the exact CUSUM test for low ARL values. Of course

this is impossible since the exact CUSUM is optimum for any ARL in the sense that it

minimizes the WADD depicted in (2.7) [138].

Let us now consider the worst-case scenario for the Subspace-CUSUM procedure. We

observe that

St = (St−1)+ + (û>t xt)
2 − d ≥ 0 + (û>t xt)

2 − d,

suggesting that when St restarts this is the worst it can happen for the detection delay.

Therefore, the well-known property of the worst-case scenario in the exact CUSUM carries

over to Subspace-CUSUM. Again, because of stationarity, this allows us to fix the change-

point time at τ = 0. Of course, as mentioned before, because ût uses data coming from

the future of t, if our detector stops at some time t (namely when for the first time we

experience St ≥ b) then the actual time of stopping must be corrected to t + w. A similar

correction is not necessary for CUSUM because this test has the exact information for all

parameters.

Threshold b is chosen so that the ARL meets a pre-specified value. In practice, b is

usually determined by simulation. More specifically, by simulating multiple streams of data

from pre-change distribution, we can obtain the ARL for different thresholds. Therefore the

threshold can be determined by the simulation results.

A very convenient tool in accelerating the estimation of ARL (which is usually large) is

the usage of the following formula that connects the ARL of CUSUM to the average of the
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sequential probability ratio test (SPRT) stopping time [188]:

E∞[TC] =
E∞[TSPRT]

P∞(STSPRT
> b)

, (3.11)

where the SPRT stopping time is defined as

TSPRT = inf{t > 0 : St /∈ [0, b]}.

The validity of (3.11) relies on the CUSUM property that, after each restart, St is indepen-

dent of the data before the time of the restart. Unfortunately, this key characteristic is no

longer valid in the proposed Subspace-CUSUM scheme since ût uses data from the future

of t. We could, however, argue that this dependence is weak. Indeed, as we will see in

Lemma A.2, each ût is equal to u plus some small random perturbation (estimation error

with the power of the order of 1/w), with these perturbations being practically indepen-

dent in time. As we observed with numerous simulations, estimating the ARL directly and

through (3.11) (with St replaced by St), results in almost indistinguishable values even for

moderate window sizes w. This suggests that we can use (3.11) to estimate the ARL of

the Subspace-CUSUM as well. As we mentioned, in the final result, we need to add w to

account for the future data used by the estimate ût.

3.3.2 Analysis of Largest-Eigenvalue Shewhart Chart

In this section, we first introduce some connection with random matrix theory, which are

the building blocks for the theoretical derivation. Then we provide the approximation to

ARL as a function of threshold b after taking into account the temporal correlation between

detection statistics. The comparison with simulation results shows the high accuracy of our

results.

The study of ARL requires the understanding of the property of the largest eigenvalue

under the null hypothesis, i.e., the samples are i.i.d. Gaussian random vectors with zero-
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mean and identity covariance matrix. In [97], the Tracy-Widom law [206] was used to

characterize the distribution of the largest eigenvalue. Define the center constant µw,k and

scaling constant σw,k:

µw,k =
(√

w − 1 +
√
k
)2
,

σw,k =
(√

w − 1 +
√
k
)( 1√

w − 1
+

1√
k

)1/3

.

(3.12)

If k/w → γ < 1, then the centered and scaled largest eigenvalue converges in distribution

to a random variable W1 with the so-called Tracy-Widom law of order one [97]:

λmax(Σ̂w)− µw,k
σw,k

→ W1. (3.13)

The Tracy-Widom law can be described in terms of a partial differential equation and the

Airy function, and its tail can be computed numerically (using for example the R-package

RMTstat).

Remark 3.3 (Connection with random matrix theory). There has been an extensive litera-

ture on the distribution of the largest eigenvalue of the sample covariance matrix, see, e.g.,

[97, 228, 13, 94]. The so-called bulk [54] results are typically used for eigenvalue distribu-

tions. It treats a continuum of eigenvalues, and the extremes, which are the (first few) largest

and smallest eigenvalues. Assume there are w samples which are k-dimensional Gaussian

random vectors with zero-mean and identity covariance matrix. Let Σ̂w =
∑w

i=1 xix
>
i de-

note the un-normalized sample covariance matrix. If k/w → γ > 0, the largest eigenvalue

of the sample covariance matrix converges to w(1 +
√
γ)2 almost surely [70]. Here we use

the Tracy-Widom law to characterize its limiting distribution and tail probabilities.

If we ignore the temporal correlation of the largest eigenvalues produced by the sliding

window, we can obtain a simple approximation for the ARL. If we call p = P∞(λmax(Σ̂t,w) >

b) for t ≥ w then the probability to stop at t is geometric and it is easy to see that the
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ARL can be expressed as 1/p. We note that to obtain this result, we must assume that

P∞(λmax(Σ̂t,w) > b) = p for t < w as well, which is clearly not true. Since for t < w

the un-normalized sample covariance has less than w terms, the corresponding probability

is smaller than p. This suggests that 1/p is a lower bound to the ARL while w + 1/p an

upper bound. If w � 1/p, then approximating the ARL with 1/p is quite acceptable. We

can use the Tracy-Widom law to obtain an asymptotic expression relating the ARL with the

threshold b. The desired formula is depicted in the following theorem.

Theorem 3.1 (Approximation of ARL by Ignoring Temporal Correlation). For any 0 <

p� 1 we have E∞[TE] ≈ 1/p, if we select

b = σw,kbp + µw,k, (3.14)

where bp denotes the p-upper-percentage point of W1 namely P(W1 ≥ bp) = p.

Now we aim to capture the temporal correlation between detection statistics due to

overlapping time windows. We leverage a proof technique developed in [186], which can

obtain satisfactory approximation for the tail probability of the maximum of a random field.

x
t w- +1 x

t w- + 1±+x
t w- +±

... ... x
t

x
t+1 x

t+±
...

§̂
t w,

§̂
t w+ ,±

Figure 3.1: Illustration of the temporal correlation between largest eigenvalues, δ ∈ Z+.

Figure 3.1 illustrates the overlap of two sample covariance matrices and provides nec-

essary notation. For each Σ̂t,w, define Zt = λmax(Σ̂t,w). We note that for any given M > 0,

P∞(T ≤M) = P∞
(

max
1≤t≤M

Zt ≥ b

)
,
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which is the max over a set of correlated variables {Zt}Mt=1. Capturing the temporal depen-

dence of {Zt} is challenging. Below, we assume the dimension k and the window size w

are fixed, and consider local covariance structure of the detection statistic when they only

non-overlap at a small shift δ relative to the window size, i.e., δ/w is small. By leveraging

the properties of the local approximation, we can obtain an asymptotic approximation us-

ing the localization theorem [186]. Define a special function ν(·) which is closely related

to the Laplace transform of the overshoot over the boundary of a random walk [192]:

ν(x) ≈
2
x
[Φ
(
x
2

)
− 0.5]

x
2
Φ
(
x
2

)
+ φ
(
x
2

) , (3.15)

where φ(x) and Φ(x) are the probability density function (pdf) and cumulative distribution

function (cdf) of the standard normal distribution N (0, 1). Then we have the following

results.

Theorem 3.2 (ARL of Largest-Eigenvalue Shewhart Chart). For large values of b we can

write

E∞[TE] =

[
b′φ(b′)βk,wν(b′

√
2βk,w/w)/w

]−1 (
1 + o(1)

)
, (3.16)

where

βk,w = 1 +

(
1 + c1k

− 1
6/
√
w
)(

2 + c1k
− 1

6/
√
w
)

c2
2k
− 1

3/w
, b′ =

b− (µw,k + σw,kc1)

σw,kc2

,

with c1 = E[W1] = −1.21 and c2 =
√

Var(W1) = 1.27.

We perform simulations to verify the accuracy of the threshold values obtained with-

out and with considering the temporal correlation (Theorem 3.1 and Theorem 3.2, respec-

tively). The results are shown in Table 3.1. Compared with the thresholds obtained from

Monte Carlo simulation, we find that the threshold in (3.16), when temporal correlation

is taken into account, is more accurate than its counterpart obtained by using the Tracy-

Widom law in (3.14).
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Table 3.1: Comparison of the threshold b obtained from simulations and using the approx-
imations ignoring the correlation in (3.14), and considering the correlation in (3.16). Win-
dow length w = 200, dimension k = 10. The numbers shown are b/w. Approximations
that are closer to simulation values are indicated in boldface.

Target ARL 5k 10k 20k 30k 40k 50k
Simulation 1.633 1.661 1.688 1.702 1.713 1.722

Approx (3.14) 1.738 1.763 1.787 1.800 1.809 1.816
Approx (3.16) 1.699 1.713 1.727 1.735 1.740 1.744

We now focus on the detection performance and present a tight lower bound for the

EDD of the Largest-Eigenvalue Shewhart chart. The results are based on a known result

for CUSUM [188] and requires the derivation of the Kullback-Leibler divergence for our

problem.

Theorem 3.3. For large values of b we have

E0[TE] ≥ 2
b′ + e−b

′ − 1

ρ− log(1 + ρ)

(
1 + o(1)

)
, (3.17)

where

b′ =
1

2σ2(1 + ρ)

[
bρ− (1 + ρ)σ2 log(1 + ρ)

]
.

Consistent with intuition, in Theorem 3.3, the right-hand-side of (3.17) is indeed a de-

creasing function of the SNR ρ. Comparing the lower bound in Theorem 3.3 with simulated

average delay, as shown in Figure 3.2, we can show that in the regime of small detection

delay (which is the main regime of interest), the lower bound serves as a reasonably good

approximation.

3.3.3 Analysis of Subspace-CUSUM Procedure

In this section, we focus on how to set the drift parameter d for Subspace-CUSUM proce-

dure and the proof of its asymptotic optimality. The drift d is an important parameter for

the Subspace-CUSUM to achieve desired properties of change-point detection algorithms.
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Figure 3.2: Simulated EDD and lower bound as a function of the threshold b.

For the drift parameter d we need the following inequalities to be true:

E∞[(û>t xt)
2] < d < E0[(û>t xt)

2]. (3.18)

With (3.18), we can guarantee that St mimics the behavior of the exact CUSUM statistic St

mentioned in Remark 3.1, namely, it exhibits a negative drift before and a positive after the

change. As we mentioned, the main advantage of using Σ̂t+w,w is that it provides estimates

ût that are independent from xt. This independence property allows for the straightforward

computation of the two expectations in (3.18) and contributes towards the proper selection

of d. However, for this computation to be possible, especially under the alternative regime,

it is necessary to be able to describe the statistical behavior of our estimate ût. We will as-

sume that the window size w is sufficiently large so that Central Limit Theorem (CLT) type

approximations are possible for ût and we will consider that ût is actually Gaussian with

mean u (the correct vector) and (error) covariance matrix that can be specified, analytically,

of being size 1/w [7, 147].

Lemma 3.1. Adopting the Gaussian approximation for ût we have the following two mean
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values under the pre- and post-change regime:

E∞[(û>t xt)
2] = σ2, E0[(û>t xt)

2] = σ2(1 + ρ)

[
1− k − 1

wρ

]
. (3.19)

Lemma 3.1 also suggests that the window size w and the drift d must satisfy σ2 < d <

σ2(1+ρ)
(

1− k−1
wρ

)
. Necessary condition for this to be true is that w > (k−1)(1+ρ)/ρ2.

Actually this constraint is required for the Gaussian approximation to make sense. But in

order for the approximation to be efficient we, in fact, need w to be significantly larger

than the lower bound. We can see that when the SNR is high (ρ � 1) then with relatively

small window size we can obtain efficient estimates. When on the other hand SNR is low

(ρ � 1) then far larger window sizes are necessary to guarantee validity of the Gaussian

approximation.

Consider now the case where ρ is unknown but exceeds some pre-set minimal SNR ρmin

of interest. From the above derivation, given the worst-case SNR and an estimation for the

noise variance σ̂2, we can give a lower bound for E0[(û>t xt)
2]. Consequently, the drift d

can be anything between σ̂2 and σ̂2(1 + ρmin)(1 − (k − 1)/(wρmin)) where, we observe,

that the latter quantity exceeds σ̂2 when w > (k−1)(1+ρmin)/ρ2
min. Below, for simplicity,

for d we use the average of the two bounds. It is worthwhile mentioning that the lower and

upper bound in Lemma 3.1 are derived based on the assumption that the window size w is

large enough.

Remark 3.4 (Monte Carlo simulation to choose the threshold). Alternatively, and in par-

ticular when w does not satisfy w � k, we can estimate E0[(û>t xt)
2] by Monto Carlo

simulation. This method requires: (i) estimating the noise level σ̂2, which can be ob-

tained from training data without a change-point; (ii) the pre-set worst-case SNR ρmin;

(iii) a unit norm vector u0 that is generated randomly. Under the nominal regime we have

E∞[(û>t xt)
2] = σ̂2. Under the alternative E0[(û>t xt)

2] depends only on the SNR ρ as shown

in (3.19). We can therefore simulate the worst-case scenario ρmin using the randomly gen-
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erated vector u0 by generating samples from the distribution N (0, σ̂2Ik + ρminu0u
>
0 ).

Even though the average of the update in (3.9) does not depend on true subspace u, the

computation of the test statistic St in (3.9) requires the estimate ût of the eigenvector. This

can be accomplished by applying the singular value decomposition (SVD) (or the power

method [131]) on the un-normalized sample covariance matrix Σ̂t+w,w.

We then provide performance estimates for the proposed Subspace-CUSUM test. This

will allow for the optimum design of the two parameters w, d and for demonstrating that

the resulting detector is asymptotically optimum.

From [205, Pages 396–397] we have that the exact CUSUM test has the following

performance

E∞[TC] =
eb

K

(
1 + o(1)

)
, E0[TC] =

b

I0

(
1 + o(1)

)
, (3.20)

where b is the constant threshold; K is of the order of a constant with its exact value be-

ing unimportant for the asymptotic analysis; finally I0 is the Kullback-Leibler information

number I0 = E0[log(f0(x)/f∞(x))]. We recall that the worst-case average detection delay

in CUSUM is equal to E0[TC], as detailed in Chapter 2.1. This is the reason we consider

the computation of this quantity. If now, we impose the constraint that the ARL is equal to

γ > 1 and for the asymptotic analysis that γ → ∞, then we can compute the threshold b

that can achieve this false alarm performance namely b = (log γ)
(
1 + o(1)

)
. Substituting

this value of the threshold in EDD we obtain

E0[TC] =
log γ

I0

(
1 + o(1)

)
. (3.21)

Applying this formula in our problem we end up with the following optimum performance

E0[TC] =
2 log γ

ρ− log(1 + ρ)

(
1 + o(1)

)
. (3.22)

For the performance computation of Subspace-CUSUM, since the increment (û>t x)2−d
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in (3.9) is not a log-likelihood, we cannot use (3.21) directly. To compute the ARL of TSC

we first find δ∞ > 0 from the solution of the equation:

E∞[eδ∞[(û>t xt)
2−d]] = 1 (3.23)

and then we note that δ∞[(û>t x)2− d] is the log-likelihood ratio between the two pdfs f̃0 =

exp{δ∞[(û>t x)2−d]}f∞ and f∞. This allows us to compute the threshold b asymptotically

as b = (log γ)
(
1 + o(1)

)
/δ∞ after assuming that w = o(log γ). Similarly we can find

a δ0 > 0 and define f̃∞ = exp{−δ0[(û>t xt)
2 − d]}f0 so that δ0[(û>t xt)

2 − d] is the log-

likelihood ratio between f0 and f̃∞ leading to E0[TSC] = b
(
1 + o(1)

)
/(E0[(û>t xt)

2] − d)

with the dependence on δ0 being in the o(1) term. Substituting b we obtain

E0[TSC] =
log γ

δ∞
(
E0[(û>t xt)2]− d

)(1 + o(1)
)

+ w, (3.24)

where the last term w is added because we use data from the future of t as we explained

before. Parameter δ∞, defined in (3.23), is directly related to d. We show in the Appendix

that d can be expressed in terms of δ∞ as follows

d = − 1

2δ∞
log(1− 2σ2δ∞). (3.25)

By (3.25), we obtain the following expression for the EDD:

E0[TSC] = log γ(1+o(1))

σ2δ∞(1+ρ)(1− k−1
wρ )+ 1

2
log(1−2σ2δ∞)

+ w. (3.26)

Note that in the previous equation we have two parameters δ∞ and w and the goal is

to select them so as to minimize the EDD. Therefore if we first fix the window size w

we can minimize over δ∞ (which is equivalent to minimizing with respect to the drift d).

We observe that the denominator is a concave function of δ∞ therefore it exhibits a single
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maximum. The optimum δ∞ can be computed by taking the derivative and equating to

0 which leads to a particular δ∞. Substituting this optimal value we obtain the following

minimum EDD:

E0[TSC] = 2 log γ(1+o(1))

(1+ρ)(1− k−1
wρ )−1−log[(1+ρ)(1− k−1

wρ )]
+ w. (3.27)

Equation (3.27) involves only the target ARL level γ and the window size w. If we keep

w constant it is easy to verify that the ratio of the EDD of the proposed scheme over the

EDD of the optimum CUSUM tends, as γ →∞, to a quantity which is strictly greater than

1. In order to make this ratio tend to 1 and therefore establish asymptotic optimality we

need to select the window size w as a function of γ. Actually we can perform this selection

optimally by minimizing (3.27) with respect to w for given γ. The following proposition

identifies the optimum window size.

Proposition 3.1. For each ARL level γ, the optimal window size that minimizes the corre-

sponding EDD is given by

w∗ =
√

log γ ·
√

2(k−1)

ρ−log(1+ρ)

(
1 + o(1)

)
,

resulting in an optimal drift

d∗ =
σ2(1+ρ)(1− k−1

w∗ρ)
(1+ρ)(1− k−1

w∗ρ)−1
log
[
(1 + ρ)

(
1− k−1

w∗ρ

)]
.

Using these optimal parameter values it is straightforward to establish that the corre-

sponding Subspace-CUSUM is first-order asymptotically optimum. This is summarized in

our next theorem.

Theorem 3.4. As the ARL level γ →∞, the corresponding EDD of the Subspace-CUSUM
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procedure TSC with the two parameters d and w optimized as above satisfies

lim
γ→∞

E0[TSC]

E0[TC]
= 1. (3.28)

Proof. As we pointed out, the proof is straightforward. Indeed if we substitute the optimum

d and w and then take the ratio with respect to the optimum CUSUM performance depicted

in (3.22) we obtain
E0[TSC]

E0[TC]
= 1 +

√
k − 1

2 log γ
+ o(1)→ 1,

which proves the desired limit. Even though the ratio tends to 1, we note that E0[TSC] −

E0[TC] = Θ(
√

log γ) → ∞. This is corroborated by our simulations (see Figure 3.4, red

curve). 2

3.4 Simulation Study

In this section, numerical results are presented to compare the proposed detection proce-

dures. The tests are first applied to synthetic data, where the performance of the Subspace-

CUSUM and Largest-Eigenvalue Shewhart chart are compared against the CUSUM opti-

mum performance. Then the performance of Subspace-CUSUM is optimized by selecting

the most appropriate window size.

3.4.1 Performance Comparison

Simulation studies are performed to compare the Largest-Eigenvalue Shewhart chart and

the Subspace CUSUM procedure. The exact CUSUM procedure with all parameters known

is chosen as the baseline and gives the minimal detection delay to all detection procedures.

Figure 3.3 depicts the EDD-ARL curves for parameter values k = 5, σ2 = 1, w = 50

and three different levels of signal strength (SNR): θ = 0.5, θ = 1, and θ = 1.5. For fair

comparison, the SNR lower bound is set to be a constant ρmin = 0.5 in all three scenarios.

The threshold for each procedure is determined using the pre-set lower bound ρmin as

53



102 103 104

Average Run Length

0

500

1000

1500

2000

2500

E
xp

ec
te

d
 D

et
ec

ti
o

n
 D

el
ay

Exact CUSUM
Subspace-CUSUM
Largest eigenvalue chart

102 103 104

Average Run Length

0

20

40

60

80

100

120

140

160

E
xp

ec
te

d
 D

et
ec

ti
o

n
 D

el
ay

Exact CUSUM
Subspace-CUSUM
Largest eigenvalue chart

102 103 104

Average Run Length

0

10

20

30

40

50

60

70

80

90

E
xp

ec
te

d
 D

et
ec

ti
o

n
 D

el
ay

Exact CUSUM
Subspace-CUSUM
Largest eigenvalue chart

(a) θ = 0.5 (b) θ = 1 (c) θ = 1.5

Figure 3.3: Comparison of Subspace-CUSUM and the Largest-Eigenvalue Shewhart chart,
fixed window size w = 50. Baseline: Exact CUSUM (optimal).

discussed in Remark 3.4. In Figure 3.3, the black line corresponds to the exact CUSUM

procedure, which is clearly the best and it lies below the other curves. Subspace-CUSUM

has much smaller EDD than the Largest-Eigenvalue Shewhart chart, and the difference

increases with increasing ARL for SNR θ = 0.5 and θ = 1. However, when the signal

is stronger (θ = 1.5), the Largest-Eigenvalue Shewhart chart outperforms the Subspace-

CUSUM as shown in Figure 3.3 (c). This is consistent with previous research findings

in [141] that Shewhart charts are more efficient when detecting strong signals, while the

CUSUM-type charts can detect weak signals more quickly due to its cumulative structure.

3.4.2 Optimal Window Size

We also consider the EDD-ARL curve when w is optimized to minimize the detection delay

at every ARL value. We first compute the EDD for window sizes w = 1, 2, . . . , 50, given

each ARL value. Then we plot in Figure 3.5 (a) the lower envelope of EDDs corresponding

to the optimal EDD achieved by varying w. We also plot the optimal value of w as a

function of ARL in Figure 3.5 (b). The comparison of the Largest-Eigenvalue Shewhart

chart and the Subspace-CUSUM procedure with optimal window size w is summarized

in Figure 3.4. Even though the best EDD of the Subspace-CUSUM is diverging from

the performance enjoyed by CUSUM, this divergence is slower than the increase of the

optimum CUSUM EDD, as shown in Theorem 3.4.
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Figure 3.4: Comparison of the largest eigenvalue procedure and CUSUM procedures.

(a) Minimal EDD (b): Optimal window size

Figure 3.5: (a): Minimal EDD vs ARL among window sizes w from 1 to 50; (b): Corre-
sponding optimal window size w.

3.5 Real Data Examples

In this section, we show how to apply the proposed methods to real data problems and

demonstrate the performance using two real datasets: one is the human gesture detection

dataset, the other is a seismic dataset. It is worth mentioning that the subspace model

formulation is a fundamental problem in high dimensional problems, and the proposed

methods are widely applicable to a variety of applications.
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3.5.1 Human Gesture Detection

We apply the proposed method to the sequential posture detection problem using a real

dataset: the “Microsoft Research Cambridge-12 Kinect gesture” dataset [61]. The cross-

correlation structure of such multivariate functional data may change over time due to

the posture change. [230] studies the same dataset from the dynamic subspace learning

perspective in the offline setting, our goal is to detect the change-point from sequential

observations. This dataset contains 18 sensors. At each time t, each sensor records the

coordinates in the three-dimensional cartesian coordinate system. Therefore there are 54

attributes in total.

We select a subsequence with a posture change from “bow” to “throw”, and we use

the first 250 training samples to estimate the subspace before the change. Figure 3.6 (a)

shows the eigenvalues resulted from the principal component analysis (PCA). We select

r leading eigenvectors of the sample covariance matrix as our estimate of the pre-change

subspace. For example, when r = 1, we estimate the pre-change subspace to be a rank one

space characterized by the leading eigenvector of the sample covariance matrix of training

samples. Then we normalize the observations by multiplying them with a matrix Q that

is orthogonal to the pre-change subspace, as discussed in Section 3.1. This enables us to

approximate the covariance of pre-change observations by an identity matrix. Then we

apply the proposed Subspace-CUSUM procedure to detect the change.

The detection statistic is shown in Figure 3.6 (b,c) for different r values, the detection

statistic both increase significantly at the true change-point time (indicated by the red dash

line). It also shows that the proposed test performs well not only when r = 1, but also for

r > 1 cases, which means that although we focus on the rank one case in the previous the-

oretical discussion, the propose method can be widely used in many problems that involves

such low-rank change.

We also compare the proposed method with Hotelling’s T 2 control chart [88]. We use

the same training data to estimate the pre-change mean µ̄ and covariance matrix Σ̄, and then

56



0 10 20 30 40 50

PCA component

0

0.05

0.1

0.15

0.2

0.25

0.3

R
at

io
 o

f v
ar

ia
nc

e 
ex

pl
ai

ne
d

0 200 400 600 800 1000 1200

Time

0

1000

2000

3000

4000

5000

6000

7000

8000

S
ub

sp
ac

e-
C

U
S

U
M

 s
ta

tis
tic

(a) Eigenvalues (b) r = 1

0 200 400 600 800 1000 1200

Time

0

1000

2000

3000

4000

5000

6000

S
ub

sp
ac

e-
C

U
S

U
M

 s
ta

tis
tic

0 200 400 600 800 1000 1200

Time

0

2000

4000

6000

8000

10000

12000

H
ot

el
lin

g 
T

sq
ua

re
 s

ta
tis

tic

(c) r = 10 (d) Hotelling T 2

Figure 3.6: (a): PCA Eigenvalues; (b,c): Subspace-CUSUM statistic over time; (d):
Hotelling’s T 2 statistic. True change-point indicated by red line.

construct the Hotelling’s T 2 statistics (xt − µ̄)>Σ̄−1(xt − µ̄). As shown in Figure 3.6 (d),

the detection statistic has a much larger vibration then the Subspace-CUSUM procedure

and the performance is sensitive to the estimation of µ̄ and Σ̄.

3.5.2 Seismic Event Detection

In this example, we consider a seismic signal detection problem. The goal is to detect

micro-earthquakes and tremor-like signals, which are weak signals caused by minor sub-

surface changes in the earth. The tremor signal may be seen at a subset of sensors, and

the affected sensors observe a similar waveform corrupted by noise. The tremor signals

are not earthquakes, but they are useful for geophysical study and prediction of potential

earthquakes. Usually, the tremor signals are challenging to detect using an individual sen-

sor’s data; therefore, network detection methods have been developed, which mainly uses

covariance information of the data for detection [124]. We will show that network-based

detection can be cast as a subspace detection problem.
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Assume that we have N sensors. At an unknown onset, the tremor signal may affect all

sensors. Let s(t) be the unknown signal waveform , then the signal observed at sensors can

be represented as

xi(t) = uis(t− τ) + wi(t), i = 1, 2, . . . , n, (3.29)

where wi(t)
iid∼ N (0, σ2) denotes the random noise, ui > 0 is the unknown deterministic

magnitude of the signal, and τ is the unknown change-point or the time when the seismic

event happens. Here the waveform function s(t) is assumed to be causal, i.e., s(t) =

0,∀t < 0. Moreover, we suppose the signal waveform at time time follows a zero-mean

normal distribution with time-varying variance (vibration), i.e., s(t) ∼ N (0, σ2
t ).
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Figure 3.7: (a) the raw data; (b) comparison of different detection procedures; (c) increment
term; (d) Subspace-CUSUM statistic.

Denote the observation vector X(t) and magnitude u as

X(t) := [x1(t), . . . , xn(t)]>, u := [u1, . . . , un]>.
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Following (3.29), we can formulate the problem as follows

X(t)
iid∼ N (0, σ2In), t = 1, 2, . . . , τ,

X(t)
iid∼ N (0, σ2In + σ2

t uu
>), t = τ + 1, τ + 2, . . . .

(3.30)

We apply the proposed methods to a real seismic dataset recorded at Parkfield, Califor-

nia from 2am to 4am on 12/23/2004. The raw data contains records at 13 seismic sensors

that simultaneously records a continuous stream of data. The frequency of the raw data is

250Hz. In this example, we set the window size w = 200, which corresponds to a 0.8s

time window. For each procedure, we use the data within the first 600s to find the threshold

by controlling the false alarm rate.

We apply the proposed Largest-Eigenvalue Shewhart chart and the Subspace-CUSUM

procedure. We further compare them with the classic Hotelling’s T 2 procedure based on

the estimated sample mean and sample covariance. The results are shown in Figure 3.7

(b). Using the detection statistics in Figure 3.7 (c,d), we find three main events at the

615, 2127, and 6371 seconds, as well as some continuous vibration during 2500∼3200

seconds. By comparing the detection results with the true seismic event catalog that can

be found online at the Northern California Earthquake Data Center, we found that our

findings match the three true events at 594, 2124 and 6369 seconds, along with a tremor

catalog around 2500∼3180 seconds. The comparison shows that all detection delays are

within 20 seconds. Both the Largest-Eigenvalue Shewhart chart and the Subspace-CUSUM

procedure work for this dataset effectively.

3.6 Conclusion and Discussions

We study two online detection procedures for detecting the emergence of a spiked covari-

ance model: the Largest-Eigenvalue Shewhart chart and the Subspace-CUSUM procedure.

For Subspace-CUSUM, we perform a simultaneous estimate of the required subspace in

parallel with its sequential detection. We avoid estimating all unknown parameters by fol-
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lowing a worst-case analysis with respect to the subspace power. We are able to derive

theoretical expressions for the ARL and an interesting lower bound for the EDD of the

Largest-Eigenvalue Shewhart chart. In particular, we are able to handle the correlations

resulted from the usage of a sliding window, which is an issue that is not present in the

off-line version of the same procedure. For the comparisons of the two proposed detection

procedures, we discuss how it is necessary to calibrate each detector so that comparisons

are fair. Comparisons are performed using simulated data and real data about human ges-

ture detection and seismic event detection.
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CHAPTER 4

SEQUENTIAL CHANGE DETECTION BY WEIGHTED `2 DIVERGENCE

This chapter studies the non-parametric sequential change detection based on weighted `2

divergence. This work is mainly summarized in [219]. Section 4.1 introduces the problem

set-up and proposes the weighted `2 test and shows its optimality in `2 sense. Section 4.2

studies sequential change detection using the proposed statistic. Section 4.3 discusses dif-

ferent aspects to optimize the parameters involved in the proposed method. Section 4.4

and Section 4.5 demonstrate the performance of the proposed detection procedure using

simulation and real-data studies.

4.1 Problem Setup and Weighted `2 Divergence Test

We consider the problem of testing closeness between two discrete distributions from sam-

ples observed. Let Ω be an n-element observation space, identified with {1, ..., n}. Prob-

ability distributions on Ω are denoted as vector p ∈ ∆n = {p ∈ Rn : p ≥ 0,
∑

i pi = 1},

where pi is the probability mass of the i-th element in Ω. Given two independent sam-

ple sets X1 = {x1
1, . . . , x

1
n1
} and X2 = {x2

1, . . . , x
2
n2
}, where x1

1, . . . , x
1
n1

iid∼ p, and

x2
1, . . . , x

2
n2

iid∼ q, our goal is to design a test which, given observations X1 and X2, claims

one of the following hypotheses:

H0 : p = q, H1 : ‖p− q‖2 ≥ ε‖p‖2,

where ‖ · ‖2 is the `2 norm on Rn and ε > 0 is a parameter that represents the relative

difference of magnitude. Note that the alternative hypothesis H1 considered here is slightly

different but closely related to the traditional setting where H1 is defined as ‖p− q‖2 ≥ ε.

Define the type-I risk of a test as the probability of rejecting hypothesis H0 when it is
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true, i.e., the probability of claiming ‖p− q‖2 ≥ ε‖p‖2 when p = q. The type-II risk is the

probability of claiming p = q when ‖p − q‖2 ≥ ε‖p‖2. We aim at building a test which,

given 0 < α, β < 1/2, has the type-I risk at most α (which we call at level α), and the

type-II risk at most β (of power 1−β); and we aim to meet these specifications with sample

sizes n1 and n2 as small as possible.

We focus on a family of distance-based divergence between empirical distributions of

the two sets of observations. More specifically, we consider tests that reject the null hy-

pothesis H0 (and accept the alternative H1) when

D(X1, X2) > `,

where D(·, ·) is a proxy for the weighted `2 divergence between distributions p and q un-

derlying X1 and X2, and ` is a data-dependent (random) threshold.

The motivation for considering the `2 divergence for the non-parametric test is twofold.

First, the `2 divergence-based test has a certain (near) optimality that we will show in

Section 4.1.3. Second, the `2 divergence is more robust compared to other divergences

such as χ2-divergence, which is commonly used when `1 separation between distributions

is of interest. The χ2-divergence becomes numerically difficult to evaluate when there are

“small” pi (meaning some atoms have small probability), while the `2 distance remains

bounded in such cases. Similar argument holds for the α– and β–divergences [44, 169, 18,

47, 5] and detection statistic for robust change detection [231]. Moreover, here we focus on

a new weighted `2 divergence, which emphasizes atoms that contribute most to ‖p− q‖2.

Our goal in this section is to develop a test statistic, the weighted `2 divergence, used as

the basic building block of the change detection procedure. We aim to construct a test with

the following properties. When applied to two independent sets of size N , i.i.d. samples

{x1
1, ..., x

1
N} and {x2

1, ..., x
2
N} drawn from unknown distributions p, q ∈ ∆n, the test

(i) rejects the null hypothesis with probability at most a given α under H0 : p = q;
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(ii) accepts the null hypothesis with probability at most a given β when there is a relative

difference “of magnitude at least a given ε > 0,” i.e., under H1 : ‖p− q‖2 ≥ ε‖p‖2.

We want to meet these reliability specifications with as small sample size N as possible.

4.1.1 Test Statistic

The main ingredient of weighted `2 divergence test is the individual test built as follows.

Let us fix “weights” σi ≥ 0, i = 1, ..., n, and let Σ = Diag{σ1, ..., σn} be a diagonal matrix

with diagonal entries being σ1, . . . , σn. Given {x1
1, ..., x

1
N} and {x2

1, ..., x
2
N}, we divide

them into two consecutive (left) parts E,E ′, of cardinality L each, and (right) parts F, F ′,

of cardinality R each, respectively. Note that the cardinality L and R are at most N/2 and

can be less than N/2 if we do not use all N samples. Set

γ =
R

L+R
, γ̄ = 1− γ =

L

L+R
, M =

2LR

L+R
= 2γL = 2γ̄R. (4.1)

Let ω, ω′, ζ, ζ ′ ∈ ∆n be the empirical distributions of observations in sets E,E ′, F, F ′, and

χ be the weighted `2 test statistics defined as

χ = (ω − ζ)>Σ(ω′ − ζ ′) =
n∑

i=1

σi(ωi − ζi)(ω′i − ζ ′i). (4.2)

The weighted `2 divergence test T claims a change if and only if

|χ| > `,

where ` is the threshold. The following lemma summarizes the properties of T :

Proposition 4.1 (Test Properties). Let T be the weighted `2 divergence test applied to a

pair of samples drawn from distributions p, q ∈ ∆n, and let the threshold ` satisfy

` ≥ 2
√

2θM−1
√∑

i σ
2
i p

2
i , (4.3)

63



for some θ ≥ 1. Then

1. Risk: The type-I risk of T is at most 1/θ2;

2. Power: Under the assumption

∑
i σi(pi − qi)2 > `+ 2

√
2θ

[
M−1/2

√∑
i σ

2
i (pi − qi)2(γpi + γ̄qi)+

M−1
√
γ
∑

i σ
2
i p

2
i + γ̄

∑
i σ

2
i q

2
i

]
,

(4.4)

the power of T is at least 1− 3/θ2.

For simplicity, in the rest of this section we assume that σi = 1, 1 ≤ i ≤ n, so the left

hand side of (4.4) reduces to ‖p− q‖2
2. In Section 4.3.1, we will discuss how to utilize the

non-uniform weights.

4.1.2 Special Case: `2 Test With Uniform Weights

The individual test T in the previous section has two drawbacks: (i) to control the type-I

risk, the threshold ` in (4.3) specifying T must be chosen with respect to the magnitude

‖p‖2 which is typically unknown; (ii) to achieve a small type-I risk of T we need to set a

large θ, thus resulting in poor power of the test. This section will show that we can reduce

these limitations by “moderately” increasing the sample sizes. To simplify the notation,

from now on, we use the fixed value θ = 3 (i.e., the type-I risk is at most 1/9 and the power

is at least 2/3), and use M = L = R as a special case of the definition in (4.1).

The testing procedure will be as follows. We first give the Algorithm 1 to specify the

threshold ` that satisfies the condition (4.3) with high probability and then introduce the

testing procedure.

When the nominal distribution p is unknown, we perform a training-step – use part of

the first set of observations to build, with desired reliability 1 − δ, a tight upper bound %

(the output of Algorithm 1) on the squared norm ‖p‖2
2 of the unknown distribution p such
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that

P
[
‖p‖2

2 ≤ % ≤ 3‖p‖2
2

]
≥ 1− δ, (4.5)

where the probability is taken with respect to the observations sampled from distribution p.

The training-step is organized in Algorithm 1, where the input parameter S is defined

as

S := min

{
S ∈ N :

2S∑

k=S

(
2S

k

)(
1

3

)k (
2

3

)2S−k
≤ δ

dlog2(n)e

}
. (4.6)

The definition in (4.6) has an intuitive explanation: S is the smallest number such that in 2S

independent tosses of a coin, with probability of getting a head in each toss being ≤ 1/3,

the probability of getting at least S heads does not exceed δ/m, where m = dlog2(n)e.

Algorithm 1: Training-step to estimate a tight upper bound on ‖p‖2
2.

Input: Samples X1 := {x1, . . . , xN}; Reliability 1− δ; m = dlog2(n)e; S in (4.6);
Output: A tight upper bound % on ‖p‖2

2 satisfying the condition (4.5);
for i = 1, . . . ,m do

ρi = 2−i/2;
Set Pi ∈ R+ as the solution to

3
[
27/4P

−1/2
i ρ

3/2
i + 2P−1

i ρi

]
=

1

3
ρ2
i ;

Set Qi = dPie;
Use 4S consecutive segments, of cardinality Qi each, of the sample X1 to
build 2S pairs {(ξs, ξ′s), s = 1, . . . , 2S} of empirical distributions;
Set θs = ξ>s ξ

′
s for s = 1, . . . , 2S;

Set Θi as the median of θ1, ..., θ2S;
if Θi ≥ 2ρ2

i /3 or i = m or N = |X1| < 4SQi+1 (running out of sample) then
Terminate.

end
end
Return % = Θi + ρ2

i /3.

Properties of the training-step in Algorithm 1 can be summarized as follows:

Proposition 4.2 (Bounding ‖p‖2
2). Let ρi = 2−i/2 and i(p) be the smallest i ≤ m such that

ρi ≤ ‖p‖2 (note that i(p) is well defined due to ρm ≤ n−1/2). Assume that the size of the

first group of sample X1 is at least 4SQi(p). Then the probability for the training-step to
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terminate in the first i(p) stages and to output % satisfying the condition (4.5) is at least

1 − δ, where δ is the reliability tolerance specifying the training-step. Besides this, the

number of observations utilized in a successful training-step is at most

4SQi(p) = O(1) ln(ln(n)/δ)/‖p‖2. (4.7)

After % is built, we use the part of the first sample X1 not used in the training-step and

the entire second sample X2 to run K = K(α, β) individual tests to make a decision. Here

α < 1/2 and β < 1/2 are pre-specified upper bounds on the type-I and type-II risks of the

testing problem, and K(α, β) is the smallest integer such that the probability of getting at

least K/2 heads in K independent tosses of a coin is

(i) ≤ α, when the probability of getting head in a single toss is ≤ 1/9,

(ii) ≥ 1− β, when the probability of getting head in a single toss is ≥ 2/3.

It is easy to check that K ≤ O(1)[ln(1/α) + ln(1/β)].

The k-th individual test is applied to two 2M -long segments of observations taken first

from the sample X1 (and these are non-overlapping with the training-step observations),

and second from X2, with non-overlapping segments of observations used in different in-

dividual tests. Here the positive integer M , same as the reliability tolerances δ, α, β, is a

parameter of our construction, and the threshold ` for individual tests is chosen as

` = 6
√

2M−1√%. (4.8)

After running K individual tests, we claim H1 if and only if the number of tests where H1

is claimed is at least K/2. The properties of the resulting `2 test are presented as follows:

Theorem 4.1 (Sample Complexity). Consider the `2 test above with design parameters δ,

α, β ∈ (0, 1/2) and M . Then for properly selected absolute constants O(1), the following
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holds true. Let p, q be the true distributions from which X1 and X2 are sampled, and let

the size N of X1, X2 satisfies

N ≥ O(1) [ln(ln(n)/δ)/‖p‖2 + [ln(1/α) + ln(1/β)]M ] . (4.9)

Then

1. The probability for the training-step in Algorithm 1 to be successful is at least 1 −

δ, and when it happens there are enough observations to carry out K = K(α, β)

subsequent individual tests.

2. Under the condition that the training-step is successful:

(a) The type-I risk (claiming H1 when p = q) is at most α;

(b) For every ε > 0, with positive integer M satisfying

M ≥ O(1)
1

ε2‖p‖2

, (4.10)

the type-II risk (claiming H0 when ‖p− q‖2 ≥ ε‖p‖2) is at most β.

4.1.3 Near-Optimality of `2 Divergence Test

From the above analysis, when testing a difference of magnitude ‖p−q‖2 ≥ ε‖p‖2, reliable

detection is guaranteed when the size N of samples X1 and X2 is at least O(n1/2ε−2) (due

to the fact that ‖p‖2 ≥ n−1/2), with just logarithmic in the reliability parameters factors

hidden in O(·). We will show that the O(n1/2) sample size is the best rate can achieve

unless additional a priori information on p and q is available.

Proposition 4.3 (Optimality). Given cardinality n of the set Ω and sample size N . For

i.i.d. N -observation samples X1 and X2, suppose there exists a low-risk test that can

detect reliably any difference of magnitude ‖p− q‖2 ≥ ε‖p‖2 for 0 < ε < 1/2 such that
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1. for every distribution p, the type-I risk is at most a given α < 1/2, and

2. for every distributions p, q satisfying ‖p − q‖2 ≥ ε‖p‖2, the type-II risk is at most a

given β < 1/4.

Then N ≥ O(1)
√
n, with a positive absolute constant O(1) that depends on α, β, ε.

4.1.4 Illustrating Example: Quasi-Uniform Distribution

Now we present an illustrative example using “quasi-uniform” distributions. Assume that

the nominal distribution p and the alternative distribution q are quasi-uniform, i.e., there

exists a known constant κ satisfying 2 ≤ κ ≤ n such that ‖p‖∞ ≤ κ/n and ‖q‖∞ ≤ κ/n.

Since ‖x‖2 ≤
√
‖x‖1‖x‖∞, we have max[‖p‖2, ‖q‖2] ≤

√
κ/n, and hence the threshold

` = 6
√

2M−1
√
κ/n (4.11)

satisfies the condition (4.3) with θ = 3 (recall that we are in the case of uniform weights

σi ≡ 1). With this choice of `, the right hand side of (4.4) is at most 6
√

2[2M−1
√
κ/n +

M−1/2
√
κ/n‖p− q‖2]. To ensure the validity of (4.4) with θ = 3, it suffices to have

‖p− q‖2
2 ≥ 6

√
2
[
2M−1

√
κ/n+M−1/2

√
κ/n‖p− q‖2

]
,

which holds when

‖p− q‖2
2 ≥ O(1)M−1

√
κ/n, (4.12)

with properly selected moderate absolute constant O(1). For quasi-uniform distributions,

‖p − q‖2 is no larger than 2
√
κ/n. Therefore, for ‖p − q‖2 ≥ λn−1/2 with some λ ∈

(0, 2
√
κ], the sample size M should satisfy

M ≥ O(1)

√
κn

λ2
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in order to ensure (4.12). We see that in the case of L = R, given α � 1, β � 1, the

sample size of

O(1)[ln(1/α) + ln(1/β)]

√
κn

λ2

ensures that for the `2 test with the threshold in (4.11), its type-I risk and type-II risk are

upper bounded by α and β, respectively.

In the following, we provide numerical examples to validate the optimality results in

Proposition 4.3. Suppose the support size n is even and set L = R = M for simplicity.

The experiment set-up is described as the following two steps:

(i) Draw two n/2-element subsets independently, Ω1 and Ω2, of Ω from the uniform

distribution on the family of all subsets of Ω of cardinality n/2.

(ii) The samples X1 are i.i.d. drawn from the uniform distribution on Ω1, denoted as p;

and the second group of samples X2 are i.i.d. drawn from the uniform distribution

on Ω2, denoted by q.

Therefore we have max[‖p‖2 , ‖q‖2] ≤
√

2/n, implying that we can set the threshold as

` = 12M−1n−1/2.

In all simulations, the individual test was applied. We perform the simulation for various

n and M values. The power is shown in Figure 4.1, averaged over 1000 trials. The results

show that for magnitude ‖p− q‖2 = O(1/
√
n), at least O(

√
n) samples are required in

order to detect the difference between p and q with high probability.

4.2 Change Detection Procedures Based on `2 Test

In this section, we construct the change detection procedure based on the proposed weighted

`2 divergence test. Change detection is an important instance of the sequential hypothesis
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Figure 4.1: Validation of the theoretical O(
√
n) bound by plotting the empirical test power

of “quasi-uniform” in Section 4.1.4, averaged over 1000 random trials. The Type-I risk is
controlled to be less than 10−3. The theoretical lower bound to sample complexity O(

√
n)

is shown in red line, which match the empirical phase-transition “watershed”.

test, but it has unique characteristics that require a separate study due to different perfor-

mance metrics considered. Since we do not know the change location, we have to perform

scanning when forming the detection statistic. We discuss two settings: the offline scenario

where we have fixed samples and the online setting where the data come sequentially.

4.2.1 Offline Change Detection by “Scan” Statistic

In the offline setting, we observe samplesXT = {x1, ..., xT} on a time horizon t = 1, ..., T ,

with xt’s taking values in an n-element set Ω = {1, . . . , n}. Assume there exists time

K ∈ {1, ..., T} such that for t ≤ K, xt are i.i.d. drawn from some pre-change distribution

p, and for t ≥ K + 1, xt are i.i.d. drawn from the post-change distribution q. Our goal is to

design a test which, based on the samples XT , decides on the null hypothesis K = T (“no

change”) versus the alternative K < T (“change”). Meanwhile, we want to control the

probability of false alarm to be at most a given α > 0, and under this restriction to make

the probability of successfully detecting the change as large as possible, at least when K

and T −K both are moderately large and q “significantly differs” from p.

We use the proposed test in Section 4.1 to construct a scan statistic for change detection.
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Given T , we select a collection of bases Bj , 1 ≤ j ≤ J . A base B is a segment of

{1, ..., T} partitioned into three consecutive parts: pre-change part Blf, middle part Bmd,

and post-change part Brg; the last instant in Blf is the first instant in Bmd, and the first instant

in Brg is by 1 larger than the last instant in Bmd. For example: Blf = {1, ..., 10}, Bmd =

{10, 11}, Brg = {12, ..., 20}. We associate with baseB an individual test TB which operates

with observations {xt, t ∈ Blf ∪ Brg} only. This test aims at deciding on two hypotheses:

(1) “No change:” there is no change on B, that is, either K is less than the first, or larger

than or equal to the last time instant from B; (2) “Change:” the change point K belongs to

the middle set Bmd.

Given α > 0 and a base B, we call individual test TB associated with this base α-

feasible, if the probability of false alarm for TB is at most α, meaning that whenever there

is no change on the base B of the test, the probability for the test to claim change is at

most α. Our “overall” test T works as follows: we equip bases Bj , 1 ≤ j 6 J , with

tolerances αj > 0 such that
∑J

j=1 αj = α, and then associate with each base Bj with a

αj-feasible individual test TBj (as given by the `2 test in Section 4.1.1). Given observations

XT , we perform one by one the individual tests in some fixed order, until either (i) the

current individual test claims change; and when it happens, the overall test claims change

and terminates, or (ii) all J individual tests are performed and no one of them claimed

change; in this case, the overall test claims no change and terminates.

Proposition 4.4 (False Alarm Rate for Offline Change Detection). With the outlined struc-

ture of the overall test and under condition
∑

j αj = α, the probability of false alarms for

T (of claiming change when K = T ) is at most α.

4.2.2 Online Change Detection

In practice, the online detection of abrupt changes is often of more interest. Instead of

giving a fixed duration of samples in the offline setting, the observations arrive sequentially

for online detection tasks. The goal is to detect the change as quickly as possible, under the

71



constraint that the false alarm rate is under control.

The proposed detection procedure based on `2 test is illustrated in Figure 4.2. Given

a sequence {xt, t = 1, 2, . . .}, as each time t, we search over all possible change-points

k < t. In particular, we form two sequences before k and two sequences between [k, t]

with the length all equal to Mt,k = d(t− k)/2e; their corresponding empirical distributions

are denoted as ξt,k, ξ′t,k, and ηt,k, η′t,k. The detection statistic χt,k is formed as:

χt,k = Mt,k(ξt,k − ηt,k)>Σ(ξ′t,k − η′t,k). (4.13)

We note that the multiplicative term Mt,k can be viewed as a scaling parameter (which is

proportional to the standard deviation of the test statistic) such that the variance of χt,k is

of a constant order as t− k increases.

⋯⋯⋯⋯⋯⋯ ⋯⋯⋯ ⋯⋯⋯ 𝑥! ⋯⋯⋯ ⋯⋯⋯ 𝑥"
time

𝜂",! 𝜂",!$𝜉",! 𝜉",!$

𝜂",!$ 𝜂",!$$𝜉",!$ 𝜉",!$$

Potential post-change data

Potential 
change-point

𝑥!$

Figure 4.2: Illustration of the sequential change detection procedure.

The online change-point detection procedure is given by a stopping time

T := inf{t : max
0≤k≤t

χt,k ≥ b}, (4.14)

where b > 0 is a pre-specified threshold that needs to be determined by controlling the false

alarm rate. An intuitive interpretation of T is that at each time t, we search over all possible

change-pints k < t, and raise alarm if the maximum statistic exceeds the threshold.

Remark 4.1 (Window-Limited Procedure). In practice, we can also adopt a window-limited
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version of T as follows to improve the computational efficiency:

T ′ = inf{t : max
m0≤t−k≤m1

χt,k ≥ b}, (4.15)

where m0 and m1 are the lower and upper bounds of the window size that we would like

to scan for the possible changes. Usually m0 can be set such that the resulted sequences

are long enough to have meaningful empirical distributions for constructing the detection

statistic in (4.13). For practical considerations, we usually require the window size m1 to

be at least the expected detection delay, as discussed in [109] where the original theoretical

study of the window-limited test was proposed.

Remark 4.2 (Comparison with the Binning Approach [116]). We note that the binning

approach in [116] also considers discretized space and scans over all possible change-points

when approximating log-likelihood ratio statistics. Compared with [116] which assumes

the pre-change distribution is known, the detection procedure (4.14) and its window-limited

version (4.15) do not need the prior knowledge of the pre-change distribution. We did

not use the log-likelihood ratio statistic here but scan over all neighboring time windows

directly to detect any significant difference in empirical distributions.

4.2.3 Theoretical Analysis

Now we characterize the two fundamental performance metrics for sequential change de-

tection, namely the average run length (ARL) and the expected detection delay (EDD). We

cannot use the previous method in Proposition 4.1 to determine the threshold because the

bound is too conservative and will be intractable when the ARL is large. Here we present

an asymptotic theoretical approximation.

To compute the ARL, we need to quantify the distribution of T when data are sampled

from the same distribution p. Intuitively, the detection statistic χt,k is small when the sam-

ples are from the same distribution. A relatively standard result is that when the threshold
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b tends to infinity, the stopping time’s asymptotic distribution is approximately exponential

when there is no change. This is proven true in various scenarios [189, 193, 225]. The main

idea is to show that the number of boundary cross events for detection statistics over dis-

joint intervals converges to Poisson random variable in the total variation norm; the result

can be established by invoking the Poisson limit theorem for dependent samples. Detailed

proofs by adapting those techniques into the specific `2 test setting are left for future work.

Under such approximation, we have

P∞(T ′ ≥ m) = P∞
(

max
1≤t≤m

max
m0≤t−k≤m1

χt,k ≥ b

)
≈ e−λm,

where P∞ is the probability measure when the change-point equals to∞, i.e., the change

never happens; and E∞ denotes the corresponding expectation under this probability mea-

sure. Therefore, we only need to compute the probability P∞(T ′ ≥ m) and find the pa-

rameter λ, then the expectation of T ′ equals 1/λ. We adopt the change-of-measure trans-

formation [226, 223, 186] and characterize the local properties of a random field. We first

quantify the correlation between χt,k ane χτ,s in order to find the probability P∞(T ′ ≥ m)

theoretically.

Proposition 4.5 (Temporal Correlation of Sequential Detection Statistics). Suppose all

samples are i.i.d. drawn from the same distribution p, denote M = t − k = τ − s,

then the correlation between χt,k and χτ,s is

Corr(χt,k, χτ,s) = 1− 2

M
|t− τ | − 2

M
|k − s|+ (t− τ)2 + (s− k)2

M2
.

Based on the correlation result, we have the following Theorem characterizing the ARL

of the proposed `2 sequential detection procedure. The main idea is to use a linear approx-

imation for the correlation between detection statistics χt,k and χτ,s. Then the behavior

of the detection procedure can be related to a random field. By leveraging the localization

theorem [186], we can obtain an asymptotic approximation for ARL when the threshold b is
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large enough (in the asymptotic sense). Define a special function v(·) which is closely re-

lated to the Laplace transform of the overshoot over the boundary of a random walk [192]:

v(x) ≈
2
x
[Φ
(
x
2

)
− 0.5]

x
2
Φ
(
x
2

)
+ φ
(
x
2

) , (4.16)

where φ(x) and Φ(x) are the probability density function and cumulative density function

of the standard Gaussian distribution; this is the same function as used in Chapter 3 (see

(3.15)). For simplicity, we denote the variance of χt,k as

σ2
p := Var[χt,k] = 4

[∑n
i=1 σ

2
i p

2
i (1− pi)2 +

∑
i 6=j σiσjp

2
i p

2
j

]
. (4.17)

Theorem 4.2 (ARL Approximation). For large values of threshold b→∞, the ARL of the

test T ′ can be approximated as

E∞[T ′] =
1

2
b−1eb

2/(2σ2
p)[2πσ2

p]
1/2
/∫ [4b2/(m0σ2

p)]1/2

[4b2/(m1σ2
p)]1/2

yν2(y)dy(1 + o(1)). (4.18)

The main contribution of Theorem 4.2 is to provide a theoretical method to set the

threshold that can avoid the Monte Carlo simulation, which could be time-consuming, es-

pecially when ARL is large. Although there is no close-form analytical solution for b, when

we let the right-hand side of (4.18) equals to a specific ARL value (a target lower bound for

ARL), we can numerically compute the right-hand side of (4.18) for any given threshold

value b. Then we search over a grid to find the corresponding threshold values. Table 4.1

validates the approximation’s good accuracy by comparing the threshold obtained from

(4.18) and compares it with that obtained by the Monte Carlo simulation. In detail, we gen-

erate 2000 independent trials of data from nominal distribution p and perform the detection

procedure T ′ for each trial; the ARL for each threshold b is estimated by the average stop-

ping time over 2000 trials. In Table 4.1, we report the threshold obtained through Monte

Carlo simulation (as a proxy for the ground-truth) and on the approximation (4.18), for a
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range of ARL values. The ARL values in Table 4.1 correspond to the lower bound of an

ARL; since ARL will increase when increasing the threshold. So if we have a good approx-

imation, this can help us to calibrate the threshold and control the false alarm rate. The

results in Table 4.1 indicate that the approximation is reasonably accurate since the relative

error is around 10% for all specified ARL values. It is worth mentioning that ARL is very

sensitive to the choice of threshold, making it challenging to estimate the threshold with

high precision. However, the EDD is not that sensitive to the choice of the threshold, which

means that a small difference in the threshold will not significantly change EDD.

Table 4.1: Comparison of the threshold b obtained from simulations and the approximation
(4.18). Scanning window m0 = 10,m1 = 50, support size n = 20, nominal distribution p
is uniform.

ARL 5k 10k 20k 30k 40k 50k
Simulation 2.0000 2.1127 2.2141 2.2857 2.3333 2.3750
Theoretical 1.8002 1.8762 1.9487 1.9897 2.0183 2.0398

After the change occurs, we are interested in the expected detection delay, i.e., the ex-

pected number of additional samples to detect the change. There are a variety of definitions

for the detection delay [127, 154, 149, 205]. To simplify the study of EDD, it is custom-

ary to consider a specific definition E0[T ′], which is the expected stopping time when the

change happens at time 0 and only depends on the underlying distributions p, q. It is not al-

ways true that E0[T ′] is equivalent to the standard worst-case EDD in literature [127, 154].

However, since E0[T ′] is certainly of interest and is reasonably easy to approximate, we

consider it as a surrogate here. We adopt the convention that there are certain pre-change

samples {x−1, x−2, . . .} available before time 0, which can be regarded as reference sam-

ples.

Note that for any t > 0 and k = 0, the sequences ξt,0 and ξ′t,0 come from the pre-

change distribution p since they belong to the reference sequence {x−1, x−2, . . .}, and the

sequences ηt,0 and η′t,0 are from the post-change distribution q. Therefore, the expectation
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of the detection statistic χt,k is E[χt,k] = d(t− k)/2e(p− q)>Σ(p− q), which determines

the asymptotic growth rate of the detection statistic after the change. Using Wald’s identity

[187], we are able to obtain a first-order approximation for the detection delay, provided

that the maximum window size m1 is large enough compared to the EDD.

Theorem 4.3 (EDD Approximation). Suppose b → ∞, with other parameters held fixed.

If the window size m1 is sufficiently large and greater than 2b/[(p− q)>Σ(p− q)], then the

expected detection delay

E0[T ] =
b(1 + o(1))

(p− q)>Σ(p− q)/2 . (4.19)

Remark 4.3 (Optimize weights to minimize EDD). From the EDD approximation in (4.19),

it is obvious that we can minimize EDD by optimizing over the weights matrix Σ. In par-

ticular, the EDD can be minimized when we can find the weights Σ such that the weighted

`2 divergence between p and q is maximized. This is consistent with the subsequent dis-

cussion in Section 4.3.1. In particular, when we have certain prior information about the

distributions p and q, we could apply the optimization-based method in Section 4.3.1 to

find the optimal weights to reduce the detection delay.

4.3 Optimized Weights and Projection of High-Dimensional Data

This section discusses setting optimal weights that adapt to the closeness at different el-

ements in Ω, given some a prior information on p and q. In addition, we tackle the data

high-dimensionality by adopting the Wasserstein-based principal differences analysis [139]

to find the optimal projection.

4.3.1 Optimize Weights for `2 Test

So far, we primarily focused on the case with uniform weights σi ≡ 1. In this section, we

will discuss how to further improve performance by choosing the optimal weights. In the
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simplest case, when we know in advance (or can infer from additional “training” samples)

that the distribution shift p → q (nearly) does not affect probabilities with indexes from

some known set I , we can set σi = 0 for i ∈ I and σi = 1 for i 6∈ I . This will keep the

magnitude
∑

i σi(pi − qi)2 on the left hand side of (4.4), as compared to uniform weights,

intact, but will reduce the right hand side of (4.4).

A framework to optimize over σi’s is as follows. Assume that we know distributions

p, q belong to a set X ⊂ ∆n, which is defined by a set of quadratic constraints:

X = {p ∈ ∆n : p>Qkp ≤ 1, k = 1, . . . , K}, (4.20)

where Qk ∈ Rn×n are positive semi-definite (Qk � 0).

A natural way to measure “magnitude of difference” is to use ‖p − q‖2 (the case

using ‖p − q‖1 can also be similarly defined and solved). Assume we want to select

σ = [σ1, ..., σn] ≥ 0 to make reliable detection of difference ‖p − q‖2 ≥ ρ, for some

given ρ > 0. To achieve this, we can impose a fixed upper bound on the right hand side in

(4.4) when p = q ∈ X , i.e., to require σ to satisfy

g∗(σ) := max
p∈X

∑

i

σ2
i p

2
i ≤ a

with some given a, and to maximize under this constraint the quantity

f∗(σ) := min
p,q
{∑i σi(pi − qi)2 : p, q ∈ X , ‖p− q‖2 ≥ ρ} .

For any σ that satisfies g∗(σ) ≤ a, the associated test which claims H1 when the statistics

(defined in (4.2)) |χ| > 2
√

2θM−1
√
a is with type-I risk at most 1/θ2. At the same time,

large f∗(σ) is in favor of good detection of distribution shift of magnitude ‖p − q‖2 ≥ ρ.

By the homogeneity in σ, we can set a = 1 without loss of generality.
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In general, both g∗ and f∗ are difficult to compute. Therefore, we replace the problem

max
σ≥0
{f∗(σ) : g∗(σ) ≤ 1}

with its safe tractable approximation:

max
σ≥0
{f(σ) : g(σ) ≤ 1} , (4.21)

where f is a concave efficiently computable lower bound on f∗, and g is a convex efficiently

computable upper bound on g∗.

To build g, note that when p ∈ X , the matrix P = ppT ∈ Rn×n is positive semi-definite

(P � 0), non-negative in each entry (P ≥ 0),
∑n

i,j=1 Pij = 1, and Tr(PQk) ≤ 1, k ≤ K,

by (4.20). Consequently, the function

g(σ) := max
{

Tr(Σ2P ) : P � 0, P ≥ 0,
∑n

i,j=1 Pij = 1,Tr(PQk) ≤ 1, k ≤ K
}
,

with Σ := Diag{σ1, ..., σn}, is an efficiently computable convex upper bound on g∗. Simi-

larly, to build f , observe that the matrix S = (p− q)(p− q)T stemming from p, q ∈ X with

‖p− q‖2 ≥ ρ belongs to the convex set

S =
{
S : S � 0,

∑n
i,j=1 |Sij| ≤ 4,

∑n
i,j=1 Sij = 0,Tr(S) ≥ ρ2,Tr(SQk) ≤ 4, k ≤ K

}
.

Therefore,

f∗(σ) ≥ f(σ) := min
S∈S

Tr(ΣS),

and the function f(σ) is concave and efficiently computable.

To implement the problem in (4.21) efficiently, we derive the tractable dual formulation

in the following. Note that these constraints can be greatly simplified if Qk are diagonal

matrices, especially for the high dimensional case.
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Proposition 4.6 (Dual Reformulation). The dual formulation of the optimization problem

(4.21) is

max λρ2 − 4
∑

k xk − 4ξ

s.t. λ ≥ 0, P < 0, ξ ≥ 0, xk ≥ 0, U ≥ 0,W ≥ 0,Λ < 0, V ≥ 0, µk ≥ 0, 1 ≤ k ≤ K,
∑

k xkQk + U −W − P − rJ − λIn < −Σ,

Uij +Wij ≤ ξ, 1 ≤ i ≤ n, 1 ≤ j ≤ n,
∑

k µk − ν ≤ 1, −Λ− V +
∑

k µkQk − νJ < Σ2.

where Σ = Diag{σ1, ..., σn} and J ∈ Rn×n is a matrix with all elements equal to 1.

We present an illustrative simulation example to show the benefits of optimizing weights

σ. The experimental set-up is as follows. Consider the sample space Ω = {1, . . . , n}

with n = 48. The distributions p and q are set as uniform distributions on the subset

Ω1 = {1, . . . , 3n/4} and Ω2 = {n/4 + 1, . . . , n}, respectively. The common support of p

and q consists of n/2 elements. We first use training data to estimate the matrix Q in our

formulation. Specifically, we sample 32 observations from each distribution and compute

the empirical distribution of all observations. This process is repeated for m = 50 trials,

and the resulting Q is solved from the following optimization problem

min log detA−1

s.t. ‖Api‖2 ≤ 1, i = 1, . . . ,m,

where A = Q1/2 and pi is the empirical distribution in the i-th trial. The volume of the

ellipsoid defined with Q is proportional to detA−1. Thus the solution to the above opti-

mization problem is the minimum ellipsoid that contains them empirical distributions [30].

The optimal weights are shown in Figure 4.3 (a). Moreover, we compare the ROC curve of

the test under equal weights σi = 1 and optimal weights in Figure 4.3 (b), averaged over

10,000 trials. The result shows the benefits of using optimized weights.
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Figure 4.3: Illustration of optimal weights on a simulated example. (a): Optimal weights;
(b): The ROC curves under optimal weights and equal weights.

4.3.2 Optimal Projection for High-Dimensional Data

Assume that the two distributions p and q, rather than discrete distributions on a given finite

set, are continuous distributions on Rd. In this situation, we may try to convert observations

x ∈ Rd into observations f(x) taking values in a finite set and apply the proposed test to

the transformed observations.

One way to build f is to project observations x onto one-dimensional subspace and

then split the range of the projection into bins. We propose to select this subspace using,

when available, “training sample” x1, ..., x2T , with the first T observations drawn, inde-

pendently of each other, from the nominal distribution p, and the last T observations drawn

independently of each other and of x1, ..., xT , from the distribution q. A natural selection

of the one-dimensional subspace can be as follows. Denote by e the unit vector spanning

the subspace. Let us look at the sample empirical distributions of the projections of the ob-

servations x1, ..., x2T on e, and try to find unit vector e for which the Wasserstein distance

between the distributions of the first half and the second half of the projections is as large
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as possible [139]. The distance above is, up to factor 1/T , the quantity

φ(e) = min
ωij, 1≤i,j≤2T

{
∑
i,j

|e>(xi − xj)|ωij : ωij ≥ 0, 1 ≤ i, j ≤ 2T ;

∑
j

ωij =





1, i ≤ T

0, i > T

;
∑
i

ωij =





0, j ≤ T

1, j > T

}

= max
λ

{∑T
i=1 λi −

∑2T
i=T+1 λi : λi − λj ≤ |e>(xi − xj)|, 1 ≤ i, j ≤ 2T

}

= Φ(E[e]),

where

E[e] = ee>,

Φ(E) = max
λ

{ T∑
i=1

λi −
2T∑

i=T+1

λi : λi − λj ≤
√

[xi − xj]>E[xi − xj], 1 ≤ i, j ≤ 2T
}
.

Note that function Φ(E) is concave and the goal is to maximize Φ(E) over positive semi-

definite rank-one matrices E = ee> with trace 1. An efficiently solvable convex relaxation

after relaxing the rank-one constraint is:

max
E,λ

{
T∑
i=1

λi −
2T∑

i=T+1

λi : λi − λj ≤
√

[xi − xj]>E[xi − xj], ∀i, j; E � 0,Tr(E) = 1

}
.

After the optimal solution E∗ to the problem is found, we can use standard methods to

obtain a reasonably good e, e.g., take e as the leading eigenvector of E∗.

Here we present a simple numerical illustration for the optimal project. Consider the

two-dimensional Gaussian distributions with same mean value and different covariance

structures. More specifically, let the data X1 to be sampled i.i.d. from N (µ1,Σ1) and data

X2 to be sampled from N (µ2,Σ2), where

µ1 =

[
0 0

]>
, µ2 =

[
2 0

]>
, Σ1 =




5.03 −2.41

−2.41 1.55


 , Σ2 =




5.50 3.30

3.30 2.53


 . (4.22)
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Figure 4.4 shows the optimal projection obtained from 50 training samples from each dis-

tribution (which can be seen to optimally “separate” the two distributions), and the ROC

curve averaged over 10,000 trials that demonstrates the performance gain of the optimal

projection.
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Figure 4.4: Illustration of optimal projection on simulated data. (a): Optimal projection for
two training sets; (b): The ROC curves for optimal projection and random projection.

4.4 Numerical Examples

In this section, we perform some simulations to validate the performance of the `2 test and

compare with two benchmarks: (i) the classical parametric Hotelling’s T 2 test [88]; and

(ii) the non-parametric maximum mean discrepancy (MMD) test [75]. More specifically,

we study the test power of the two-sample test for Gaussian distributions under various

dimensions. Moreover, we show the performance in change detection by studying the

detection power in the offline case and the expected detection delay in the online case,

respectively.

We first introduce briefly the two benchmark procedures.

Hotelling’s T 2 statistic: The Hotelling’s T 2 statistic is a classical parametric test de-

signed utilizing the mean and covariance structures of data, and thus it can detect both the

mean and covariance shifts [88]. Given two set of samples {x1, . . . , xn1} and {y1, . . . , yn2},

83



the Hotelling’s T 2 statistic is defined as

t2 =
n1n2

(n1 + n2)
(x̄− ȳ)>Σ̂−1(x̄− ȳ), (4.23)

where x̄ and ȳ are the sample mean and Σ̂ is the pooled covariance matrix estimate.

MMD statistic: The MMD test is a non-parametric benchmark for two-sample test and

change detection [75, 122]. Given a class of functions F and two distributions p and q,

the MMD distance between p and q is defined as MMDF(p, q) = supf∈F(Ex∼p[f(x)] −

Ey∼q[f(y)]). For MMD in reproducing kernel Hilbert spaces (RKHS), given samples

{x1, . . . , xn1} and {y1, . . . , yn2}, an unbiased estimate of squared MMD distance is given

by

MMD2
u =

1

n1(n1 − 1)

n1∑

i=1

∑

j 6=i
k(xi, xj) +

1

n2(n2 − 1)

n2∑

i=1

∑

j 6=i
k(yi, yj)

− 2

n1n2

n1∑

i=1

n2∑

j=1

k(xi, yj),

(4.24)

where k(·, ·) is the kernel function associated with RKHS.

4.4.1 Two-Sample Test

Following a similar setup as in [75], we investigate the performance of various tests as

a function of the dimension d of the sample space Rd, when both p and q are Gaussian

distributions. We consider values of d up to 256. The type-I risk for all tests is set as

α = 0.05. The sample size is chosen as n1 = n2 = 100, and results are averaged over

500 independent trials. In the first case, the distributions p, q have different means and the

same variance. More specifically, p = N (0, Id) and q = N (µ1/
√
d, Id) with µ = 0.8.

Note that the division of each element of the mean vector by
√
d makes the difficulty of the

hypothesis testing similar across all d values. In the second case, the distributions p, q have
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the same means but different variance. More specifically, p = N (0, Id) and q = N (0,Σ)

with Σ = Diag{0.25, 1, . . . , 1}, i.e., we only scale the first diagonal entry in the covariance

matrix to make the hypothesis testing problem challenging to perform.

The test power for different methods is shown in Figure 4.5. The test power drops when

the dimension increases, which is consistent with the results in [166]. Hotelling’s T 2 test

performs good in low dimensions, but its performance degrades quickly when we consider

higher dimensional problems. The MMD test is comparable to `2 test in low dimensions,

but the `2 test tends to outperform the MMD test in high dimensions. The reason can be

that by projecting to one-dimensional spaces using a good projection, the power of `2 test

tends to decrease slower compared to Hotelling’s T 2 and MMD tests.
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Figure 4.5: Comparison of test power of the proposed test versus classic Hotelling’s T 2

statistic and the MMD statistic, when performing a two-sample test on two Gaussian dis-
tributions, with significance level α = 0.05. (Left) Gaussian distributions having the same
variance and different means; (Right) Gaussian distributions having same mean and differ-
ent variances.

4.4.2 Offline Change Detection

As an extension and application of the proposed `2 test, we investigate the performance

for the offline change detection and compare the detection power, i.e., the probability of

successfully detecting the change when there is a change.

Assume we have sample x1, . . . , xT with a fixed time horizon T = 200, when there is

a change, we set the change-point K = 100. The `2 detection statistic at each time t is
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Mχ with χ defined in (4.2) (here M = 2LR/(L + R) is the normalizing constant). To

avoid the segment being too short, we compute the detection statistics for time instances

t ∈ [w, T − w] with w = 20, and then take the maximum. Similarly, the Hotelling’s T 2

statistic at each time t is computed using (4.23) by treating data before t as one sample and

after t as another sample; the MMD statistic is computed in a similar way from (4.24). We

claim there is a change-point when the maximum of the detection statistics within window

t ∈ [w, T − w] exceeds the threshold. The thresholds for different methods will be chosen

by Monte Carlo simulation to control the false alarm rate.

We consider the following cases (distribution changes) in the numerical experiments.

Case 1 (Discrete distributions). The support size is n = 10, distribution shifts from

p = 1/10 (uniform) to q = [1/30, 2/30, . . . , 5/30, 5/30, . . . , 2/30, 1/30] (non-

uniform).

Case 2 (Gaussian mean and covariance shift). The distribution shifts from two-dimensional

Gaussian N (0, I2) to N
(
[0.5 0]>, [1 0.7]>[1 0.7] + [−1 0.4]>[−1, 0.4]

)
.

Case 3 (Gaussian to Gaussian mixture). The distribution shifts fromN (0, I20) to the Gaus-

sian mixture 0.8N (0, I20) + 0.2N (0, 0.1I20).

Case 4 (Gaussian to Laplace). The distribution shifts from standard Gaussian N (0, 1) to

Laplace distribution with zero mean and standard deviation 0.8.

The detection power is averaged over 500 repetitions and is reported in Table 4.2. It

shows that the proposed `2 test outperforms the classic Hotelling’s T 2 and MMD tests,

especially when the distribution change is difficult to detect (such as Case 3 and Case 4,

where pre- and post-change distributions are close). For Case 2 detecting mean and covari-

ance shifts, the MMD test performs slightly better. A possible explanation is that the MMD

metric can capture the difference between pre- and post-change Gaussian distributions well

in a fairly low-dimensional setting.
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Table 4.2: Detection power in offline change detection. The sequence of length is 200.
Thresholds for all methods are calibrated so that the significance level is α = 0.10 and
α = 0.25. Averaged over 500 trials.

α = 0.10 α = 0.25

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4
`2 test 0.52 0.85 0.18 0.56 0.70 0.90 0.35 0.71
MMD 0.32 0.90 0.16 0.43 0.60 0.95 0.34 0.69

Hotelling’s T 2 0.07 0.23 0.09 0.06 0.20 0.23 0.23 0.23

4.4.3 Online Change Detection

We further investigate the performance for online change detection and compare the aver-

age detection delay, i.e., the number of samples it takes to detect the change after the change

happens. More specifically, the detection delay is the difference between the stopping time

and the true change-point.

Assume we have samples {xt, t = 1, 2, . . .} that are available sequentially. We adopt

the convention that there are pre-change samples available as {. . . , x−2, x−1, x0}, which

are referred as historical data and can be used during the detection procedure. Consider

the window-limited `2 detection procedure defined in (4.15) with parameter m0 = 20 and

m1 = 100. The Hotelling’s T 2 detection statistic at each time t is constructed as (x̄t −

µ̂)T Σ̂−1(x̄t− µ̂) where x̄t is the average of samples within window [t−m0 +1, t], and µ̂, Σ̂

are estimated from historical data. The MMD statistic is constructed in the same way as in

[122] with block sizeB0 = 20 and number of blocksN = 5. We will claim change and stop

the detection procedures when the detection statistic exceeds the threshold; the thresholds

for different methods are chosen by Monte Carlo simulation to control the average run

length.

We consider the following four cases, which are modified slightly from the offline case.

We have increased slightly the signal-to-noise ratio in certain cases to increase the de-

tectability in the online setting.

Case 1 (Discrete distributions). The support size is n = 10, distribution shifts from p =
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1/10 (uniform) to q = [0.04, 0.14, 0.32, 0, 0, 0, 0, 0.32, 0.14, 0.04] (non-uniform).

Case 2 (Gaussian mean and covariance shift). The distribution shifts from two-dimensional

Gaussian N (0, I2) to N
(
[0.5 0]>, [1 0.7]>[1 0.7] + [−1 0.4]>[−1 0.4]

)
.

Case 3 (Gaussian to Gaussian mixture). The distribution shifts fromN (0, I20) to the Gaus-

sian mixture 0.4N (0, I20) + 0.6N (0, 0.1I20).

Case 4 (Gaussian to Laplace). The distribution shifts from standard Gaussian N (0, 1) to

Laplace distribution with zero mean and standard deviation 0.7.

The evolution paths of detection statistics for all cases are given in Figure 4.6. To simulate

EDD, we let the change occur at the first time instant of the testing data. The detection

delay is averaged over 500 repetitions and reported in Table 4.3.
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Figure 4.6: Illustration of online change detection using the `2 divergence under four simu-
lated cases explained in Section 4.4.3. For each case, the upper plot shows the raw data and
the bottom plot shows the evolution path of the `2 detection statistic, with true change-point
indicated in red dash lines.

Table 4.3: Comparison of EDD for online change detection using the proposed statistic, the
MMD, and the Hotelling’s T 2 statistic. The parameter is n = 10, m0 = 20, m1 = 100 and
thresholds for all methods are calibrated so that ARL = 500. The dashed line indicates the
method fails to detect the change (i.e., the delay is larger than the time horizon).

Case 1 Case 2 Case 3 Case 4
`2 test 20.34 89.66 69.23 92.49
MMD 258.02 47.72 — 394.91

Hotelling’s T 2 406.42 36.79 — 370.61
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4.5 Real Data Study: Online Gesture Change Detection

In this section, we apply our method to the sequential gesture detection problem using a real

dataset: the Microsoft Research Cambridge-12 (MSRC-12) Kinect gesture dataset [61].

This dataset consists of sequences of human skeletal body part movements (represented

as body part locations) collected from 30 people performing 12 gestures. There are 18

sensors in total, and each sensor records the coordinates in the three-dimensional Cartesian

coordinate system at each time. Therefore there are 54 attributes, denoted by yt ∈ R54,

t = 1, 2, . . . , T . The goal is to detect the transition of gestures from the sequences of

sensor observations.

We apply the proposed online change detection procedure defined in (4.15) to the

MSRC-12 dataset, and the detailed scheme is outlined as follows. We first preprocess

the data by removing the frames that the person is standing still or with little movements.

Then we select a unit-norm vector u ∈ R54 and project data into this direction to obtain

a univariate sequence: xt = u>yt. The projection vector u is found by finding the opti-

mal projection to maximize the Wasserstein distance described in Section 4.3.2. Then we

discretize the univariate sequence into n bins. At each time t, we construct the detection

statistic maxm0≤t−k≤m1 χt,k as illustrated in Figure 4.2.

The parameters are set as m0 = 20, m1 = 300 for the detection procedure. The

detection statistics are shown in Figure 4.7, with the true change indicated by red dash

lines. We also compare the `2 test with tests based on Hotelling’s T 2 statistic, `1 distance,

and KL divergence. For the `1 distance based approach, we build the test statistic as for

time t and potential change-point k < t as the `1 distance between empirical distributions

of samples before and after k, then the detection statistic is computed by maximizing over

all potential change-points k in m0 ≤ t − k ≤ m1. The KL divergence based approach

is built similarly by replacing the `1 distance with KL divergence (see [219] for detailed

implementations).
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Figure 4.7: Real-data example using online gesture change detection. Comparison of de-
tection statistics (under uniform weights) for “bow” to “throw”, for the proposed procedure,
the Hotelling’s T 2 test, `1 test, and the KL test. Red dash lines indicate the true change-
point (hand-labeled).

From the results in Figure 4.7, we can observe that our sequential detection procedure

based on the `2 divergence can detect the change right after it happens. This is because

the detection statistic before the change has a smaller variance, which indicates that we

can set the threshold to be reasonably low for quicker detection. Moreover, there is a clear

linear increasing trend after the change, enabling quick and reliable detection. In contrast,

Hotelling’s T 2 statistic does not have the desired online change detection behavior. The

detection statistic is noisy before the change and does not have a consistent positive shift

after the change; the KL test is even worse in this regard. The `1 divergence-based test has

a similar behavior as the `2 divergence. However, the `1 divergence has smaller “signal-to-

noise” ratio in that the variance between the change is larger, and post-change distribution

drift seems to be smaller.

4.6 Conclusion and Discussions

We have presented a new non-parametric change detection procedure based on the opti-

mal weighted `2 divergence. We study the optimality and various theoretical properties

of the weighted `2 divergence for the offline and online change-point detection. We also

study the practical aspects, including calibration threshold using training data, optimizing

weights, and finding an optimal projection for high-dimensional data. We demonstrate the

good performance of the proposed method using simulated and real-data for human gesture

detection.
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CHAPTER 5

ROBUST HYPOTHESIS TESTING WITH WASSERSTEIN UNCERTAINTY SETS

This chapter studies the data-driven robust hypothesis testing problem with Wasserstein

uncertainty sets. This work is partially summarized in [69]. Section 5.1 introduces the

problem formulation of data-driven robust hypothesis testing. Section 5.2 presents the

optimal test. Section 5.3 presents the asymptotic distribution of the optimal radii of the

uncertainty sets. Section 5.4 demonstrates our robust tests’ good performance using both

synthetic and real data.

5.1 Problem Setup and Wasserstein Minimax Test

Let Ω ⊂ Rd be the sample space, where d is the data dimension. Denote P(Ω) as the

set of Borel probability measures on Ω. Given P1, P2 ∈ P(Ω), the simple hypothesis test

decides whether a given test sample ω is from P1 or P2. In many practical situations, P1, P2

are not exactly known, but instead we have access to n1 and n2 training samples for each

hypothesis. Denote the two sets of training samples as Ω̂k = {ω̂1
k, . . . , ω̂

nk
k }, k = 1, 2, and

define empirical distributions constructed using training data sets as

Qk =
1

nk

nk∑

i=1

δω̂ik .

Here δω denotes the Dirac point mass concentrated on ω ∈ Ω.

To capture the distributional uncertainty, we consider composite hypothesis test of the

form:

H0 : ω ∼ P1, P1 ∈ P1;

H1 : ω ∼ P2, P2 ∈ P2,
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where P1,P2 are collections of relevant probability distributions. In particular, we will

consider them to be Wasserstein uncertainty sets. Below let us describe our problem setup.

5.1.1 Randomized Test

We consider the set of all randomized tests defined as follows [99].

Definition 5.1 (Randomized test). Given hypothesesH0, H1, a randomized test is any Borel

measurable function π : Ω→ [0, 1] which, for any observation ω ∈ Ω, accepts the hypoth-

esis H0 with probability π(ω) and H1 with probability 1− π(ω).

In the randomized test, the decision to accept a hypothesis can be a random selection

based on the function π(ω). Thus, the usual deterministic test (e.g., considered in [69]) is a

special case by setting π(ω) ∈ {0, 1} and the randomized test is more general.

For a simple hypothesis test with hypotheses P1 and P2, we define the risk of a random-

ized test π as the summation of Type-I and Type-II errors:

Φ(π;P1, P2) := EP1 [1− π(ω)] + EP2 [π(ω)], (5.1)

where EP denotes the expectation with respect to the random variable ω that follows distri-

bution P . Here we consider equal weights on the Type-I and Type-II errors; other weighted

combinations can be addressed similarly.

5.1.2 Wasserstein Minimax Formulation

The minimax hypothesis test finds the optimal test that minimizes the worst-case risk over

all possible distributions in the composite hypotheses:

inf
π

sup
P1∈P1,P2∈P2

Φ(π;P1, P2). (5.2)

The resulting worst-case solution P ∗1 , P
∗
2 are called the least favorable distributions (LFDs)

in the classical robust hypothesis testing literature [89, 91].
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We consider uncertainty sets based on the Wasserstein metric of order 1, defined as:

W(P,Q) := min
γ∈Γ(P,Q)

{
E(ω,ω′)∼γ [c(ω, ω′)]

}
,

where c(·, ·) : Ω × Ω → R+ is a metric on Ω, and Γ(P,Q) is the collection of all Borel

probability measures on Ω×Ω with marginal distributions P andQ. Define the Wasserstein

uncertainty sets P1,P2 as Wasserstein balls centering at two empirical distributions:

Pk := {Pk ∈P(Ω) : W(Pk, Qk) ≤ θk}, k = 1, 2, (5.3)

where θ1, θ2 > 0 specify the radii of the uncertainty sets. See Chapter 2.2 for useful

background information and preliminaries.

Remark 5.1 (Comparison with Huber’s censored likelihood ratio test). Huber’s seminal

paper [89] considered a deterministic minimax test with uncertainty sets referred to as ε-

contamination sets:

Pk = {(1− εk)pk + εkfk, fk ∈P(Ω)},

where εk ∈ (0, 1), pk is the nominal density function, and fk is the density that can be

viewed as the perturbation, k = 1, 2. Huber proved that the optimal test in this setting is a

censored version of the likelihood ratio test, with censoring thresholds c′, c′′, and the LFDs

are given by:

q1(x) =





(1− ε1)p1(x) p2(x)/p1(x) < c′′

1
c′′

(1− ε1)p2(x) p2(x)/p1(x) ≥ c′′
;

q2(x) =





(1− ε2)p2(x) p2(x)/p1(x) > c′

c′(1− ε2)p1(x) p2(x)/p1(x) ≤ c′
.

Huber assumed the exact knowledge of the nominal distributions p1 and p2. This is different

from our setting, where we only have limited samples from each hypothesis. A simple
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observation is that if we set pk to be the empirical distribution, then the ratio p2(x)/p1(x)

will be∞ on Ω̂2 \ Ω̂1 and 0 on Ω̂1 \ Ω̂2. In such a case, the LFDs proposed by Huber are

degenerate

q1(x) =





(1− ε1)/n1 x ∈ Ω̂1

ε1/n2 x ∈ Ω̂2

; q2(x) =





(1− ε2)/n2 x ∈ Ω̂2

ε2/n1 x ∈ Ω̂1

,

which do not lead to any meaningful test.

5.2 Tractable Convex Reformulation and Optimal Test

The saddle point problem (5.2) for the Wasserstein minimax test is an infinite-dimensional

variational problem, which in the original form does not amend to any tractable solution.

In this section, we derive a finite-dimensional convex reformulation for finding the optimal

test.

At the core of our analysis is the following strong duality result, which means we can

exchange the order of infimum and supremum in our problem:

inf
π

sup
P1∈P1,P2∈P2

Φ(π;P1, P2) = sup
P1∈P1,P2∈P2

inf
π

Φ(π;P1, P2). (5.4)

This is essential in leading to closed-form expression for the optimal test and convex re-

formulation in solving the LFDs. Our proof strategy is as follows. First, in Section 5.2.1,

we derive a closed-form expression of the optimal test for the simple hypothesis problem

infπ Φ(π;P1, P2). Next in Section 5.2.2, we develop a convex reformulation of the sup inf

problem on the right-hand side of (5.4), whose optimal solution gives the LFDs. Then in

Section 5.2.3, we construct the optimal minimax test for the original formulation (left-hand

side of (5.4)) leveraging strong duality. Note that here we cannot directly rely on existing

tools such as Sion’s minimax theorem [195], because (i) the space of all randomized tests

is not endowed with a linear topological structure and, (ii) Wasserstein ball is not compact
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in the space P(Ω) since Ω may not be compact.

5.2.1 Optimal Test for Simple Hypothesis Test

Let us start by considering the simple hypothesis test for given P1, P2 ∈ P(Ω), the inner

minimization in the right-hand-side of (5.4):

inf
π

Φ(π;P1, P2). (5.5)

Define the total variation distance between two distributions P1 and P2 as TV(P1, P2) :=

(1/2)
∫

Ω
|dP1(ω)− dP2(ω)|. The following Lemma gives a closed-form expression for the

optimal test, which resembles a randomized version of the Neyman-Pearson Lemma. The

proof is provided in the Appendix.

Lemma 5.1. Let p1(ω) := dP1

d(P1+P2)
(ω). The test

π(ω) =





1, if p1(ω) > 1/2,

0, if p1(ω) < 1/2,

any real number in [0, 1], otherwise,

is optimal for (5.5) with the risk

ψ(P1, P2) :=

∫

Ω

min{p1(ω), 1− p1(ω)} d(P1 + P2)(ω) = 1− TV(P1, P2). (5.6)

Lemma 5.1 shows that the optimal test for the simple hypothesis takes a similar form as

the likelihood ratio test that accepts the hypothesis with a higher likelihood and breaks the

tie arbitrarily. An important observation from the lemma is that the risk only depends on the

common support of the two distributions, defined as Ω0(P1, P2) :=
{
ω ∈ Ω : 0 < p1(ω) <

1
}

, on which P1 and P2 are absolutely continuous with respect to each other. In particular,

if the supports of P1, P2 have measure-zero overlap, then infπ Φ(π;P1, P2) equals to zero
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— the optimal test for two non-overlapping distributions P1, P2 has zero risk.

5.2.2 Least Favorable Distributions

Now we continue with finding the LFDs given the form of the optimal test in Lemma 5.1,

which corresponds to the remaining supermum part of the right-hand side of (5.4):

sup
P1∈P1,P2∈P2

ψ(P1, P2). (5.7)

Note that from the definition of ψ in (5.6), the risk associated with the optimal test, the

problem of finding LFDs admits a clear statistical interpretation: the LFDs correspond to a

pair of distributions in the uncertainty sets that are closest to each other in the total variation

distance.

To tackle the infinite-dimensional variational problem (5.7), let us first discuss some

structural properties of the LFDs that will lead to a finite-dimensional convex reformula-

tion. Consider a toy example where Q1 = δω̂1 , Q2 = δω̂2 , i.e., there is only one sample in

each training data set. The goal of solving LFDs can be understood as moving part of the

probability mass on ω̂1 and ω̂2 to other places such that the objective function ψ(P1, P2) is

maximized. Note that, to find the LFDs, we need to (i) move the probability mass such that

P1 and P2 overlap as much as possible, since the objective value ψ(P1, P2) depends only

on the common support; (ii) then if we were to move pk from ω̂k to a common point ω ∈ Ω,

k = 1, 2, in the least favorable way, then we solve minω∈Ω[p1c(ω, ω̂1) + p2c(ω, ω̂2)] by the

definition of the Wasserstein metric. From the triangle inequality satisfied by the metric

c(·, ·), we need ω to be on the linear segment connecting ω̂1 and ω̂2 and in fact, it has to be

one of the endpoints ω̂1 or ω̂2. More generally, one can generalize this argument, and there

exist LFDs supported on the empirical observations.

The following lemma shows that the LFDs can be solved via a finite-dimensional

convex optimization problem. For simplicity, define the total number of observations
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n := n1 + n2 and the union of observations from both hypotheses:

Ω̂ := Ω̂1 ∪ Ω̂2.

Without causing confusions, we re-label the samples in Ω̂ as {ω̂1, . . . , ω̂n}.

Lemma 5.2 (LFDs). The LFD problem in (5.7) can be reformulated as the following finite-

dimensional convex program:

max
p1,p2∈Rn+
γ1,γ2∈Rn×n+

n∑

l=1

min
{
pl1, p

l
2

}

subject to
n∑

l=1

n∑

m=1

γk,l,mc(ω̂
l, ω̂m) ≤ θk, k = 1, 2;

n∑

m=1

γk,l,m = Ql
k, 1 ≤ l ≤ n, k = 1, 2;

n∑

l=1

γk,l,m = pmk , 1 ≤ m ≤ n, k = 1, 2.

(5.8)

Above, the decision variables γk are square matrices that can be viewed as a joint dis-

tribution on Ω̂ × Ω̂ with marginals specified by Qk and candidate LFDs pk. The lm-th

entry of γk is specified by γk,l,m and the l-th entry of pk (respectively, Qk) is specified by

plk (respectively, Ql
k). In the following, we will denote (P ∗1 , P

∗
2 ) as the LFDs solved from

(5.8). Note that Lemma 5.2 simplifies the LFD problem (5.7) from infinite-dimensional to

finite-dimensional, using the fact that there exist LFDs supported on a finite set Ω̂ ⊂ Ω due

to our analysis. We also comment that the complexity of solving the LFDs in (5.8) is inde-

pendent of the dimension of the data, once the pairwise distances c(ω̂l, ω̂m) are calculated

and given as input parameters of the convex program.
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5.2.3 General Optimal Test

Thus far, we have found one of the LFDs defined on the discrete set of training samples Ω̂ by

solving the original minimax problem’s dual form. However, it may be common in practice

that the given test sample is different from all training samples. In this case, the current

optimal test in Lemma 5.1 is not well-defined. Moreover, this optimal test is not uniquely

defined when there is a tie between the likelihood of samples under two hypotheses. To

overcome these limitations, we will establish an optimal test that is well-defined anywhere

in the observation space Ω.

Our main result is the following theorem which specifies the general form of the optimal

test π∗ and LFDs (P ∗1 , P
∗
2 ) to the saddle point problem (5.2), whose proof is given in the

Appendix.

Theorem 5.1 (General Optimal Test). Let P̂k := Pk∩P(Ω̂), k = 1, 2, and let (P ∗1 , P
∗
2 ) be

the LFDs solved from (5.8). The optimal test over the whole observation space π∗ : Ω →

[0, 1] is given by

(i) On the support of training samples ω ∈ Ω̂, π∗(ω) = π̂∗m for ω = ω̂m, m = 1, . . . , n,

where π̂∗m ∈ [0, 1], m = 1, . . . , n, is the solution to the following system of linear

equations

n∑

m=1

(1− π̂m)P ∗1 (ω̂m) = min
λ1≥0

{
λ1θ1 +

1

n1

n∑

l=1

max
1≤m≤n

{1− π̂m − λ1c(ω̂
l, ω̂m)}

}
,

n∑

m=1

π̂mP
∗
2 (ω̂m) = min

λ2≥0

{
λ2θ2 +

1

n2

n∑

l=1

max
1≤m≤n

{π̂m − λ2c(ω̂
l, ω̂m)}

}
;

(5.9)

the solution is guaranteed to exist.
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(ii) Off the support of training samples ω ∈ Ω \ Ω̂, π∗(ω) ∈ [`(ω), u(ω)], where

`(ω) = max

{
max

i=1,...,n1

min
ω̂∈Ω̂

{
π∗(ω̂) + λ∗1c(ω̂, ω̂

i
1)− λ∗1c(ω, ω̂i1)

}
, 0

}
,

u(ω) = min

{
min

j=1,...,n2

max
ω̂∈Ω̂
{π∗(ω̂j2)− λ∗2c(ω̂, ω̂j2) + λ∗2c(ω, ω̂

j
2)}, 1

}
,

(5.10)

λ∗k, k = 1, 2 are the minimizers to the inf problems on the right hand side of (5.9),

and it is guaranteed that u(ω) ≥ `(ω), ∀ω ∈ Ω \ Ω̂.

To illustrate Theorem 5.1, let us consider a toy example as shown in Figure 5.1. Suppose

the training samples for hypothesis H0 is ω̂1 = −2 and for hypothesis H1 are ω̂2 = 1 and

ω̂3 = 3. Then, the two empirical distributions Q1 is a point mass on ω̂1 = −2 and Q2

is a discrete distribution that ω̂2 = 1 and ω̂3 = 3 occur with equal probability 1/2. By

setting the radii of the uncertainty sets θ1 = θ2 = 1, the LFDs solution to (5.8) becomes

P ∗1 (ω̂1) = 0.69, P ∗1 (ω̂2) = 0.28, P ∗1 (ω̂3) = 0.03, and P ∗2 (ω̂1) = 0.29, P ∗2 (ω̂2) = 0.28,

P ∗2 (ω̂3) = 0.43. Notice that there is a tie at the point ω̂2. Now we will invoke Theorem 5.1

to break this tie. According to (5.9), the general optimal test π∗(ω̂i), i = 1, 2, 3 needs to

satisfy:

1− π∗(ω̂1)− λ∗1c(ω̂1, ω̂1) = 1− π∗(ω̂2)− λ∗1c(ω̂1, ω̂2) = 1− π∗(ω̂3)− λ∗1c(ω̂1, ω̂3).

Therefore, we can set π∗(ω̂2) = 1 − c(ω̂1, ω̂2)/c(ω̂1, ω̂3) = 0.4. This means that the

optimal test at ω̂2 should accept the hypothesis H0 with probability 0.4 (note that the tie

is not broken arbitrarily). As a comparison, consider a different case where ω̂2 = 2 while

everything else is kept the same. It can be verified that there is still a tie at ω̂2. However,

this time we have π∗(ω̂2) = 1 − c(ω̂1, ω̂2)/c(ω̂1, ω̂3) = 0.2, meaning that the optimal test

at ω̂2 should accept the hypothesis H0 with probability 0.2. We note that in this simple

experiment, the chance of accepting H0 decreases if we move ω̂2 away from ω̂1, which is
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consistent with our intuition as illustrated in Figure 5.1. Moreover, we also plot the upper

and lower bounds u(ω) and `(ω), as defined in (5.10), showing the range of the optimal test

off the support of training samples. This example also demonstrates the advantage of using

Wasserstein metrics in defining the uncertainty sets: the optimal test will directly reflect

the data geometry.
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Tie
!𝜔! = −2 !𝜔" = 1 !𝜔# = 3
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Figure 5.1: A toy example illustrating the optimal test depends on the training data config-
uration. In these two cases, there are three samples, and only ω̂2 is different, which takes
values 1 and 2, respectively. Note that the optimal test π∗(ω̂2) will change when the gap
between empirical samples are different. We also illustrate the upper and lower bounds
u(ω) and `(ω) from (5.10).

5.2.4 Extension to Whole Space via Kernel Smoothing

We observe that for samples ω off the empirical support, it is possible to have u(ω) strictly

larger than `(ω) with u(·) and `(·) given in (5.10). In such cases, there are infinite choices

for π∗(ω) according to Theorem 5.1. In this subsection, we describe a specific choice for

π∗(ω) under such situation by kernel smoothing. As a natural strategy, we may use kernel

smoothing to extend LFDs solved from (5.8) to the whole space. This can be done by

convolving the discrete LFDs with a kernel function Gh : Rd → R parameterized by a

(bandwidth) parameter h:

P h
k (ω) :=

n∑

l=1

P ∗k (ω̂l)Gh(ω − ω̂l), k = 1, 2, ∀ω ∈ Ω. (5.11)
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There can be various choices of kernel functions. For instance, given normalized data, we

can use the product of one-dimensional kernel function g : R→ R with bandwidth h > 0:

Gh(x) =
1

hd

∏
g
(xi
h

)
, x ∈ Rd.

An example of the kernel-smoothed LFDs is shown in Figure 1.1. Through convolution,

we can obtain the kernel-smoothed LFDs and the corresponding test π∗h that is defined as

the optimal test for the simple hypothesis under (P h
1 , P

h
2 ) as specified in Lemma 5.1. To

ensure the risk after kernel-smoothing is comparable to that of the general optimal test

π∗, we truncate the resulted π∗h such that (5.10) is satisfied after truncation. After such a

procedure, the test based on the kernel-smoothed LFDs will achieve a good performance

as validated by the numerical experiments in Section 5.4.

5.2.5 Test with Batch Samples

Testing using a batch of samples is important in practice, as one test sample may not achieve

sufficient power. We can construct a test for a batch of samples by assembling the optimal

test for each individual sample. Assume m i.i.d. test samples ω1, ω2, . . ., ωm. Consider

a batch test based on the “majority rule” with the acceptance region for H0 defined as

A := {(ω1, ω2, . . . , ωm) : πm(ω1, ω2, . . . , ωm) ≥ 1/2}, where

πm(ω1, ω2, . . . , ωm) =
1

m

m∑

i=1

π∗(ωi),

can be viewed as the fraction of votes in favor of hypothesis H0 (due to Lemma 5.1). We

can bound the risk of such a majority rule batch test as follows.

Proposition 5.1 (Risk for batch test). The risk of the test πm(ω1, . . . , ωm) is upper bounded

by

max

{
sup
P1∈P1

PP1 [A] , sup
P2∈P2

PP2 [Ac]

}
≤

∑

m/2≤i≤m

(
m

i

)
(ε∗)i(1− ε∗)m−i,
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where

ε∗ = sup
P1∈P1,P2∈P2

Φ(π∗;P1, P2),

is the worst-case risk of the optimal randomized test and A is the acceptance region forH0.

Thus, when ε∗ < 1/2, the above probability tends to 0 exponentially fast as the batch size

m→∞.

5.3 Optimal Radii

In this section, we discuss how to choose the radii θ1, θ2, which is critical to the performance

of the robust optimal test. There is clearly a tradeoff: when the radius is too small, the

optimal test is not robust and does not generalize to new test data; while the radius is

too large, the solution may be too conservative, causing performance degradation. We

expect sample sizes nk to play a major role in determining the optimal radii and thus in

the following we emphasize by denoting the radii as θk,nk and the empirical distributions

as Qk,nk . It should also be remembered that the uncertainty sets Pk(θk,nk), k = 1, 2, also

depend on the sample sizes. We will show that the theoretically optimal radii θk,nk ≤

O(n−1/d

k ), k = 1, 2 for all distributions on the sample space Ω ⊂ Rd. The orderO(n−1/d

k ) is

the worst-case scenario that be achieved. In particular, we would like to point out that the

worst-case radii coincides with the common strategy for establishing theoretical guarantees

by requiring the uncertainty sets to contain true distributions with high probability. This is

because the empirical Wasserstein metric has poor concentration properties [31] and will

lead to radii choices O(n−1/d

k ) as well.

To characterize the optimal radii, we adopt an alternative technique inspired by using

empirical likelihood to study distributionally robust optimization [114, 26]. The strategy is

as follows. We define the optimal test for true distributions as the oracle; however, since

the true distributions are unknown, such an oracle test is also unknown. Our goal is to

select the smallest radii that are sufficiently large such that the oracle test is achievable
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with high probability. To this end, we define a set S that contains all pairs of distributions

that lead to the oracle test. Then within the set S , we find the closest distribution to the

empirical distributions with respect to the Wasserstein metric; intuitively, this gives rise to

the tightest radii that meet our goal. Then we discuss the asymptotic performance of such

distance and thus the radii; we can show that such a choice will lead to the oracle test with

high probability.

To state the precise result, we start with two definitions. Let P ◦1 , P
◦
2 be the underlying

true distributions of the hypotheses H0 and H1 respectively. Define the oracle test π◦

corresponding to the true distributions as specified by Lemma 5.1. Also define the set of

optimal tests for resolving simple hypothesis for all pairs of distributions in our uncertainty

sets with radii θ1,n1 and θ2,n2 (using Lemma 5.1):

Π(θ1,n1 , θ2,n2) := {π : ∃P1 ∈ P1(θ1,n1), P2 ∈ P1(θ2,n2), s.t. π ∈ arg min
π′

Φ(π′;P1, P2)}.

We are interested in finding the radii such that the set is likely to include the oracle test

π◦ ∈ Π(θ1,n1 , θ2,n2) following the similar idea of [114, 26]. To achieve this goal, we

introduce a set S that contains all possible pairs of distributions giving rise to the oracle

test π◦:

S := {(P1, P2) : π◦ ∈ arg min
π:Ω→[0,1]

Φ(π;P1, P2)}.

Note that S is guaranteed to be non-empty since it at least contains the true distribution

{P ◦1 , P ◦2 }. Then consider within S, the distributions that are closest to the empirical dis-

tributions and define the so-called profile function to capture the notion of “distance to the

empirical distributions” within the set:

Fn1,n2 := inf
{P1,P2}∈S

max
k=1,2
{W(Pk, Qk,nk)}; (5.12)

here the subscript indicates its dependence on the sample sizes n1 and n2. Clearly if the
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radii θ1,n1 , θ2,n2 ≥ Fn1,n2 , then the intersection (P1(θ1,n1) × P2(θ2,n2)) ∩ S is nonempty,

and thus π◦ ∈ Π(θ1,n1 , θ2,n2), as illustrated in Figure 5.2.

“oracle” test 
!!

{#"!, #$!}

“true” distributions
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{'",&! , '$,&"}
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that (3.6) is satisfied after truncation. After such a procedure, the test based
on the kernel-smoothed LFDs can achieve a similar performance as that of
the original optimal test.

4. Optimal selection of radii. In this section, we discuss how to op-
timally choose the radii ✓1, ✓2 based on the sample sizes. To emphasize the
dependence on the sample size, we explicitly write the radii as ✓k,nk

, the
empirical distributions as Qk,nk

and the uncertainty sets defined in (2.3)
as Pk,nk

(✓k,nk
), k = 1, 2. The choice of radii is critical. When the radius

is too small, the optimal test is not robust and does not generalize to new
testing data; while if the radius is unnecessarily large, the solution may be
too conservative and degrade the performance. Practically, the radius can
be determined by cross-validation. In this section, we provide a theoretical

justification that ✓k,nk
= O(n

�1/2
k ), k = 1, 2. Note that the common wisdom

that ensures the uncertainty sets contain the true distributions with high
probability would not work, because from concentration inequalities for the

Wasserstein metric [5], this would lead to a rate of O(n
�1/d
k ), which is too

large even for moderate dimensions.
To achieve a dimension-independent bound, we adopt an alternative strat-

egy, inspired from connection between the empirical likelihood and distribu-
tionally robust optimization [21, 3]. Let P 0

1 , P 0
2 be the underlying true distri-

butions that form H1 and H2 respectively, and let ⇡0 := arg min⇡ �(⇡; P 0
1 , P 0

2 )
be the oracle test specified according to Lemma 1. Obseve that the set

⇧(✓1,n1 , ✓2,n2) :=
[

P12P1,n1 (✓1,n1 )
P22P2,n2 (✓2,n2 )

arg min
⇡

�(⇡; P1, P2)

can be viewed as a confidence region for ⇡0. The general principle followed
from [21, 3] is to choose ✓1,n1 , ✓2,n2 such that ⇡0 2 ⇧(✓1,n1 , ✓2,n2) with high
probability asymptotically. More specifically, let us define S := {(P1, P2) :
⇡0 2 arg min⇡ �(⇡; P1, P2)}, which contains pairs of distribution (P1, P2)
such that the oracle test ⇡0 is an optimal test for the simple hypothesis test-
ing problem associated with (P1, P2). Note that S is non-empty as it contains
the true distribution (P 0

1 , P 0
2 ). We define the profile function, indexed by the

sample size n := (n1, n2), as

(4.1) Fn1,n2 := inf
{P1,P2}2S

max
k=1,2

{W(Pk, Qk,nk
)},

Fn1,n2 as illustrated in Figure 3. If the radii ✓1,n1 , ✓2,n2 � Fn1,n2 , then the
intersection (P1 ⇥P2)\S is nonempty, and thus ⇡0 2 ⇧(✓1,n1 , ✓2,n2). In the

Figure 5.2: An illustration of the profile function. The set S contains all pairs of distribu-
tions {P1, P2} such that the oracle test is optimal; Fn1,n2 denotes the minimal distance from
the empirical distribution to the set S.

We first derive an equivalent dual representation of the profile function Fn1,n2 . We

partition the sample space Ω as

Ω◦1 := {ω ∈ Ω : dP ◦1 (ω) ≥ dP ◦2 (ω)} , Ω◦2 := {ω ∈ Ω : dP ◦1 (ω) < dP ◦2 (ω)} .

Thereby the oracle test π◦ accepts hypothesisH0 on set Ω◦1 and accept hypothesisH1 on set

Ω◦2; and the boundary between Ω◦1 and Ω◦2 corresponds to the decision boundary of the oracle

test π◦. Denote by B+(Ω) (Lip(Ω)) the set of bounded and non-negative (respectively, 1-

Lipschitz continuous) functions on Ω. Define the function class

A :=
{
α = α21Ω◦2

−α11Ω◦1
: αk ∈ B+(Ω◦k) ∩ Lip(Ω◦k), α(ω◦k) = 0, k = 1, 2

}
, (5.13)

where 1{·} is the indicator function and ω◦k ∈ Ω◦k, k = 1, 2. Thus for each function α ∈ A,

the positive part is on Ω◦2 and the negative part is on Ω◦1, and all functions in A coincide on

ω◦1, ω
◦
2 . We have the following lemma, whose proof is given in Appendix.
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Lemma 5.3. The profile function Fn1,n2 defined in (5.12) equals

Fn1,n2 = sup
λ1,λ2≥0,λ1+λ2≤1

α∈A

{
Eω̂1∼Q1,n1

[
inf
ω∈Ω

{
λ1c(ω, ω̂1) + α(ω)

}]

+ Eω̂2∼Q2,n2

[
inf
ω∈Ω

{
λ2c(ω, ω̂2)−α(ω)

}]
}
.

We note that the objective function, denoted as FN(λ1, λ2,α), of the above supreme

problem can be decoupled into two terms: FN(λ1, λ2,α) = EN(λ1, λ2,α) + GN(α),

where

EN(λ1, λ2,α) :=
1

n1(N)

n1(N)∑

i=1

inf
ω∈Ω
{λ1c(ω, ω̂

i
1) + α(ω)−α(ω̂i1)}

+
1

n2(N)

n2(N)∑

j=1

inf
ω∈Ω
{λ2c(ω, ω̂

j
2)− (α(ω)−α(ω̂j2))},

GN(α) :=
1

n1(N)

n1(N)∑

i=1

α(ω̂i1)− 1

n2(N)

n2(N)∑

j=1

α(ω̂j2).

It follows that EN(λ1, λ2,α) ≤ 0 since the inf value is non-positive by taking ω = ω̂i1 and

ω = ω̂j2, respectively, whence FN(λ1, λ2,α) ≤ GN(α) and

Fn1(N),n2(N) ≤ sup
α∈A

GN(α).

Based on the definition of the set A, we observe a close-form solution for supα∈AGN(α)

as follows. By definition of A, α(ω̂i1) ≤ 0 for ω̂i1 ∈ Ω◦1 and α(ω̂j2) ≥ 0 for ω̂j2 ∈ Ω◦2.

Therefore, to maximize GN(α), we should let α(ω̂i1) = 0 for ω̂i1 ∈ Ω◦1 and α(ω̂j2) = 0 for

ω̂j2 ∈ Ω◦2. In addition, since α1,α2 are 1-Lipschitz, we have α(ω̂i1) ≤ minj: ω̂j2∈Ω◦2
c(ω̂i1, ω̂

j
2)

for ω̂i1 ∈ Ω◦2 and α(ω̂j2) ≥ −mini: ω̂i1∈Ω◦1
c(ω̂j2, ω̂

i
1) for ω̂j2 ∈ Ω◦1. Hence we have

sup
α∈A

GN(α) =
1

n1

∑

i: ω̂i1∈Ω◦2

min
j: ω̂j2∈Ω◦2

c(ω̂i1, ω̂
j
2) +

1

n2

∑

j: ω̂j2∈Ω◦1

min
i: ω̂i1∈Ω◦1

c(ω̂j2, ω̂
i
1). (5.14)
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To ease the exposition, we consider a balanced sample size regime by assuming n1 :=

n1(N) and n2 := n2(N) such that limN→∞ n1(N)/n2(N) = 1, although our results can

be generalized to the setting where the sample size ratio converges to a positive constant.

Under this regime, we denote the sample sizes using a single parameter N . Assume f1 and

f2 are the density functions for the true distributions P ◦1 and P ◦2 , respectively. The right-

hand side of (5.14) consists of minimum distances between samples in two sets, whose

limiting distribution can be computed theoretically in similar works [59, 150, 211, 151].

Here we restate the result in [59] to provide explicitly the constant factor within order

O(N−1/d). Under mild conditions on the support and data-generating distributions, in

particular, if the sets Ω◦1, Ω◦2 are compact convex sets and the densities fk are continuous on

Ω and has bounded partial derivatives on Ω, and fk(ω) > 0, for all ω ∈ Ω, k = 1, 2, then

[59] has shown that as N →∞, the right-hand side of (5.14) converges to

Γ(1 + 1/d)

V
1/d
d N1/d

(∫

Ω◦2

f1(x)

[f2(x)]1/d
dx+

∫

Ω◦1

f2(x)

[f1(x)]1/d
dx

)
, (5.15)

where Vd = πd/2/Γ(1 + d/2) is the volume of the unit ball in Rd, Γ(x) =
∫∞

0
zx−1e−zdz is

the Gamma function. This shows that the order of the limiting upper bound for the profile

function is O(n−1/d). Compared with the same order obtained from the convergence of

empirical measures in Wasserstein distance [62], the constant term in (5.15) shows the ex-

plicit dependence on the underlying data-generating distributions and the relation between

two density functions.

We remark that although we adopt a similar principle as used in [26, 185] by consider-

ing the profile function Fn1,n2 , the proof in our case is technically much more challenging,

because: (1) the uncertainty set here involves the empirical samples from two classes, while

there is only one uncertainty set in [26, 185]; (2) the introduced variable α1,α2 are func-

tions in the continuous samples space, not the finite-dimensional vector as in [26], thus the

optimality condition is not a simple first-order condition but involves inequalities due to the
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Figure 5.3: Consider a simulated example with the null distribution N (0, 1) and the alter-
native distribution (µ, 1). We illustrate the dual profile function Fn1,n2 as a function of (a)
the mean shift µ and (b) the sample size n, which are consistent with our theory.

variational principle; (3) the inequality constraint here differs from the equality constraints

in [26, 185], resulting in an additional supreme involved in the constraint for solving Fn1,n2 .

Thus, we develop quite different analytical techniques here.

5.4 Numerical Experiments

In this section, we present several numerical experiments to demonstrate the good perfor-

mance of our method.

5.4.1 Synthetic Data: Testing Gaussian Mixtures

Assume data are 100-dimensional and the samples under two hypotheses are generated

from Gaussian mixture models (GMM) following the distributions 0.5N (0.4e, I100) +

0.5N (−0.4e, I100) and 0.5N (0.4f, I100) + 0.5N (−0.4f, I100), respectively. Here e ∈ R100

is a vector with all entries equal to 1, and f ∈ R100 is a vector with the first 50 entries

equal to 1 and remaining 50 entries equal to −1. Consider a setting with a small number

of training samples n1 = n2 = 10, and then test on 1000 new samples from each mix-

ture model. The radius of the uncertainty set and the kernel bandwidth are determined by

cross-validation.
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Table 5.1: GMM data, 100-dimensional, comparisons averaged over 500 trials.

# observation (m) Ours GMM Logistic Kernel SVM 3-layer NN
1 0.2145 0.2588 0.4925 0.3564 0.4164
2 0.2157 0.2597 0.4927 0.3581 0.4164
3 0.1331 0.1755 0.4905 0.3122 0.3796
4 0.1329 0.1762 0.4905 0.3129 0.3808
5 0.0937 0.1310 0.4888 0.2877 0.3575
6 0.0938 0.1315 0.4881 0.2893 0.3570
7 0.0715 0.1034 0.4880 0.2727 0.3399
8 0.0715 0.1038 0.4876 0.2745 0.3401
9 0.0579 0.0850 0.4873 0.2634 0.3264

10 0.0578 0.0851 0.4874 0.2641 0.3267

We compare the performance of the proposed approach with several commonly used

classifiers. They are comparable since binary classifiers can be used for deciding hypothe-

ses, although they are designed with different targets. The competitors include the Gaussian

Mixture Model (GMM), logistic regression, kernel support vector machine (SVM) with ra-

dial basis function (RBF) kernel, and a three-layer perceptron [66] to illustrate the perfor-

mance of neural networks. The results are summarized in Table 5.1, where the first column

corresponds to the single observation scheme, while other columns are results using mul-

tiple observations, with the number of observations m varying from 2 to 10. We use the

majority rule for GMM, logistic regression, kernel SVM, and three-layer neural networks

(NN) for testing batch samples. Note that there are over 2500 parameters in the neural net-

work model with two hidden layers (50 nodes in each layer), which is challenging to learn

when the training data size is small. Moreover, given only ten samples per class, estimating

the underlying Gaussian mixture model is unrealistic, so that any parametric methods will

suffer. The results demonstrate that when there is a small sample size, our minimax test

outperforms other methods.
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5.4.2 Real Data: MNIST Handwritten Digits Classification

We also compare the performance using MNIST handwritten digits dataset [117]. The full

dataset contains 70,000 images, from which we randomly select five training images from

each class. We solve the optimal randomized test from (5.8) with the radii parameters cho-

sen by cross-validation. For the batch test setting, we divide test images from the same

class into batches, each consisting of m images. The decision for each batch is made using

the majority rule for the optimal test in Section 5.2.5, as well as for logistic regression and

SVM. We repeat this process to 500 randomly selected batches, and the average misclas-

sification rates are reported in Table 5.2. The results show that our method significantly

outperforms logistic regression and SVM. Moreover, the performance gain is higher in the

batch test setting: the errors decay quickly as m increases. Note that the neural network-

based deep learning model is not appropriate for this setting since the data-size is too small

to train the model.

Table 5.2: MNIST data, comparisons averages over 500 trials.

# observation (m) Ours Logistic SVM
1 0.3572 0.3729 0.3674
2 0.3631 0.3797 0.3712
3 0.2772 0.2897 0.2840
4 0.2122 0.2239 0.2169
5 0.1786 0.1882 0.1827
6 0.1540 0.1643 0.1588
7 0.1347 0.1446 0.1391
8 0.1185 0.1276 0.1222
9 0.1063 0.1160 0.1119

10 0.0960 0.1057 0.1010

5.4.3 Application: Human Activity Detection

In this subsection, we apply the optimal test for human activity detection from sequential

data, using a dataset released by the Wireless Sensor Data Mining Lab in 2013 [126, 213,

104]. In this dataset, 225 users were asked to perform specific activities, including walking,
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jogging, stairs, sitting, standing, and lying down; the data were recorded using accelerom-

eters. Our goal is to detect the change of activity in real-time from sequential observations.

Since it is difficult to build precise parametric models for distributions of various activities,

traditional parametric change-point detection methods do not work well. We compare the

proposed method with a standard nonparametric multivariate sequential change-point de-

tection procedure based on the Hotelling’s T -squared statistic [135]. The raw data consists

of sequences of observations for one person; each sequence may contain more than one

change-points, and the time duration for each activity is also different. For this experiment,

we only consider two types of transitions of activities: walking to jogging and jogging to

walking. We extract 360 sequences of length 100 such that each sequence only contains

one change-point.

We construct a change-point detection procedure using our optimal test as follows.

Denote the data sequence as {ωt, t = 1, 2, . . .}. At any possible change-point time t, we

treat samples in time windows [t − w, t − 1] and [t + 1, t + w] as two groups of training

data and find the LFDs {P ∗1 , P ∗2 } by solving the convex problem in Equation (5.8). Then

we calculate the detection statistic as P ∗2 (ωt)− P ∗1 (ωt), inspired by the optimal detector in

Lemma 5.1. We couple this test statistic with the CUSUM-type recursion [146], which can

accumulate change and detects small deviations quickly. The recursive detection statistic

is defined as St = max{0, St−1 + P ∗2 (ωt) − P ∗1 (ωt)}, with S0 = 0. A change is detected

when St exceeds a pre-specified threshold for the first time. Such scheme is similar to the

combination of convex optimization solution and change-point detection procedure [34]. In

the experiment, we set the window size w = 10 and choose the same radii for uncertainty

sets using cross-validation. The Hotelling’s T -squared procedure is constructed similarly.

Using historical samples, we estimate the nominal (pre-change) mean µ̂ and covariance

Σ̂. The Hotelling’s T -squared statistics at time t is defined as (ωt − µ̂)>Σ̂−1(ωt − µ̂)

and the Hotelling procedure uses a CUSUM-type recursion: Ht = max{0, Ht−1 + (ωt −

µ̂)>Σ̂−1(ωt − µ̂)}.
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We compare the expected detection delay (EDD) versus Type-I error. Here EDD is

defined as the average number of samples that a procedure needs before detects a change

after it has occurred, which is a commonly used metric for sequential change-point detec-

tion [223]. The Type-I error corresponds to the probability of detecting a change when

there is no change. We consider a range of thresholds such that the corresponding Type-I

error is from 0.05 to 0.35. The results in Figure 5.4 show that our test significantly out-

performs Hotelling’s T -squared procedure in detecting the change quicker under the same

Type-I error.

0.05 0.1 0.15 0.2 0.25 0.3 0.35
type-I error

0

1

2

3

4

5

6

av
er

ag
e 

de
te

ct
io

n 
de

la
y

Jogging to Walking

0.05 0.1 0.15 0.2 0.25 0.3 0.35
type-I error

0

0.5

1

1.5

2

2.5

3

3.5

4

av
er

ag
e 

de
te

ct
io

n 
de

la
y

Walking to Jogging

Figure 5.4: Comparison of the Expected Detection Delay (EDD) of our test with the
Hotelling’s T -squared procedure for detecting two type of activity transitions: jogging to
walking (left) and walking to jogging (right).

5.5 Conclusion and Discussions

We present a new approach for robust hypothesis testing when there are limited “training

samples” for each hypothesis. We formulate the problem as a minimax hypothesis test-

ing problem to decide between two disjoint sets of distributions centered around empirical

distributions in Wasserstein metrics. This formulation, although statistically sound – can

be treated as a “data-driven” version of Huber’s robust hypothesis test, is computation-

ally challenging since it involves an infinite-dimensional optimization problem. Thus, we

present a computationally efficient framework for solving the minimax test, revealing the

optimal test’s statistical meaning. Moreover, we characterize the optimal radius’s asymp-
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totic distribution and shed light on the optimal test’s generalization property. Furthermore,

we discuss how to extend the minimax test from empirical support to the whole space and

use it for the “batch” test settings and demonstrate its good performance on simulated and

real data.

The method can be kernelized to handle more complex data structures (e.g., the ob-

servations are not real-valued). The kernelization can be conveniently done by replacing

the metric c(·, ·) used in solving the optimal test (5.8) with other distances metrics be-

tween features after kernel transformation. Take the Euclidean norm as an example. Given

a kernel function K(·, ·) that measures similarity between any pair of data, the pairwise

norm c(ωl, ωm) =
∥∥ωl − ωm

∥∥ in (5.8) can be replaced with the kernel version distance

K(ωl, ωm). Moreover, this means that the proposed framework can be combined with fea-

ture selection and neural networks.
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CHAPTER 6

CONVEX PARAMETER RECOVERY FOR INTERACTING MARKED

PROCESSES

This chapter studies the parameter recovery for spatio-temporal marked processes. This

work is mainly summarized in [100]. Section 6.1 discusses the parameter estimation of

the single-state network Bernoulli process. Section 6.2 presents the performance guar-

antee in terms of the recovery error and the entry-wise confidence intervals. Section 6.3

and Section 6.4 discuss extensions to the multi-state Bernoulli process and non-linear link

functions, respectively. Section 6.5 discusses the properties of the Maximum Likelihood

estimate of parameters of the general Bernoulli process. Section 6.6 illustrates the applica-

tion of the proposed approach using various simulation examples and a “real-world” data

analysis of crime events in Atlanta.

6.1 Spatio-Temporal Bernoulli Process and Parameter Estimation

We consider the spatio-temporal Bernoulli process with discrete-time over discrete loca-

tions. Specifically, we assume that the discrete-time and location grid we deal with is fine

enough so that we can neglect the possibility for more than one event to occur in a cell of

the grid. We will model the interactions of these events in the grid.

6.1.1 Single-State Model

Define a spatio-temporal Bernoulli process with memory depth d as follows. We observe

on discrete time horizon {t : −d + 1 ≤ t ≤ N} random process as follows. At time t we

observe Boolean vector ωt ∈ RK with entries ωtk ∈ {0, 1}, 1 ≤ k ≤ K. Here ωtk = 1 and

ωtk = 0 mean, respectively, that at time t in location k an event took/did not take place. We
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set:

ωt = {ωsk,−d+ 1 ≤ s ≤ t, 1 ≤ k ≤ K} ∈ R(t+d)×K ,

ωtτ = {ωsk, τ ≤ s ≤ t, 1 ≤ k ≤ K} ∈ R(t−τ+1)×K .

In other words, ωt denotes all observations (at all locations) until current time t, and ωtτ

contains observations on time horizon from τ to t.

!

"

#

"!" , $ = $(', ()

Figure 6.1: Illustration of the discretized process. Observation ωtk, k = k(i, j) is at the
location of a 3d spatio-temporal grid.

We assume that for t ≥ 1 the conditional probability of the event ωtk = 1, given the

history ωt−1, is specified as

βk +
d∑

s=1

K∑

`=1

βsk`ω(t−s)`, 1 ≤ k ≤ K, (6.1)

where β = {βk, βsk` : 1 ≤ s ≤ d, 1 ≤ k, ` ≤ K} is a collection of coefficients. Here

• βk corresponds to the baseline intensity at the k-th location (i.e., the intrinsic prob-

ability for an event to happen at a location without the exogenous influence, also

called the birthrate);

• βsk` captures the magnitude of the influence of an event that occurs at time t− s at the

`-th location on chances for an event to happen at time t in the k-th location; so the

sum in (6.1) represents the cumulative influence of past events at the k-th location.
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Throughout this chapter, d is considered as a pre-specified parameter of the procedure. In

reality, it can be tuned by verifying the “predictive abilities” of models with different d’s

for a given dataset. Since the probability of occurrence is between 0 and 1, we require the

coefficients to satisfy

0 ≤ βk +
∑d

s=1

∑K
`=1 min [βsk`, 0] , ∀ k ≤ K,

1 ≥ βk +
∑d

s=1

∑K
`=1 max [βsk`, 0] , ∀ k ≤ K.

(6.2)

Note that constraints in (6.2) allow some of the coefficients βsk` to be negative, permit-

ting the corresponding model to capture the inhibitive effect of past events. Our goal is to

recover the collection of parameters β using a set of observations ωN . Instead of using the

classical loss function approach, we reduce the estimation problem to another problem with

a convex structure, a variational inequality (VI) with monotone operators, see Chapter 2.3

for preliminaries.

6.1.2 Variational Inequality for Least Squares (LS) Estimation

Let κ = K + dK2; we arrange all reals from the collection β in (6.1) into a column vector

(still denoted as β):

β = [β1, . . . , βK , β
1
11, . . . , β

d
11, β

1
1K , . . . , β

d
1K , . . . , β

1
KK , . . . , β

d
KK ]> ∈ Rκ.

Note that constraints (6.2) above state that β must reside in the polyhedral set B given by

explicit polyhedral representation. Assume that we are given a convex compact set X ⊂ B

such that β ∈ X ; thus X means the domain of β. Clearly, the inclusion X ⊂ B is a

must in our model, but one can cut X off B by additional constraints reflecting additional

a priori information on model’s parameters. Our model says that for t ≥ 1, the conditional
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expectation of ωt given ωt−1 is η>(ωt−1
t−d)β:

Pωt−1 {ωt = 1} = η>(ωt−1
t−d)β,

for a known to us function η(·) which is defined on the set of all zero-one arrays ωt−1
t−d ∈

{0, 1}d×K and takes values in the matrix space Rκ×K :

η>(ωt−1
t−d) =

[
IK , IK ⊗ vec(ωt−1

t−d)
T

]
∈ RK×κ, (6.3)

where IK is aK×K identity matrix,⊗ denotes the standard Kronecker product, and vec(·)

vectorizes a matrix by stacking all columns. Note that the matrix η(ωt−1
t−d) is Boolean and

has at most one nonzero entry in every row. Indeed, (6.1) says that a particular entry in

β, βk or βsk`, affects at most one entry in η>(ωt−1
t−d)β, namely, the k-th entry, implying that

each column of η>(·) has at most one nonzero entry.

Consider a vector field F : X → Rκ, defined as

F (x) =
1

N
EωN

{
N∑

t=1

[η(ωt−1
t−d)η

>(ωt−1
t−d)x− η(ωt−1

t−d)ωt]

}
: X → Rκ,

where EωN denotes expectation taken with respect to the distribution of ωN (notation Eωt is

similarly defined). Below, all expectations and probabilities are conditional given a specific

realization of the initial fragment ω0
−d+1 of observations.

Observe that we have

〈F (x)−F (y), x− y〉 =
1

N

N∑

t=1

EωN
{

(x− y)>η(ωt−1
t−d)η

>(ωt−1
t−d)(x− y)

}
≥ 0,∀x, y ∈ X .

Thus, the vector field F is monotone (see Chapter 2.3 for details). Moreover, we have
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F (β) = 0, since

F (β) = 1
N
EωN

{∑N
t=1 η(ωt−1

t−d)[η
>(ωt−1

t−d)β − ωt]
}

= 1
N

∑N
t=1 Eωt

{
η(ωt−1

t−d)[η
>(ωt−1

t−d)β − ωt]
}

= 1
N

∑N
t=1 Eωt−1

{
η(ωt−1

t−d)
[
η>(ωt−1

t−d)β − E|ωt−1{ωt}
]}

= 1
N

∑N
t=1 Eωt−1

{
η(ωt−1

t−d)[η
>(ωt−1

t−d)β − η>(ωt−1
t−d)β]

}
= 0,

where E|ωt−1 denotes the conditional expectation given ωt−1. Therefore, β ∈ X is a zero of

the monotone operator F and therefore it is a solution to the variational inequality VI[F,X ].

Now consider the empirical version

FωN (x) =

[
1

N

∑N

t=1
η(ωt−1

t−d)η
>(ωt−1

t−d)

]

︸ ︷︷ ︸
A[ωN ]

x− 1

N

∑N

t=1
η(ωt−1

t−d)ωt
︸ ︷︷ ︸

a[ωN ]

(6.4)

of vector field F . Note that FωN (x) is monotone and affine, and its expected value is F (x)

at every point x.

We propose to use, as an estimate of β, a weak solution to the Sample Average Approx-

imation of VI[F,X ], i.e., the variational inequality:

find z ∈ X : 〈FωN (w), w − z〉 ≥ 0, ∀w ∈ X . VI[FωN ,X ]

The monotone vector field FωN (·) is continuous (even affine), so that weak solutions to

VI[FωN ,X ] are exactly the same as strong solutions (defined in Chapter 2.3). Moreover,

the empirical vector field FωN (x) is just the gradient field of the convex quadratic function

ΨωN (x) =
1

2N

N∑

t=1

‖η>(ωt−1
t−d)x− ωt‖2

2, (6.5)

so that weak (same as strong) solutions to VI[FωN ,X ] are just minimizers of this function

on X . In other words, our estimate based on solving variational inequality is an optimal
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solution to the Least Squares (LS) formulation: the constrained optimization problem

min
x∈X

ΨωN (x) (6.6)

with a convex quadratic objective. Problem (6.6), the same as a general variational inequal-

ity with a monotone operator, can be routinely and efficiently solved by convex optimiza-

tion algorithms.

6.2 Toward Performance Guarantees

Our objective in this section is to construct non-asymptotic confidence sets for parameter

estimates built in the previous section. Utilizing concentration inequalities for martingales,

we can express these sets in terms of the process observations in the spirit of results of

[101, 125, 82].

Observe that the vector of true parameters β underlying our observations not only solves

variational inequality VI[F,X ], but also solves the variational inequality VI[F ωN ,X ], where

F ωN (x) = A[ωN ]x− 1

N

∑N

t=1
η(ωt−1

t−d)η
>(ωt−1

t−d)β
︸ ︷︷ ︸

a[ωN ]

with A[ωN ] defined in (6.4).

In fact, β is just a root of F ωN (x): F ωN (β) = 0. Moreover, the monotone affine

operators FωN (x) and F ωN (x) differ only in the value of constant term: in FωN (x) this

term is a[ωN ], and in F ωN (x) this term is a[ωN ]. Thus, equivalently, β is the minimizer on

X of the quadratic form

ΨωN (x) :=
1

2N

N∑

t=1

‖η>(ωt−1
t−d)x− η>(ωt−1

t−d)β‖2
2,

and the functions Ψ in (6.5) and Ψ above differ only in the constant terms (which do not
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affect the results of minimization) and in the linear terms. Moreover, the difference of the

vectors of coefficients of linear terms is given by (due to F ωN (β) = 0):

∆F := FωN (β)−F ωN (β) = FωN (β) = a[ωN ]−a[ωN ] =
1

N

N∑

t=1

η(ωt−1
t−d)[η

>(ωt−1
t−d)β − ωt]︸ ︷︷ ︸

ξt

.

(6.7)

Note that this is the same as the difference of constant terms in FωN (·) and F ωN (·). Since

the conditional expectation of ωt given ωt−1 is η>(ωt−1
t−d)β, we have E|ωt−1 [ξt] = 0. Thus,

ξt is a martingale-difference.

Concentration bounds for FωN (β) can be obtained by applying general Bernstein-type

inequalities for martingales.

Lemma 6.1. For all ε ∈ (0, 1) vector FωN (β) = ∆F in (6.7) satisfies

PωN

{
‖FωN (β)‖∞ ≥

√
ln(2κ/ε)

2N
+

ln(2κ/ε)

3N

}
≤ ε. (6.8)

Proof. Both ωt and η>(ωt−1
t−d)β are vectors with nonnegative entries not exceeding 1, we

have ‖η>(ωt−1
t−d)β − ωt‖∞ ≤ 1. Besides this, η(ωt−1

t−d) is a Boolean matrix with at most

one nonzero in every row, whence ‖η>(ωt−1
t−d)z‖∞ ≤ ‖z‖∞ for all z, thus ‖ξt‖∞ ≤ 1.

Furthermore, the conditional variance of components of ωt is bounded by 1/4, so, applying

the Azuma-Hoeffding inequality [12] to components (FωN (β))k, k = 1, ..., κ, of FωN (β)

we conclude that

PωN
{
|(FωN (β))k| ≥

√
x

2N
+

x

3N

}
≤ 2 exp{−x}, ∀1 ≤ k ≤ κ, x ≥ 0.

The latter bound results in (6.8) by application of the total probability formula. 2

A somewhat finer analysis allows to establish more precise data-driven deviation bounds

for components of FωN (β).

Lemma 6.2. For all y > 1, entries (FωN (β))k, k = 1, ..., κ, of FωN (β) satisfy, with proba-
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bility at least 1− 2e
(
y
[

ln((y − 1)N
)

+ 2
]

+ 2
)
e−y,

a[ωN ]k − ψ(a[ωN ]k, N ; y) ≤ (FωN (β))k ≤ a[ωN ]k − ψ(a[ωN ]k, N ; y), (6.9)

where a[ωN ]k is the k-th component of a[ωN ] as in (6.4) and lower and upper functions

ψ(·), ψ(·) are defined in relation (D.4) in the Appendix.

We are about to extract from this Lemma upper bounds on the accuracy of recovered co-

efficients. Recall that our estimate β̂ := β̂(ωN) solves the variational inequality VI[FωN ,X ]

with FωN (x) = A[ωN ]x − a[ωN ] in (6.4). Note that A[ωN ] is positive semidefinite (we

write A � 0, and we write A � 0 for positive definite A). Given A ∈ Rκ×κ, A � 0, and

p ∈ [1,∞], define the “condition number”:

θp[A] := max
{
θ ≥ 0 : g>Ag ≥ θ‖g‖2

p, ∀g ∈ Rκ
}
. (6.10)

Observe that θp[A] > 0 whenever A � 0, and that for p, p′ ∈ [1,∞] one has

g>Ag ≥ 1

2

{
θp[A]‖g‖2

p + θp′ [A]‖g‖2
p′

}
≥
√
θp[A]θp′ [A]‖g‖p‖g‖p′ . (6.11)

The following result is immediate:

Theorem 6.1 (Bounding `p estimation error). For every p ∈ [1,∞] and every ωN one has

‖β̂(ωN)− β‖p ≤ ‖FωN (β)‖∞/
√
θp[A[ωN ]]θ1[A[ωN ]]. (6.12)

As a result, for every ε ∈ (0, 1), the probability of the event

‖β̂(ωN)− β‖p ≤
(
θp[A[ωN ]]θ1[A[ωN ]]

)−1

(√
ln(2κ/ε)

2N
+

ln(2κ/ε)

3N

)
, ∀p ∈ [1,∞]

(6.13)

is at least 1− ε.

120



Proof. Let us fix ωN and set β̂ = β̂[ωN ], A = A[ωN ]. Since FωN (·) is continuous and β̂

is a weak solution to VI[FωN ,X ], β̂ is also a strong solution: 〈FωN (β̂), z − β̂〉 ≥ 0 for all

z ∈ X ; in particular, 〈FωN (β̂), β− β̂〉 ≥ 0. On the other hand, FωN (β̂) = F (β)−A(β− β̂).

As a result, 0 ≤ 〈FωN (β̂), β − β̂〉 = 〈FωN (β)− A(β − β̂), β − β̂〉, whence

(β − β̂)>A(β − β̂) ≤ 〈FωN (β), β − β̂〉 ≤ ‖FωN (β)‖∞‖β − β̂‖1. (6.14)

Setting p′ = 1 in (6.11), we obtain

(β − β̂)>A(β − β̂) ≥
√
θ1[A]θp[A]‖β − β̂‖1‖β − β̂‖p.

This combines with (6.14) to imply (6.12); then (6.12) together with (6.8) imply (6.13). 2

Remark 6.1 (Evaluating the condition number). To assess the upper bound (6.13) one

needs to compute “condition numbers” θp[A] of a positive definite matrix A. The compu-

tation is easy when p = 2, in which case θ2[A] is the minimal eigenvalue of A, and when

p =∞:

θ∞[A] = min
1≤i≤κ

{
x>Ax : ‖x‖∞ ≤ 1, xi = 1

}

is the minimum of κ efficiently computable quantities. In general, θ1[A] is difficult to com-

pute, but this quantity admits an efficiently computable tight within the factor π/2 lower

bound. Specifically, for a symmetric positive definite A, minz{z>Az : ‖z‖1 = 1} is the

largest r > 0 such that the ellipsoid {z : z>Az ≤ r} is contained in the unit ‖ · ‖1-

ball, or, passing to polars, the largest r such that the ellipsoid y>A−1y ≤ r−1 contains

the unit ‖ · ‖∞-ball. Because of this, the definition of θ1[A] in (6.10) is equivalent to

θ1[A] =
[
max‖x‖∞≤1 x

>A−1x
]−1. It remains to note that when Q is a symmetric posi-

tive semidefinite κ× κ matrix, the efficiently computable by semidefinite relaxation upper
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bound on max‖x‖∞≤1 x
>Qx, given by

min
λ

{∑

i

λi : λi ≥ 0, ∀i; Diag{λ1, ..., λκ} � Q

}
,

is tight within the factor π/2 [140].

Under favorable circumstances, we can expect that for large N the minimal eigenvalue

of A[ωN ] will be of the order of one with overwhelming probability implying that the

lengths of the confidence intervals (6.16) go to 0 as N → ∞ at the rate O(1/
√
N). Note,

however, that inter-dependence of the “regressors” η(ωt−1
t−d) across t makes it difficult to

prove something along these lines.

We can use concentration bounds of Lemmas 6.1 and 6.2 to build confidence intervals

for linear functionals of β. For instance, inequality (6.9) of Lemma 6.2 leads to the follow-

ing estimation procedure of the linear form e(β) = e>β, e ∈ Rκ. Given y > 1, consider

the pair of optimization problems

e[ωN , y] = min
x

{
e>x : x ∈ X , ψ(a[ωN ]k, N ; y) ≤ (A[ωN ]x)k ≤ ψ(a[ωN ]k, N ; y),∀k

}
,

e[ωN , y] = max
x

{
e>x : x ∈ X , ψ(a[ωN ]k, N ; y) ≤ (A[ωN ]x)k ≤ ψ(a[ωN ]k, N ; y), ∀k

}
,

(6.15)

where ψ(·) and ψ(·) are defined as in (D.4) of the appendix. These problems clearly are

convex, so e[ωN , y] and e[ωN , y] are efficiently computable. Immediately, we have the

following:

Lemma 6.3. Given y > 1, the probability of the event

e[ωN , y] ≤ e>β ≤ e[ωN , y], ∀e, (6.16)

is at least 1− 2κe
(
y
[

ln((y − 1)N
)

+ 2
]

+ 2
)
e−y.
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Indeed, when events

a[ωN ]k − ψ(a[ωN ]k, N ; y) ≤ FωN (β)k ≤ a[ωN ]k − ψ(a[ωN ]k, N ; y), k = 1, ..., κ,

take place, β is a feasible solution to optimization problems in (6.15). Due to Lemma 6.2,

this implies that (6.16) takes place with probability at least 1−2κe
(
y
[

ln((y−1)N
)

+2
]
+

2
)
e−y.

6.3 Multi-State Spatio-Temporal Processes

In this section, we consider the multi-state spatio-temporal process in which an event out-

come contains additional information about its category [134]. So far, we considered the

case where at every time instant t every location k maybe be either in the state ωtk = 0

(“no event”), or ωtk = 1 (“event”). We are now extending the model by allowing the state

of a location at a given time instant to take M ≥ 2 “nontrivial” values on the top of the

zero value “no event.” In other words, observation of the multi-state Bernoulli process is

categorical — we can either observe no event or observe one ofM possible event outcomes.

We define M -state spatio-temporal process with memory depth d as follows. We

observe a random process on time horizon {t : −d + 1 ≤ t ≤ N}, observation at

time t being ωt = {ωtk ∈ {0, 1, . . . ,M}, 1 ≤ k ≤ K}. For every t ≥ 1, the condi-

tional, ωt−1 = (ω−d+1, ω−d+2, . . . , ωt−1) given, distribution of ωtk is to be of category p,

1 ≤ p ≤M , is given by

Pωt−1 {ωtk = p} = βk(p) +
d∑

s=1

K∑

`=1

βsk`(p, ω(t−s)`), (6.17)

and the probability for ωtk to take value 0 (no event or “ground event”) is the complemen-
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tary probability

Pωt−1 {ωtk = 0} = 1−
M∑

p=1

[
βk(p) +

d∑

s=1

K∑

`=1

βsk`(p, ω(t−s)`)

]
.

In other words, βsk`(p, q) is the contribution of the location ` in state q ∈ {0, 1, . . . ,M}

at time t − s to the probability for the location k to be in state p ∈ {1, . . . ,M} at time t,

and βk(p), p ∈ {1, . . . ,M} is the “endogenous” component of the probability of the latter

event.

Of course, for this description to make sense, the β-parameters should guarantee that

for every ωt−1, that is, for every collection {ωτ` ∈ {0, 1, . . . ,M} : τ < t, 1 ≤ ` ≤ K}, the

prescribed by (6.17) probabilities are nonnegative and their sum over p = 1, . . . ,M is ≤ 1.

Thus, the β-parameters should satisfy the system of constraints

0≤ βk(p) +
∑d

s=1

∑K
`=1 min

0≤q≤M
βsk`(p, q), 1 ≤ p ≤M, 1 ≤ k ≤ K,

1≥∑M
p=1 βk(p) +

∑d
s=1

∑K
`=1 max

0≤q≤M

∑M
p=1 β

s
k`(p, q), 1 ≤ k ≤ K.

(6.18)

The solution set B of this system is a polyhedral set given by explicit polyhedral representa-

tions. We are given convex compact setX in the space of parameters β = {βk, βsk`(p, q), 1 ≤

s ≤ d, 1 ≤ k, ` ≤ K, 1 ≤ p ≤ M, 0 ≤ q ≤ M} such that X contains the true parameter β

of the process we are observing, and X is contained in the polytope B given by constraints

(6.18).

We arrange the collection of β-parameters associated with a M -state spatio-temporal

process with memory depth d into a column vector (still denoted β) and denote by κ the

dimension of β. In general, κ = KM + dK2M2. However, depending on application, it

could make sense to postulate that some of the components of β are zeros, thus reducing the

actual dimension of β; for example, we could assume that βk`(·, ·) = 0 for some “definitely

non-interacting” pairs k, ` of locations.

Note that (6.17) says that the M -dimensional vector of conditional probabilities for ωtk
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to take values p ∈ {1, . . . ,M} given ωt−1 is [η>k (ωt−1
t−d)β]p with known to us function ηk(·)

defined on the set of arrays ωt−1
t−d ∈ {0, 1, . . . ,M}d×K and taking values in the space of

κ×M matrices. Note that the value of ωtk is the index of the category, and does not mean

magnitude. Same as above, ηk(ωt−1
d−1) is a Boolean matrix.

To proceed, for 0 ≤ q ≤ M , let χq ∈ RM be defined as follows: χ0 = 0 ∈ RM , and

χq, 1 ≤ q ≤ M , is the q-th vector of the standard basis in RM . In particular, the state ωtk

can be encoded by vector ω̄tk = χωtk , and the state of our process at time t — by the block

vector ωt ∈ RMK with blocks ω̄tk ∈ RM , k = 1, ..., K. In other words: the k-th block in

ωt is an M -dimensional vector which is the p-th basic orth of RM when ωtk = p ≥ 1, and

is the zero vector when ωtk = 0. Arranging κ×M matrices ηk(·) into a matrix

η(·) = [η1(·), ..., ηK(·)] ∈ {0, 1}κ×MK ,

we obtain

E|ωt−1 {ωt} = η>(ωt−1
t−d)β ∈ RMK ,

where E|ωt−1 is the conditional expectation given ωt−1. Note that similarly to Section 6.1.1,

(6.17) says that every particular entry in β, βk(p) or βsk`(p, q), affects at most one of the

entries in the block vector [η>1 (ωt−1
t−d)β; ...; η>K(ωt−1

t−d)β] specifically, the p-th entry of the k-th

block, so that the Boolean matrix η(ωt−1
t−d) has at most one nonzero entry in every row.

Note that the spatio-temporal Bernoulli process with memory depth d, as defined in

Section 6.1.1, is a special case of M -state (M = 1) spatio-temporal process with memory

depth d, the case where state 0 at a location contributes nothing to probability of state 1 in

another location at a later time, that is, βsk`(1, 0) = 0 for all s, k, `.

As an illustration, consider a spatio-temporal model of crime events of different types,

e.g., burglary and robbery, in a geographic area of interest. We split the area into K non-

overlapping cells, which will be our locations. Selecting the time step in such a way that we

can ignore the chances for two or more crime events to occur in the same spatio-temporal

125



cell, we can model the history of crime events in the area as a M = 2-state spatio-temporal

process, with additional to (6.18) convex restrictions on the vector of parameters β ex-

pressing our a priori information on the probability βk(p) of a “newborn” crime event of

category p to occur at time instant t at location k and on the contribution βsk`(p, q) of a

crime event of category q in spatio-temporal cell {t−s, `} to the probability of crime event

of category p, p ≥ 1, to happen in the spatio-temporal cell {t, k}.

The problem of estimating parameters β of the M -state spatio-temporal process from

observations of this process can be processed exactly as in the case of the single state spatio-

temporal Bernoulli process. Specifically, observations ωN give rise to two monotone and

affine vector fields on X , the first observable and the second unobservable:

FωN (x) =

[
1

N

N∑

t=1

η(ωt−1
t−d)η

>(ωt−1
t−d)

]

︸ ︷︷ ︸
A[ωN ]

x− 1

N

N∑

t=1

η(ωt−1
t−d)ωt

︸ ︷︷ ︸
a[ωN ]

,

F ωN (x) = A[ωN ]x− A[ωN ]β.

(6.19)

The two fields differ only in constant term, β is a root of the second field, and the difference

of constant terms, same as the vector FωN (β) due to F ωN (β) = 0, are zero-mean satisfying,

for exactly the same reasons as in Section 6.2, concentration bounds (6.8) and (6.9) of

Lemmas 6.1 and 6.2. To recover β from observations, we may use the Least Squares (LS)

estimate obtained by solving variational inequality VI[FωN ,X ] with the just defined FωN ,

or, which is the same, by solving

min
x∈X

{
ΨωN (x) :=

1

2N

N∑

t=1

‖η>(ωt−1
t−d)x− ωt‖2

2

}
. (6.20)

Note that (6.8) and (6.9), by the same argument as in Section 6.2, imply the validity in our

present situation of Theorem 6.1 and Lemma 6.3.
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6.4 Nonlinear Link Function

So far, our discussion focused on “linear” link functions, where past events contribute

additively to the probability of a specific event in a given spatio-temporal cell. We now

consider the case of non-linear link functions. This generalizes our model to allow more

complex spatio-temporal interactions.

We first consider the single-state process. Let φ(·) : D → RK be a continuous mono-

tone vector field defined on a closed convex domain D ⊂ RK such that

y ∈ D ⇒ 0 ≤ φ(y) ≤ [1; . . . ; 1].

For example, we may consider “sigmoid field” φ(u) = [φ1(u); ...;φK(u)] with

[φ(u)]k =
exp{uk}

1 + exp{uk}
, k ≤ K, D = RK .

Given positive integerN , we define a spatio-temporal Bernoulli process with memory depth

d and link function φ as a random process with realizations {ωtk ∈ {0, 1}, k ≤ K,−d+1 ≤

t ≤ N} in the same way it was done in Section 6.1.1 with assumptions of Section 6.1.1

replaced as follows. We assume a given a convex compact set X ⊂ Rκ such that the vector

of parameters β underlying the observed process belongs to X and every β ∈ X satisfies

η>(ωt−1
t−d)β ∈ D, ∀1 ≤ t ≤ N (6.21)

with given functions η(ωt−1
t−d) taking values in the space of κ×K matrices; and the condi-

tional expectation of ωt ∈ {0, 1}K given ωt−1 is φ(η>(ωt−1
t−d)β).
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Let us set

F (x) = 1
N
EωN

{∑N
t=1

[
η(ωt−1

t−d)φ
(
η>(ωt−1

t−d)x
)
− η(ωt−1

t−d)ωt
]}

: X → Rκ,

FωN (x) =
1

N

∑N

t=1
η(ωt−1

t−d)φ
(
η>(ωt−1

t−d)x
)

︸ ︷︷ ︸
A
ωN

(x)

− 1

N

∑N

t=1
η(ωt−1

t−d)ωt
︸ ︷︷ ︸

a[ωN ]

: X → Rκ,

F ωN (x) = AωN (x)− 1

N

∑N

t=1
η(ωt−1

t−d)φ
(
η>(ωt−1

t−d)β
)

︸ ︷︷ ︸
a[ωN ]

: X → Rκ.

(6.22)

We are now essentially in the situation of Section 6.1.2 (where we considered the special

case φ(z) ≡ z of our present situation). Specifically, F (·) is a monotone (albeit not affine)

vector field on X , F (β) = 0. The empirical version FωN (x), for every x ∈ X , is a mono-

tone on X vector field which is an unbiased estimate of F (x). Besides this, F ωN (x) is a

monotone on X vector field, and the true vector of parameters β underlying our observa-

tions solves the variational inequality VI[F ωN ,X ] (is a root of F ωN ). These observations

suggest estimating β by weak solution to the variational inequality VI[FωN ,X ].

Note that, same as above, vector fields FωN and F ωN differ only in the constant terms,

and this difference is nothing but FωN (β) due to F ωN (β) = 0; moreover ξt = η(ωt−1
t−d)(ωt−

φ(η>(ωt−1
t−d)β)) is a martingale difference. Though deviation probabilities for FωN (β) do

not obey the same bound as in the case of φ(z) ≡ z (since the matrices η(ωt−1
t−d) now not

necessarily are Boolean with at most one nonzero in a row), the reasoning which led us to

(6.8) demonstrates that the vector FωN (β) in our present situation does obey the bound

PωN

{
‖FωN (β)‖∞ ≥ Θ

[√
ln(2κ/ε)

2N
+

ln(2κ/ε)

3N

]}
≤ ε, ∀ε ∈ (0, 1), (6.23)

where Θ is the maximum, over all possible ωt−1
d−1, of the ‖·‖1-norm of rows of η(ωt−1

t−d). Note

that in the situation of this section, our O(1/
√
N) exponential bounds on large deviations

of FωN (β) from zero, while being good news, do not result in easy-to-compute on-line

upper-risk bounds and confidence intervals for linear functions of β. Indeed, in order to

adjust to our present situation Theorem 6.1, we need to replace the condition numbers θp[·]
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with constants of strong monotonicity of the vector field FωN (·) on X . On the other hand,

to adopt the result of Lemma 6.3 in the present setting, we need to replace the quantities e

and e, see (6.15), with the maximum (resp., minimum) of the linear form e>x over the set

{x ∈ X : ‖FωN (x)‖∞ ≤ δ}. Both these tasks for a nonlinear operator FωN (·) seem to be

problematic.

The construction in the previous paragraph can be extended to M -state processes. Be-

low, with a slight abuse of notation, we redefine notation for the multi-state processes.

Let us identify two-dimensional K × M array {ak` : 1 ≤ k ≤ K, 1 ≤ ` ≤ M}

with KM -dimensional block vector with K blocks [ak1; ak2; . . . ; akM ], 1 ≤ k ≤ K, of

dimension M each. With this convention, a parametric K ×M array ψ(z) = {ψkp(z) ∈

R : k ≤ K, 1 ≤ p ≤ M} depending on KM -dimensional vector z of parameters becomes

a vector field on RKM . Assume that we are given an array φ(·) = {φkp(·) ∈ R : k ≤

K, 1 ≤ p ≤ M} of the outlined structure such that vector field φ(·) is continuous and

monotone on a closed convex domain D ⊂ RKM , and for all y ∈ D

0 ≤ φkp(y) ≤ 1, 1 ≤ p ≤M, 1 ≤ k ≤ K &
M∑

p=1

φkp(y) ≤ 1, 1 ≤ k ≤ K. (6.24)

We assume that the conditional probability for location k at time t to be in state p ∈

{1, . . . ,M} (i.e., to have ωtk = p) given ωt−1 is φkp(η>(ωt−1
t−d)β) for some vector of param-

eters β ∈ Rκ and known to us function η(·) taking values in the space of κ×KM matrices

and such that η>(ωt−1
d−1)β ∈ D whenever ωτk ∈ {0, 1, ...,M} for all τ and k. As a result,

the conditional probability to have ωtk = 0 is 1−∑M
p=1 φkp(η

>(ωt−1
t−d)β).

In addition, we assume that we are given a convex compact set X ⊂ Rκ such that

β ∈ X and for all such β and for all {ωτk ∈ {0, 1, ...,M}, ∀τ, k}, η>(ωt−1
t−d)β ∈ D. Same

as in Section 6.3, we encode the collection {ωtk : 1 ≤ k ≤ K} of locations’ states at time

t by block vector ωt with K blocks of dimension M each, with the k-th block equal to the

ωtk-th vector of the standard basis in RM when ωtk > 0 and equal to 0 when ωtk = 0. We
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clearly have

E|ωt−1 {ωt} = φ(η>(ωt−1
t−d)β).

Setting

F (x) = 1
N
EωN

{∑N
t=1

[
η(ωt−1

t−d)φ
(
η>(ωt−1

t−d)x
)
− η(ωt−1

t−d)ωt
]}

: X → Rκ,

FωN (x) =
1

N

∑N

t=1
η(ωt−1

t−d)φ
(
η>(ωt−1

t−d)x
)

︸ ︷︷ ︸
A
ωN

(x)

− 1

N

∑N

t=1
η(ωt−1

t−d)ωt
︸ ︷︷ ︸

a[ωN ]

: X → Rκ

F ωN (x) = AωN (x)− 1

N

∑N

t=1
η(ωt−1

t−d)φ
(
η>(ωt−1

t−d)β
)

︸ ︷︷ ︸
a[ωN ]

: X → Rκ,

(6.25)

(cf. equation (6.22)), we can repeat word by word the previous comment for single-state

process with nonlinear links.

6.5 Maximum Likelihood (ML) Estimate

In the previous sections, we have discussed the Least Squares estimate of the parameter

vector β. Now, we consider commonly used in statistics alternative approach based on the

Maximum Likelihood (ML) estimation. ML estimate is obtained by maximizing over β ∈

X the conditional likelihood of what we have observed, the condition being the actually

observed values of ωtk for −d + 1 ≤ t ≤ 0 and 1 ≤ k ≤ K. In this section, we study the

properties of the ML estimate and show that its calculation reduces to a convex optimization

problem.

6.5.1 ML Estimation: Case of Linear Link Function

We start by considering the single-state model. Assume, in addition to what has been

already assumed, that for every t random variables ωtk are conditionally independent across
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k given ωt−1. Then the negative log-likelihood, conditioned by the value of ω0, is given by

L(β) = 1
N

∑N
t=1

∑K
k=1

[
− ωtk ln

(
βk +

∑d
s=1

∑K
`=1β

s
k`ω(t−s)`

)
−

(1− ωtk) ln
(

1− βk −
∑d

s=1

∑K
`=1β

s
k`ω(t−s)`

)]
.

Note that L(β) is a convex function, so the ML estimate in our model reduces to the convex

program:

min
x∈X

L(x). (6.26)

For the multi-state model, assume that states ωtk at locations k at time t are condition-

ally independent across k ≤ K given ωt−1. Then the ML estimate is given by minimizing,

over β ∈ X , the conditional negative log-likelihood of collection ωN of observations (the

condition being the initial segment ω0 of the observation). The objective in this minimiza-

tion problem is the convex function

LωN (β) = − 1

N

N∑

t=1

K∑

k=1

ψtk(β, ω
N),

where

ψtk(β, ω
N) =





ln
(
[η>k (ωt−1

t−d)β]ωtk
)
, ωtk ∈ {1, . . . ,M},

ln
(

1−∑M
j=1[η>k (ωt−1

t−d)β]j

)
, ωtk = 0.

(6.27)

We are about to show that the ML estimate has a structure similar to the LS estimator

that we have dealt within Section 6.1, and obeys bounds similar to (6.23). Given a small

positive tolerance %, consider M -state spatio-temporal process with K locations and vector

of parameters β ∈ Rκ, as defined in Section 6.3, restricted to reside in the polyhedral setB%
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cut off Rκ by “%-strengthened” version of constraints (6.18), specifically, the constraints

%≤ βk(p) +
∑d

s=1

∑K
`=1 min

0≤q≤M
βsk`(p, q), 1 ≤ p ≤M , 1 ≤ k ≤ K,

1− %≥∑M−1
p=1 βk(p) +

∑d
s=1

∑K
`=1 max

0≤q≤M

∑M
p=1 β

s
k`(p, q), 1 ≤ k ≤ K.

(6.28)

The purpose of strengthening the constraints on β is to make the maximum likelihood, to

be defined below, continuously differentiable on the given parameter domain.

In what follows, we treat vectors from RKM as block vectors with K blocks of dimen-

sion M each. For such a vector z, [z]kp stands for the p-th entry in the k-th block of z.

Let

Z0 =

{
ω ∈ RMK : ω ≥ 0,

M∑

p=1

[ω]kp ≤ 1, ∀k ≤ K

}
.

Similarly, for a small positive tolerance %, define

Z% =

{
z ∈ RMK : [z]kp ≥ %, ∀k, p,

M∑

p=1

[z]kp ≤ 1− %, ∀k
}
⊂ Z0.

We associate with a vector w ∈ Z0 the convex function Lw : Z% → R,

Lw(z) := −∑K
k=1

[∑M
p=1[w]kp ln([z]kp) + [1−∑M

p=1[w]kp] ln(1−∑M
p=1[z]kp)

]
.

(6.29)

From now on, assume that we are given a convex compact setX ⊂ B% known to contain the

true vector β of parameters. Then the problem of minimizing the negative log-likelihood

becomes

min
x∈X

{
LωN (x) =

1

N

N∑

t=1

Lωt(η>(ωt−1
t−d)x)

}
, (6.30)

where ωt = ωt(ω
t) encodes, as explained in Section 6.3, the observations at time t, and

η(ωt−1
t−d) are as defined in Section 6.3.

Note that by construction, ωt belongs to Z0. Moreover, by construction, we have

η>(ωt−1
t−d)x ∈ Z% whenever x ∈ B% and ωtk ∈ {0, 1, ...,M} for all t and k. Now, min-
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imizers of LωN (x) over x ∈ X are exactly the solutions of the variational inequality stem-

ming from X and the monotone and smooth vector field (the smoothness property is due to

LωN (x) being convex and smooth on X ):

FωN (x) = ∇xLωN (x) =
1

N

N∑

t=1

η(ωt−1
t−d)θ(η

>(ωt−1
t−d)x, ωt(ω

t))

with

θ(z, ω) = ∇zLw(z) = −
K∑

k=1

[
M∑

p=1

[w]kp
[z]kp

ekp −
1−∑M

p=1[w]kp

1−∑M
p=1[z]kp

M∑

p=1

ekp

]
, [w ∈ Z0]

where ekp ∈ RKM is the block-vector with the p-th vector of the standard basis in RM as

the k-th block and all other blocks equal to 0.

Note that we clearly have

w ∈ Z% ⇒ θ(w,w) = 0. (6.31)

Let us show that FωN (β) is “typically small”: its magnitude obeys the large deviation

bounds similar to (6.8) and (6.23). Indeed, let us set zt(ωt−1) = η>(ωt−1
t−d)β, so that zt ∈ Z%

due to β ∈ B%. Invoking (6.31) with w = zt(ω
t−1), we have

FωN (β) =
1

N

N∑

t=1

η(ωt−1
t−d)ϑt[ω

t]︸ ︷︷ ︸
ξt

,

where

ϑt[ω
t] = −

K∑

k=1

[
M∑

p=1

[ωt(ω
t)]kp − [zt(ω

t−1)]kp
[zt(ωt−1)]kp

ekp +

∑M
p=1 [[zt]kp − [ωt(ω

t)]kp]

1−∑M
p=1[zt(ωt−1)]kp

M∑

p=1

ekp

]
.

Since the conditional expectation of [ωt(ω
t)]kp given ωt−1 equals [zt(ω

t−1)]kp the condi-

tional expectation of ξt given ωt−1 is zero. Besides this, random vectors ξt take their values
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in a bounded set (of size depending on %). As a result, ‖FωN (β)‖∞ admits bound on prob-

abilities of large deviations of the form (6.23), with properly selected (and depending on

%) factor Θ. However, for the reasons presented in Section 6.4, extracting from this bound

meaningful conclusions on the accuracy of the ML estimate is a difficult task, and it remains

an open problem.

Remark 6.2 (Decomposition of LS and ML estimation). In the models we have considered,

the optimization problems (6.6), (6.20), (6.26), and (6.30), we aim to solve when building

the LS and the ML estimates under mild assumptions are decomposable (in spite of the fact

that the observations are dependent). Indeed, vector

β = {βkp, βsk`(p, q), 1 ≤ k, ` ≤ K, 1 ≤ p ≤M, 0 ≤ q ≤M, 1 ≤ s ≤ d}

of the model parameters can be split into K subvectors

βk = {βkp, βsk`(p, q), 1 ≤ ` ≤ K, 1 ≤ p ≤M, 0 ≤ q ≤M, 1 ≤ s ≤ d}, k = 1, ..., K.

It is immediately seen that the objectives to be minimized in the problems in question are

sums of K terms, with the k-th term depending only on xk. As a result, if the domain X

summarizing our a priori information on β is decomposable: X = {x : xk ∈ Xk, 1 ≤

k ≤ K}, the optimization problems yielding the LS and the ML estimates are collections

of K uncoupled convex optimization problems in variables xk. Moreover, under favor-

able circumstances optimization problem (6.20) admits even finer decomposition. Namely,

splitting βk into subvectors

βkp = {βkp, βsk`(p, q), 1 ≤ ` ≤ K, 1 ≤ s ≤ d, 0 ≤ q ≤M},

it is easily seen that the objective in (6.20) is the sum, over k ≤ K and p ≤M , of functions

Ψkp
ωN

(xkp). As a result, when X = {x : xkp ∈ Xkp, 1 ≤ k ≤ K, 1 ≤ p ≤ M}, (6.20)
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is a collection of KM uncoupled convex problems minxkp∈Xkp Ψkp
ωN

(xkp). The outlined

decompositions may be used to accelerate the solution process.

6.5.2 ML Estimate: General Link Functions

Let us now derive ML estimate for the case of nonlinear link function considered in Sec-

tion 6.4. In this situation, we strengthen constraints (6.24) on D to

y ∈ D ⇒ % ≤ φkp(y),
M∑

p=1

φkp(y) ≤ 1− %, 1 ≤ k ≤ K, 1 ≤ p ≤M,

with some % > 0. Assuming that ωtk’s are conditionally independent across k given ωt−1,

computing ML estimate for the general link-function reduces to solving problem (6.30)

with Lw(z) : D → R, w ∈ Z0, given by

Lw(z) = −
K∑

k=1

[
M∑

p=1

[w]kp ln(φkp(z)) + [1−
M∑

p=1

[w]kp] ln(1−
M∑

p=1

φkp(z))

]
.

Assuming φ continuously differentiable on D and Lw(·) convex on D, we can repeat, with

straightforward modifications, everything that was said above (that is, in the special case

of φ(z) ≡ z), including exponential bounds on probabilities of large deviations of FωN (β).

However, in general, beyond the case of affine φkp(·), function Lw(·) becomes nonconvex.

This is due to the fact that convexity on D of functions

− ln(φkp(·)), − ln
(

1−
∑

p

φkp(·)
)

is a rare commodity. As a special case, convexity of these functions does take place in the

case logistic link function

φkp(z) =
exp{akp(z)}∑M
q=0 exp{akq(z)}
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with functions akq(z), 0 ≤ q ≤M that are affine in z.

6.6 Numerical Experiments

6.6.1 Experiments with Simulated Data

This section presents the results of several simulation experiments illustrating applications

of the proposed Bernoulli process models. We compare performances of Least Squares

(LS) and Maximum Likelihood (ML) estimates in terms of `1, `2, and `∞ norms of the

error of parameter vector recovery. We assume that d (or a reasonable upper bound of it)

is known in our simulation examples. The bracket percentage inside the table below shows

the norm of the error relative to the norm of the corresponding true parameter vector.

Single state spatio-temporal processes

First, consider a single state setting with memory depth d = 8 and the number of locations

K = 8. The true parameter values are selected randomly from the set X0 as follows:

• βk ≥ 0, βskl ≥ 0; and βk +
∑d

s=1

∑K
`=1 β

s
k` ≤ 1, ∀k;

• βsk` = 0 when |k − `| > 1 (interactions are local);

• For every 1 ≤ k, ` ≤ K, βsk` is a non-increasing convex function of s.

Above, the convexity of a function f(s) in s ∈ G = {1, . . . , d} means that the function is

the restriction of a convex function on the segment [1, d] onto the grid G or, which is the

same, that f(s − 1) − 2f(s) + f(s + 1) ≥ 0, s = 2, 3, . . . , d − 1. This translates into the

constraint βs−1
k,` − 2βsk,` + βs+1

k,` ≥ 0, s = 2, 3, . . . , d− 1,∀k, `. Note that we have imposed

additional constraints than (6.2). More specifically, we assume interacting pairs should be

adjacent in the sense that |k− `| ≤ 1, and that βsk,` is monotone and a convex-function in s.

We report the performance of the LS estimate (obtained by solving VI[FωN ,X ]) and

the ML estimate (obtained by solving (6.26)). To have a fair comparison, we do not intro-

duce any additional constraints on the interaction coefficients in our estimation procedure
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(meaning that the LS and ML estimates do not have any prior knowledge aboutX0 and their

assumed admissible set X is much larger than X0). Utilizing the Matlab implementation

[224] of the EM algorithm, we also compute estimations of parameters of the commonly

used model of Hawkes process with exponential temporal kernel (see, e.g., [232]). The

latter is equivalent to assuming that βsk` = ak`τe
−τs, s = 1, 2, . . ., where τ > 0 is the decay

rate parameter and ak` > 0 represents the interactions between two locations.

Figure 6.2 shows the recovered interaction coefficients using various methods with

N = 10, 000 observations, for a single (randomly generated) instance. The associated

error metrics are presented in Table 6.1. The confidence intervals in Figure 6.3 are com-

puted according to (6.15) by letting e be standard basis vectors in Rκ and restricting the

parameter space to X . We also repeat the experiment 100 times (each time generate a new

random true parameters), and the average errors are reported in Table 6.2. The experiments

show that ML and LS estimates exhibit similar performance (ML outperforming slightly

the LS estimates), and both of them outperform the recovery by EM algorithm based on the

exponential kernel, which may be due to a more flexible parameterization of our model.
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Figure 6.2: Single-state process: estimates for baseline intensity βk and interactions pa-
rameters βsk` for one random instance.

Multi-state spatio-temporal processes

Now consider a multi-state spatio-temporal Bernoulli process with the number of states

M = 2. Here the possible states p = 0 represents no event, p = 1, 2 represent the event

of category 1 and 2, respectively. We assume memory depth d = 8 and the number of
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Table 6.1: Single-state process: error of ML, LS and EM estimation for the one instance
shown in Figure 6.2.

Estimate `1 error `2 error `∞ error
ML 1.7150 (22.57%) 0.1534 (17.67%) 0.0342 (13.64%)
LS 1.8849 (24.80%) 0.1714 (19.73%) 0.0372 (14.84%)

EM (exponential kernel) 6.3127 (83.06%) 0.6413 (73.83%) 0.2105 (83.97%)
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Figure 6.3: Computed 90% confidence intervals corresponding to Figure 6.2.

Table 6.2: Single-state process: error of ML, LS and EM estimation averaged over 100
trials.

Estimate `1 error `2 error `∞ error
ML 1.1482 (15.11%) 0.1112 (12.60%) 0.0336 (11.87%)
LS 1.9776 (26.02%) 0.1831 (20.72%) 0.0472 (16.62%)

EM (exponential kernel) 6.4725 (85.16%) 0.6695 (75.72%) 0.2209 (75.17%)

locations K = 10. The true parameters are randomly generated from the set X0 specified

by (again we impose additional constraints as in Section 6.6.1):

• βk(p) ≥ 0, βskl(p, q) ≥ 0;
∑M

p=1 βk(p) +
∑d

s=1

∑K
`=1 max0≤q≤M

∑M
p=1 β

s
k`(p, q) ≤

1,∀k ≤ K;

• βsk`(p, q) = 0 when |k − `| > 1, ∀p, q (interactions are local);

• For every 1 ≤ k, ` ≤ K and 1 ≤ p ≤ M, 0 ≤ q ≤ M , βsk`(p, q) is a non-increasing

convex function of s.

Furthermore, we consider two scenarios, with additional constraints on the parameters

• Scenario 1: events can only trigger future events of the same category, i.e., βsk`(p, q) ≡
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0, q 6= p;

• Scenario 2: events of category q = 0, . . . ,M , only trigger events with category p ≤

q. This can happen, for example, when modeling earthquakes aftershocks: events

are marked using M categories according to their magnitudes: u1 < . . . < uM . Set

u0 = 0 and treat the event “no earthquake” as “earthquake of magnitude 0.” Then

each earthquake can trigger “aftershocks” with the same or smaller magnitudes.

We generate a synthetic data sequence of length N = 20, 000. For a single (randomly

generated) instance, recovery of baseline and interaction parameters are presented in Fig-

ure 6.4. The associated recovery errors of the LS estimate (solution to (6.20)) and the

ML estimate (solution to (6.30)) are reported in Table 6.3. In addition, we also report the

recovery errors separately for (i) the baseline intensity vector (referred to as “birthrates”)

βbirth = {βk(p), k ≤ K, 1 ≤ p ≤ M} ∈ RKM×1; and (ii) the vector of interactions be-

tween different locations βinter = {βsk`(p, q)} ∈ RdK2M(M+1)×1. As shown in Table 6.3,

the `1 recovery error for estimating birthrate is smaller than that for the interaction param-

eters. Thus, the recovery error for β is dominated by the error for interaction parameters.

This could be explained because the magnitude of the baseline intensity is higher than the

influence parameters (which is usually needed to have stationary processes).
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Figure 6.4: Multi-state process: examples of LS and ML estimates for baseline intensity
βk(p) and interactions parameters βsk`(p, q).

Finally, to assess the predictive capability of our model, we did the following experi-

ment. Generate one sequence of discrete events, with length N = 20, 000, using randomly
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Table 6.3: Multi-state process recovery: norms of recovery error for LS estimate β̂LS and
ML estimate β̂ML.

Estimate
Scenario 1 Scenario 2

`1 error `2 error `1 error `2 error
β̂ML 0.3524 (4.7%) 0.0532 (2.5%) 1.0179 (13.6%) 0.1146 (5.9%)
β̂LS 0.4947 (6.6%) 0.0744 (3.4%) 1.0854 (14.5%) 0.1230 (6.3%)

β̂ML, birth 0.0106 (2.7%) 0.0028 (3.1%) 0.0226 (5.7%) 0.0060 (6.7%)
β̂LS, birth 0.0160 (4.0%) 0.0044 (5.0%) 0.0237 (5.9%) 0.0066 (7.4%)
β̂ML, inter 0.3419 (4.8%) 0.0531 (2.5%) 0.9952 (14.0%) 0.1144 (5.9%)
β̂LS, inter 0.4786 (6.7%) 0.0743 (3.4%) 1.0617 (15.0%) 0.1228 (6.3%)

selected parameters. We divide the sequence in half: use half for “training” and the other

half for “testing”. In particular, we (1) use the first half of the sequence for estimating the

Bernoulli process model parameter, (2) use the “trained” model to generate a new “syn-

thetic” sequence of length N/2, and (3) compare the “synthetic” sequence with the “test”

sequence, in terms of the frequency of events, for each category, at each location. The

results in Figure 6.5 show that the synthetic sequence has a reasonably good match with

the testing sequence, based on the LS and the ML estimates.
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Figure 6.5: Multi-state process: experiment to compare the frequency of events from a
synthetic sequence (generated using models estimated from training sequence using LS
and ML estimates) with that from the testing sequence.

Sparse network recovery with negative and non-monotone interactions

In the last synthetic example, we consider an example to recover a network with “non-

conventional” interactions: non-monotonic temporal interactions and negative interactions.
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Consider a sparse, directed, and non-planar graph (meaning that this cannot be embedded

on a two-dimensional Euclidean space and, thus, this does not correspond to discretized

space) with K = 8 nodes. The interaction functions are illustrated in Figure 6.6.
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Figure 6.6: Sparse non-planar graph with non-monotonic and negative interaction. Note
that the interaction 1→ 8 is negative.

The baseline intensities are all positive at all 8 nodes. The directed edge (arrows) means

there is a one-directional “influence” from one node to its neighbor, e.g., 1→ 5. The self-

edges, e.g., 2 → 2 and 5 → 5, denote that these nodes have a self-exciting effect: events

happen at the node will trigger future events at itself. The true parameters of the model are

generated as follows.

• Baseline parameters values at all locations are drawn independently from a uniform

distribution on [0, 0.2];

• For each directed edge `→ k, the interaction βsk,` is given by βsk` = 0.05e−0.25(s−τk`)2 ,

s ≥ 0, and the peak τk` is randomly chosen from {1, . . . , d}, except for one edge

1→ 8, whose interaction function is set to be negative: βs8,1 = −0.05e−0.25(s−τ8,1)2 .

In our implementation, we consider two scenarios: (1) the graph structure is unknown: we

do not impose sparsity constraints while obtaining the LS and ML estimates; (2) the graph

structure is known, and then we impose the sparsity constraints by setting the interactions to

be 0 when there is no edge; this illustrate the scenario when we have some prior information
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about the network structure. We report recovery errors for the two scenarios in Table 6.4

and compare the recovery of interaction parameters under scenario (1) with the true values

in Figure 6.7.

Table 6.4: Sparse network recovery with non-conventional interactions: errors of LS and
ML estimates β̂LS, β̂ML.

Estimate
Unknown Graph Known Graph

`1 error `2 error `∞ error `1 error `2 error `∞ error
β̂ML 1.7694 (58.71%) 0.1128 (24.65%) 0.0224 (13.79%) 0.4715 (15.64%) 0.0593 (12.95%) 0.0173 (10.68%)
β̂LS 1.8757 (62.23%) 0.1166 (25.48%) 0.0211 (13.01%) 0.4773 (15.84%) 0.0606 (13.23%) 0.0204 (12.58%)

β̂ML, birth 0.0367 (3.84%) 0.0162 (4.42%) 0.0111 (6.84%) 0.0126 (1.32%) 0.0068 (1.85%) 0.0061 (3.75%)
β̂LS, birth 0.0378 (3.95%) 0.0172 (4.69%) 0.0129 (7.94%) 0.0126 (1.32%) 0.0069 (1.89%) 0.0061 (3.75%)
β̂ML, inter 1.7327 (84.20%) 0.1117 (40.69%) 0.0224 (44.73%) 0.4589 (22.30%) 0.0589 (21.46%) 0.0173 (34.65%)
β̂LS, inter 1.8379 (89.31%) 0.1153 (42.02%) 0.0211 (42.19%) 0.4648 (22.58%) 0.0602 (21.92%) 0.0204 (40.81%)
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Figure 6.7: Sparse network identification when graph is unknown: examples of LS and ML
estimates of baseline intensity and vectors of interaction parameters; interactions β6,1 and
β8,2 correspond to edges 1→ 6 and 2→ 8 which do not exist in the graph in Figure 6.6.

From the experiment results, we observe that both the LS and ML estimates match

closely with the true parameters, even when the underlying graph structure is unknown.

The comparison in Table 6.4 shows a significant improvement in the estimation error when

the graph structure is known a priori. This is consistent with our previous remark that

knowing the network structure allows for a better choice of the feasible region resulting in

reduced estimation error. Moreover, by examining the histogram of the maximum inter-

action between each pair, i.e., {maxds=1 |βsk,`|, 1 ≤ k, ` ≤ K} as shown in Figure 6.8, we

observe that we can indeed accurately recover the support of the graph: the estimates of the

edges with non-zero interactions, are completely separable from the estimates of the edges

with zero interactions. This indicates that we can apply an appropriate threshold (in this
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case, e.g., 0.03) to recover precisely the unknown graph structure completely. This exam-

ple also shows that even when prior information about the spare structure of the underlying

network is not available, LS and ML estimates can recover the underlying network reason-

ably well, which opens possibilities of applying the proposed approach to perform casual

inference [202] using discrete-event data.

Figure 6.8: Sparse network support recovery: histogram of the recovered interaction pa-
rameters {maxds=1 |βsk,`|, 1 ≤ k, ` ≤ K}. Edges with non-zero interactions can be perfectly
separated from those with zero interactions.

6.6.2 Real Data Studies: Crime in Atlanta

Finally, we study a real crime dataset in Atlanta to demonstrate the promise of our meth-

ods to recover interesting structures from real-data. We consider two categories of crime

incidents, “burglary” and “robbery”. These incidents were reported to the Atlanta Police

Department from January 1, 2015, to September 19, 2017. The dataset contains 47,245

“burglary” and 3,739 “robbery” incidents. As mentioned in the introduction, it is believed

that crime incidents are related and have “self-exciting” patterns: once crime incidence

happens, it triggers similar crimes more likely to happen in the neighborhood in the near

future [184]. Here, we model the data using a multi-state Bernoulli process with two states:

no event (p = 0), burglary (p = 1), and robbery (p = 2).

We extract crime events around the Atlanta downtown area, as shown in Figure 6.9,
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Figure 6.9: Raw data map: burglary and robbery incidents in Atlanta. Left: the full map;
Right: zoom-in around downtown Atlanta.

which contains 6031 “burglary” events and 454 “robbery” events. The whole time horizon

(788 days) is split into discrete time intervals with a duration of four hours. The memory

depth d is set to 6 in this example (each sample is 1 hour). This is a “reasonable” value

retrieved from observations by verifying the predictions of frequencies of the burglary and

robbery incidents in various spatial cells. The downtown region is divided uniformly into

16 sub-regions.

We compute the LS estimates of the parameters {βk(p), βsk,l(p, q)}, in two different

ways to set up the constraints: in the first setup, we do not impose additional constraints

on the parameters apart from “basic” constraints (6.18); in the second setup, we impose

constraints to only consider temporal interaction function, βsk`, with monotonic and convex

“shapes”. Such constraints are routinely imposed when estimating parameters of Hawkes

model, see, e.g., [168]. The estimated parameters are shown in Figure 6.10. In the figure,

the size of the red dot in each region is proportional to the magnitude of the estimated

birthrate βk(p), k = 1, . . . , K, for Burglary/Robbery, respectively; the width of the arrow is

proportional to the magnitude of the interaction βsk,l(p, q) between locations. It is interesting

to notice that our model recovers the dynamic of the interactions and how they change over

time. There also seem to be strong interactions between burglary and robbery at different

locations.

To validate the model, we take the two-year duration of data, divide the sequence in
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half, use the first half of the sequence to estimate a multi-state Bernoulli process model,

generate a synthetic sequence, and compare with the second half of the sequence reserved

for testing. We compare the frequency of Burglary and Robbery events across all locations,

for the synthetic and testing sequence. The results are shown in Table 6.5. The results look

to be a reasonably good match, considering that the crime events are relatively rare and

with highly complex (and unknown) dynamics: predicting their frequency in the first place

is a highly challenging task and an essential research task of criminology.

We also note that the prediction for burglary seems to be better since the frequencies

from the synthetic sequence are very close, and the relative error is smaller. This is expected

since the number of burglary cases is much larger than the number of robbery cases in our

dataset, and the frequency of robbery cases is very small (typically below 0.01, as shown

in Table 6.5). The experiment serves as a sanity check and shows that for challenging and

noisy real-world datasets, there could be a certain truth to the proposed methods.

Table 6.5: Crime event model recovery: frequency of Burglary and Robbery events at each
location.

Locations
Burglary Robbery

True With constr Without constr True With constr Without constr
1 0.1499 0.1707 0.1766 0.0102 0.0195 0.0186
2 0.0284 0.0373 0.0445 0.0017 0.0203 0.0212
3 0.0483 0.0580 0.0606 0.0021 0.0254 0.0195
4 0.0407 0.0364 0.0356 0.0017 0.0178 0.0224
5 0.0508 0.0529 0.0648 0.0042 0.0220 0.0165
6 0.1957 0.2088 0.1834 0.0131 0.0208 0.0144
7 0.0970 0.1368 0.1224 0.0068 0.0229 0.0191
8 0.0419 0.0580 0.0563 0.0021 0.0127 0.0182
9 0.0148 0.0161 0.0220 0.0013 0.0165 0.0212

10 0.0584 0.0729 0.0805 0.0055 0.0258 0.0178
11 0.1266 0.1525 0.1529 0.0106 0.0195 0.0169
12 0.1364 0.1266 0.1186 0.0102 0.0191 0.0169
13 0.0322 0.0521 0.0445 0.0021 0.0229 0.0224
14 0.0627 0.0868 0.0834 0.0055 0.0212 0.0195
15 0.0208 0.0224 0.0280 0.0008 0.0241 0.0216
16 0.0144 0.0203 0.0178 0.0013 0.0203 0.0212
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Figure 6.10: Robbery and burglary in downtown Atlanta: recovered spatio-temporal inter-
actions, using LS estimates without additional constraint on the shapes of the interaction
functions.
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APPENDIX A

PROOFS FOR CHAPTER 3

Proof of Theorem 3.2. In order to prove Theorem 3.2, we need the following lemma to

characterize the local correlation between largest eigenvalue statistics.

Lemma A.1 (Approximation of local correlation). Let c1 = E[W1] = −1.21, c2 =
√

Var(W1) = 1.27, and

βk,w = 1 +

(
1 + c1k

− 1
6/
√
w
)(

2 + c1k
− 1

6/
√
w
)

c2
2k
− 1

3/w
.

Then we have,

Corr(Zt, Zt+δ) ≤ 1− βk,wϑ+ o(ϑ),

where ϑ = δ/w and corr(X, Y ) stands for the Pearson’s correlation

Corr(X, Y ) =
E[XY ]− E[X]E[Y ]√

Var(X)
√

Var(Y )
.

Proof to Lemma A.1. Under the pre-change measure, xt
iid∼ N (0, σ2Ik). For δ ∈ Z+, let

P =
t−w+δ∑

i=t−w+1

xix
>
i , Q =

t∑

i=t−w+δ+1

xix
>
i , R =

t+δ∑

i=t+1

xix
>
i .

Then P , Q and R are independent random matrices. Now we also want to give a general
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upper bound for the covariance between Zt and Zt+δ. Then we have

E[ZtZt+δ] = E[λmax(Σ̂t,w)λmax(Σ̂t+δ,w)] = E[λmax(P +Q)λmax(Q+R)]

≤ E {[λmax(P ) + λmax(Q)] [λmax(Q) + λmax(R)]}

= E[λ2
max(Q)] + E[λmax(Q)]E[λmax(R)]

+ E[λmax(P )]{E[λmax(Q)] + E[λmax(R)]},

where the inequality is due to the fact that the largest eigenvalue of the sum of two nonnega-

tive definite matrices is upper bounded by the sum of the corresponding largest eigenvalues

of the two matrices. The mean and second-order moments can be computed using the

Tracy-Widom law depicted in (3.13).

Since k is a fixed constant, we just write µn and σn instead of µn,k and σn,k to simplify

our notation. We first consider the covariance term E[ZtZt+δ] and decompose it into four

parts as following:
1

w2
E[ZtZt+δ] ≤ A+B + C +D,

where

A =

(
µw(1−ϑ) + c1σw(1−ϑ)

w

)2

,

B =
(c2σw(1−ϑ)

w

)2

,

C = 2

[
µw(1−ϑ) + c1σw(1−ϑ)

w

](
µwϑ + c1σwϑ

w

)
,

D =

(
µwϑ + c1σwϑ

w

)2

.

First, the common terms µw(1−ϑ)/w and σw(1−ϑ)/w can be written as

µw(1−ϑ)

w
=

1

w

[√
w(1− ϑ)− 1 +

√
k
]2

=
w(1− ϑ)− 1

w

[
1 +

√
k

w(1− ϑ)− 1

]2

=̇
w(1− ϑ)− 1

w
=̇1− ϑ.
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where the second term in the bracket was ignored because k/w = o(1). Moreover, we have

σw(1−ϑ)

w
=

1

w

(√
w(1− ϑ)− 1 +

√
k
)
·
(

1√
w(1− ϑ)− 1

+
1√
k

)1/3

,

after extracting the term
√
w(1− ϑ)− 1 from the first bracket and 1/

√
k from the second

bracket, we obtain

σw(1−ϑ)

w
=
k−

1
6

w

√
w(1− ϑ)− 1

(
1 +

√
k

w(1− ϑ)− 1

) 4
3

=̇

√
1− ϑ
w

k−
1
6 ,

where the second term in the bracket was ignored because k/w = o(1). Plug these two

terms into the first part we have:

A =

(
µw(1−ϑ) + c1σw(1−ϑ)

w

)2

=̇

(
1− ϑ+ c1

√
1− ϑ
w

k−
1
6

)2

= (1− ϑ)

(
1− ϑ+ 2c1

k−
1
6√
w

√
1− ϑ+ c2

1

k−
1
3

w

)
.

Since ϑ is relatively small,
√

1− ϑ = 1 − 1
2
ϑ + o(ϑ) by Taylor expansion. Then the term

is approximately

A=̇(1− ϑ)

(
1− ϑ+ 2c1

k−
1
6√
w

(1− 1

2
ϑ+ o(ϑ)) + c2

1

k−
1
3

w

)

=

(
1 + c1

k−
1
6√
w

)2

−
(

1 + c1
k−

1
6√
w

)(
2 + c1

k−
1
6√
w

)
ϑ+o(ϑ),

where the higher order terms of ϑ are included in o(ϑ). Parts C and D can be considered
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negligible, since C is order O(ϑ) and D is order o(ϑ). In summary, we have

Corr(Zt, Zt+δ)

=
E[ZtZt+δ]− E[Zt]E[Zt+δ]√

Var(Zt)
√

Var(Zt+δ)

.
1

(
c2k
− 1

6√
w

)2

{(
1 + c1

k−
1
6√
w

)2

+ c2
2

1− ϑ
w

k−
1
3 −

(
1 + c1

k−
1
6√
w

)(
2 + c1

k−
1
6√
w

)
ϑ

−
(

1 + c1
k−

1
6√
w

)2

+ o(ϑ)

}

=1− βk,wϑ+ o(ϑ).

This completes the proof of Lemma A.1. 2

The key of proving Theorem 3.2 is to quantify the tail probability of the detection

statistic. However, this probability is very small when the threshold is large [122]. There-

fore we use the change-of-measure technique in [186] to recenter the process mean to the

threshold, so that the tail probability becomes much higher. First, the detection statistic is

standardized by:

Z ′t =
Zt − E∞[Zt]

Var∞(Zt)
,

here E∞[Zt] and Var∞(Zt) depends only on k and w, but does not depend on t. Then Z ′t

has zero mean and unit variance under the P∞ measure. We are interested in finding the

probability P∞(TE ≤ M) = P∞(max16t6M Z ′t > b). We now prove Theorem 3.2 in four

steps.

Step 1. Exponential tilting. Denote the cumulant generating function of Z ′t by

ψ(a) = logE∞[eaZ
′
t ].
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Define a family of new measures

dPt
dP∞

= exp{aZ ′t − ψ(a)},

where Pt denotes the new measure after the transformation. The new measure takes the

form of the exponential family, and a can be viewed as the natural parameter. It can be

verified that Pt is indeed a probability measure since

∫
dPt =

∫
exp{aZ ′t − ψ(a)}dP = 1.

It can also be shown that ψ̇(a) is the expected value of Z ′t under Pt, since

ψ̇(a) =
E∞[Z ′te

aZ′t ]

E∞[eaZ
′
t ]

= E∞[Z ′te
aZ′t−ψ(a)] = Et[Z ′t],

and similarly ψ̈(a) is the variance under the tilted measure. We use the Gaussian ap-

proximation for Z ′t, then its log moment generating function is ψ(a) = a2/2. We set

a = b such that ψ̇(a) = Et[Z ′t] = b, therefore the tail probability after measure transfor-

mation will become much larger. Given this choice, the transformed measure is given

by dPt = exp(bZ ′t − b2/2)dP∞. We also define, for each t, the log-likelihood ratio

log(dPt/dP∞) of the form

`t = bZ ′t −
1

2
b2.

Step 2. Change-of-measure by the likelihood ratio identity. Now we convert the original

problem of finding the small probability that the maximum of a random field exceeds a

large threshold, to another problem: finding an alternative measure under which the event
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happens with a much higher probability. By likelihood ratio identity, we have:

P∞( max
16m6M

Z ′m ≥ b) = E∞[1{ max
16m6M

Z′m≥b}] = E∞

[ ∑M
t=1 e

`t

∑M
n=1 e

`n
· 1{ max

16m6M
Z′m≥b}

]

=
M∑

t=1

E∞
[

e`t∑
n e

`n
· 1{ max

16m6M
Z′m≥b}

]

=
M∑

t=1

Et
[

1∑
n e

`n
· 1{ max

16m6M
Z′m≥b}

]

= e−b
2/2

M∑

t=1

Et
[
Mt

St
e−(˜̀

t+logMt) · 1{˜̀t+logMt≥0}

]
,

(A.1)

where Mt and St in the last step is defined as the maximum and sum of likelihood ratio

differences as:

Mt = max
m∈{1,...,M}

e`m−`t , St =
∑

m∈{1,...,M}
e`m−`t .

And ˜̀
t is defined as the re-centered likelihood ratio, or the so-called global term:

˜̀
t = b(Z ′t − b).

The last equation in (A.1) converts the tail probability to a product of two terms: a de-

terministic term e−b
2/2 associated with the large deviation rate, and a sum of expectations

under the transformed measures. The expectation involves a product of the ratio Mt/St

and an exponential function that depends on ˜̀
t, which plays the role of a weight. Under the

new measure Pt, ˜̀
t has zero mean and variance equal to b2 and it dominates the other term

logMt, hence, the probability of exceeding zero is much higher. Next, we characterize the

limiting ratio and the other factors precisely, by the localization theorem.

Step 3. Establish properties of local and global terms. In (A.1), our target probability has

been decomposed into terms that only depend on (i) the local field {`m− `t}, 1 6 m 6M ,

which are the differences between the log-likelihood ratios with parameter t and m, and

(ii) the global term ˜̀
t, which is the centered and scaled likelihood ratio with parameter t.
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We need to first establish some useful properties of the local field and global term before

applying the localization theorem. We will eventually show that the local field and the

global term are asymptotically independent.

For the local field {`m − `t}, let rm,t denote the correlation between Z ′m and Z ′t, then

we have
Et(`m − `t) = −b2(1− rm,t),

Vart(`m − `t) = 2b2(1− rm,t),

Covt(`m1 − `t, `m2 − `t) = b2(1 + rm1,m2 − rm1,t − rm2,t).

We have Lemma A.1 to characterize the local correlation, which offers reasonably good

approximation for E[ZtZt+δ] and leads to rm,t ≈ 1− |m− t| βk,w/w.

Since we assume Z ′t is approximately Gaussian, the local field `m − `t and the global

term ˜̀
t are also approximately Gaussian. Therefore, when |δ| is small (i.e., in the neigh-

borhood of zero), we can approximate the local field using a two-sided Gaussian random

walk with drift b2βk,w/w and variance of the increment equal to 2b2βk,w/w:

`t+δ − `t ∆
= b

√
2βk,w
w

|δ|∑

i=1

ξi − b2βk,w
w

δ, δ = ±1,±2, . . . ,

where ξi are i.i.d. standard normal random variables.

Step 4. Approximation using localization theorem. From the argument in [190], let M̂t

and Ŝt denote the maximization and summation restricted to the small neighborhood of t.

Then they are asymptotically independent of the global term ˜̀
t. Moreover, under the tilted

measure,

Et[˜̀t] = 0, Vart[˜̀t] = b2.

Therefore the density Pt(˜̀
t) can be approximated by 1/

√
2πb2 in a neighborhood of radius

o(1/b) of zeros. The inner expectation in (A.1) can be approximated as

Et
[
Mt

St
e−(˜̀

t+logMt) · 1{˜̀t+logMt≥0}

]
=̇
Et(M̂t/Ŝt)

b
√

2πb2
.
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By [190], the expectation Et(M̂t/Ŝt) equals to b2βk,wν(b
√

2βk,w/w)/w in the asymptotic

regime, not depending on t. Substitute into (A.1), we have

P∞(T 6M) = P∞
(

max
16t6M

Z ′t > b

)

= e−b
2/2

M∑

t=1

Et
[
Mt

St
e−[˜̀t+logMt] · 1{˜̀t+logMt>0}

]

=̇Mbφ(b)βk,wν(b
√

2βk,w/w)/w,

where ν(·) is the function defined in (3.15). From the above cumulative distribution func-

tion, we can approximate T as exponential distribution, yielding the mean value

1/[bφ(b)βk,wν(b
√

2βk,w/w)/w].

Since Z ′t is standardized, here the threshold b need to be converted to the original threshold

using a simple formula

b′ = [b− (µw,k + c1σw,k)] /(c2σw,k).

This completes the proof. 2

Proof of Theorem 3.3. We first relate the largest eigenvalue procedure to a CUSUM proce-

dure, note that

λmax(Σ̂t,w) = max
‖q‖=1

q>Σ̂t,wq. (A.2)

For each q, we have

q>Σ̂t,wq =
t∑

i=t−w+1

(q>xi)
2.

According to the Grothendieck’s Inequality [76], the q that attains the maximum in equation

(A.2) is very close to u under the alternative. Therefore, assuming the optimal q always

equals to u will only cause a small error but will bring great convenience to our analysis.
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Now we have under P∞, q>xi ∼ N (0, σ2) and under P0, q>xi ∼ N (0, σ2 + θ). Let f∞

denote the pdf ofN (0, σ2) and f0 the pdf of N (0, σ2 + θ). For each observation y, we can

derive the one-sample log-likelihood ratio:

log
f0(y)

f∞(y)
= −1

2
log(1 + ρ) +

1

2σ2

(
1− 1

1 + ρ

)
y2.

Define the CUSUM procedure

T̃ = inf

{
t : max

0≤k<t

t∑

i=k+1

[ 1

2σ2

(
1− 1

1 + ρ

)
(q>xi)

2 − log(1+ρ)

2

]
≥b′
}
,

where b′ = 1
2σ2 (1− 1

1+ρ
)(b− σ2 log(1+ρ)

1−1/(1+ρ)
)w, we then have

E0[TE] ≥ E0[T̃ ].

Since T̃ is a CUSUM procedure with

∫
log

[
f0(y)

f∞(y)

]
f0(y)dy = −1

2
log(1 + ρ) +

ρ

2
,

by [188], we have:

E0[T̃ ] =
e−b

′
+ b′ − 1

− log(1 + ρ)/2 + ρ/2
.

This completes the proof. 2

Proof of Lemma 3.1. Under the pre-change distribution we can write

E∞[(û>t xt)
2] = E∞[û>t E∞[xtx

>
t ]ût] = σ2E∞[û>t ût] = σ2,

where the first equation is due to the independence of xt and ût, the next one due to xt

having covariance σ2Ik and the last equality due to ût being of unit-norm.

Under the alternative regime we are going to use Central Limit Theorem (CLT) argu-
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ments [7, 147] that describe the statistical behavior of the estimator ût. We will assume

that the window size w is sufficiently large so that CLT approximations are possible for ût.

The required result appears in the next lemma.

Lemma A.2. Suppose vectors x1, . . . , xw are of dimension k and follow the distribution

N (0, σ2Ik + θuu>). Let ϕ̂w be the eigenvector corresponding to the largest eigenvalue of

the sample covariance matrix (1/w)(x1x
>
1 + · · · + xwx

>
w), then, as w → ∞, we have the

following CLT version for ϕ̂w

√
w(ϕ̂w − u)→ N

(
0,

1 + ρ

ρ2
(Ik − uu>)

)
.

Proof of Lemma A.2. We have the following asymptotic distribution [7]:

1√
w

(ϕ̂w − u)
d−→ N

(
0,

k∑

j=2

λ1λj
(λ1 − λj)2

νjν
>
j

)
,

where λj are the jth largest eigenvalue of the true covariance matrix and νj are the cor-

responding eigenvector. In our case the true covariance matrix is σ2Ik + θuu>, therefore

λ1 = σ2 + θ and λj = σ2 for j ≥ 2, and {νj, j ≥ 2} is a basis of the orthogonal space of

u. Thus we have

k∑

j=2

λ1λj
(λ1 − λj)2

νjν
>
j =

σ2(σ2 + θ)

θ2

k∑

j=2

νjν
>
j =

(1 + ρ)

ρ2
(Ik − uu>).

2

Lemma A.2 provides an asymptotic statistical description of the un-normalized estimate

of u. More precisely it characterizes the estimation error vw = ϕ̂w − u. In our case we

estimate the eigenvector from the matrix Σ̂t+w,w but, as mentioned before, we adopt a

normalized (unit norm) version ût. Therefore if we fix w at a sufficiently large value and vt

denotes the estimation error of the un-normalized estimate at time t then, from Lemma A.2,
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we can deduce

ût =
ϕ̂t
‖ϕ̂t‖

=
u+ vt
‖u+ vt‖

, vt ∼ N
(

0,
1 + ρ

wρ2
(Ik − uu>)

)
.

Consequently

E0

[
(û>t xt)

2
]

= σ2E0

[
û>t (Ik + ρuu>)ût

]

= σ2(1 + ρE0[(û>t u)2]) = σ2

(
1 + ρE0

[
1

1 + ‖vt‖2

])

≈ σ2
(
1 + ρE0

[
1− ‖vt‖2

])
= σ2(1 + ρ)

(
1− k − 1

wρ

)
,

with the o(·) term being negligible compared to the other two when k/w � 1, where

a = o(b) denotes that a/b→ 0. For the approximate equality we used the fact that to a first

order approximation we can write 1/(1 + ‖vt‖2) ≈ 1− ‖vt‖2 because ‖vt‖2 is of the order

of 1/w while the approximation error is of higher order. This completes the proof. 2

Proof of Proposition 3.1. We first evaluate the expectation in (3.23) to demonstrate the re-

lationship between δ∞ and d depicted in (3.25). Using standard computations involving

Gaussian random vectors we can write

E∞[eδ∞[(û>t xt)
2−d]] = e−δ∞dE∞

[
E∞[eδ∞(û>t xt)

2|ût]
]

= e−δ∞dE∞

[∫
eδ∞x

>
t (ûtû>t )xt · e

−x>t xt/(2σ2)

√
(2π)kσ2k

dxt

]

=
e−δ∞d√

1− 2σ2δ∞
,

which is equivalent to (3.25). To compute the integral we used the standard technique

of “completing the square” in the exponent and with proper normalization generate an

alternative Gaussian pdf which integrates to 1. The interesting observation is that the result

of the integration does not actually depend on ût.

If we use the value for d in terms of δ∞ then as we argued in the text we obtain for
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EDD the expression appearing in (3.26). We can now fix w and optimize EDD with respect

to δ∞. This is a straightforward process since it amounts in maximizing the denominator.

Taking the derivative and equating to 0 yields the optimum δ∞:

δ∗∞ =
1

2σ2


1− 1

(1 + ρ)
(

1− k−1
wρ

)


 .

Substituting this value in (3.26) produces (3.27).

The next step consists in minimizing (3.27) with respect to w. Again taking the deriva-

tive and equating to 0 we can show that the optimum window size is the w∗ depicted in

Proposition 3.1. 2
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APPENDIX B

PROOFS FOR CHAPTER 4

Proof of Proposition 4.1. Observe that the expectation of the empirical distribution of N -

element sample drawn from a distribution r ∈ ∆n on Ω is r, and the covariance matrix

is

Cr,N =
1

N
[Diag{r} − rr>] � 1

N
Diag{r}.

Representing ω = p+ α, ω′ = p+ α′, ζ = q + β, ζ ′ = q + β′, we have

χ = (p− q)>Σ(p− q) + (α− β)>Σ(p− q)︸ ︷︷ ︸
B

+ (α′ − β′)>Σ(p− q)︸ ︷︷ ︸
B′

+ (α− β)>Σ(α′ − β′)︸ ︷︷ ︸
C

.

Since α and β are zero-mean and independent, the covariance matrix of α−β (and α′−β′)

is:

Cp,L + Cq,R = M−1
[
2γ[Diag{p} − pp>] + 2γ̄[Diag{q} − qq>]

]
� 2M−1Diag{γp+ γ̄q},

whence
E{B2} = (p− q)>Σ[Cp,L + Cq,R]Σ(p− q)

≤ (p− q)>Σ[2M−1Diag{γp+ γ̄q}]Σ(p− q)

= 2M−1
∑

i σ
2
i (pi − qi)2(γpi + γ̄qi),
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and similarly E{[B′]2} ≤ 2M−1
∑

i σ
2
i (pi − qi)2(γpi + γ̄qi). Moreover,

E{C2} = E
{

[
∑

i σi(αi − βi)(α′i − β′i)]
2}

=
∑

i,j σiσjE{(αi − βi)(αj − βj)}E{(α′i − β′i)(α′j − β′j)}

=
∑

i,j σiσj[Cp,L + Cq,R]2ij

=
∑

i σ
2
i [Cp,L + Cq,R]2ii +

∑
i 6=j σiσj[Cp,L + Cq,R]2ij

= 4M−2
[∑

i σ
2
i [γ[pi − p2

i ] + γ̄[qi − q2
i ]]

2
+
∑

i 6=j σiσj[γpipj + γ̄qiqj]
2
]

≤ 4M−2
[∑

i σ
2
i [γpi + γ̄qi]

2 +
∑

i 6=j σiσj[γpipj + γ̄qiqj]
2
]

≤ 4M−2
[
γ
∑

i σ
2
i p

2
i + γ̄

∑
i σ

2
i q

2
i + γ

∑
i 6=j σiσjp

2
i p

2
j + γ̄

∑
i 6=j σiσjq

2
i q

2
j

]

≤ 4M−2
[
γ
∑

i σ
2
i p

2
i + γ̄

∑
i σ

2
i q

2
i + γ [

∑
i σip

2
i ]

2
+ γ̄ [

∑
i σiq

2
i ]

2
]
.

Note that

[
∑

i σip
2
i ]

2 = [
∑

i(σipi)pi]
2 ≤ [

∑
i σ

2
i p

2
i ][
∑

i p
2
i ] ≤

∑
i σ

2
i p

2
i ,

which combines with the previous computation to imply that

E{C2} ≤ 8M−2 [γ
∑

i σ
2
i p

2
i + γ̄

∑
i σ

2
i q

2
i ] .

Consequently, by applying Chebyshev’s inequality to B, B′, and C, respectively, for every

θ ≥ 1, the probability π(θ) of the event

|χ−∑i σi(pi − qi)2| ≤ 2
√

2θ[
√
M−1

∑
i σ

2
i (pi − qi)2(γpi + γ̄qi)+

M−1
√
γ
∑

i σ
2
i p

2
i + γ̄

∑
i σ

2
i q

2
i ]

is at least 1 − 3/θ2. By inspecting the derivation, it is immediately seen that when p = q,

the lower bound 1− 3/θ2 on π(θ) can be improved to 1− 1/θ2, so that

π(θ) ≥





1− 3/θ2, p 6= q,

1− 1/θ2, p = q.
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Taking into account what T is, the conclusion of Proposition 4.1 follows. 2

Remark B.1. Note we do not use the standard “Poissonization” approach which assumes

that, rather than drawing N independent samples from a distribution, first select N ′ from

Poisson distribution with mean value N , and then draw N ′ samples. Such Poissonization

makes the number of times different elements occur in the sample independent, simplify-

ing the analysis. Instead, we model the empirical distribution directly by considering the

dependence in the covariance matrix Cr,N .

Proof of Proposition 4.2. We prove the Proposition in two steps.

Step 1. Let ξ, ξ′ be empirical distributions of observations in two consecutive Q-element

segments of sampleX1 that are generated from distribution p. Setting η = ξ−p, η′ = ξ′−p,

we have

ξ>ξ′ = p>p+ p>η︸︷︷︸
B

+ p>η′︸︷︷︸
B′

+ η>η′︸︷︷︸
C

.

Since η and η′ are zero-mean vectors and independent of each other, with covariance matrix

Cp,Q = Q−1[Diag{p} − pp>] � Q−1Diag{p}, we have

E{B2} = E{[B′]2} = p>Cp,Qp � Q−1p>Diag{p}p ≤ Q−1
∑

i p
3
i ,

and

E{C2} =
∑

i,j E{ηiη′iηjη′j}

=
∑

i,j [E{ηiηj}]2 = Q−2
[∑

i[pi − p2
i ]

2 +
∑

i 6=j p
2
i p

2
j

]
≤ 2Q−2

∑
i p

2
i .

Consequently, by applying Chebyshev’s inequality to B, B′, and C, respectively, the prob-

ability of the event

|ξ>ξ′ − p>p| > 3
[
2Q−1/2

√∑
i p

3
i +
√

2Q−1‖p‖2

]
(B.1)

is ≤ 1/3. Taking into account that
∑

i p
3
i ≤ ‖p‖2

2‖p‖∞ ≤ ‖p‖3
2, we have proved the
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following Lemma.

Lemma B.1 (Concentration Inequality for ξ>ξ′). Assume that there exists ρ ∈ R+ such

that the distribution p satisfies the relation ‖p‖2 ≤
√

2ρ, and a positive integer Q be such

that

3
[
27/4Q−1/2ρ3/2 + 2Q−1ρ

]
≤ 1

3
ρ2. (B.2)

When ξ, ξ′ are empirical distributions of two consecutive segments, of cardinality Q each,

generated from distribution p, we have

P
{
|ξ>ξ′ − ‖p‖2

2| >
1

3
ρ2

}
≤ 1

3
. (B.3)

Step 2. The parameters Q = Qi and ρ = ρi of i-th stage of the training-step in Algorithm 1

satisfy (B.2). Recalling that by the definition of i(p) we have ‖p‖2 ≤
√

2ρi, 1 ≤ i ≤ i(p).

Invoking Lemma B.1 and the definition of S in (4.6), we conclude that the probability of

the event

E : |Θi − ‖p‖2
2| ≤

1

3
ρ2
i , ∀1 ≤ i ≤ i(p),

is at least 1 − δ. Assume that this event takes place. By the definition of i(p), we have

ρ2
i(p) ≤ ‖p‖2

2, and since we are in the case of E , we have also |Θi(p) − ‖p‖2
2| ≤ 1

3
ρ2
i(p),

whence

Θi(p) ≥
2

3
‖p‖2

2 ≥
2

3
ρ2
i(p).

We see that under our assumption the trial run ends up with a success at some stage k ≤

i(p), so that

Θk ≥
2

3
ρ2
k and |Θk − ‖p‖2

2| ≤
1

3
ρ2
k

(the second relation holds true since we are in the case of event E). As a result,

% = Θk +
1

3
ρ2
k ≥ ‖p‖2

2,
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and |Θk − ‖p‖2
2| ≤ ρ2

k/3 ≤ Θk/2, implying that Θk ≤ 2‖p‖2, whence

% = Θk +
1

3
ρ2
k ≤ Θk +

1

2
Θk =

3

2
Θk ≤ 3‖p‖2

2.

We see that, with probability at least 1 − δ, the number of stages in the training-step is

at most i(p), and the output % of the test satisfies (4.5). Besides this, from (B.2) it is

immediately seen that Qi ≤ O(1)/ρi, so that Qi(p) ≤ O(1)/‖p‖2 due to ρi(p) ≥ ‖p‖2/
√

2.

Thus, when the training-step stops before or at stage i(p), the total number of observations

used in training-step indeed does not exceed 4SQi(p) ≤ O(1)S/‖p‖2. Note that by the

definition of S in (4.6), we have

S ≤ O(1) ln(ln(n)/δ), (B.4)

which implies (4.7). 2

Proof of Theorem 4.1. By Proposition 4.2, with properly selected O(1) in (4.9), the proba-

bility for the training-step to be successful is at least 1−δ, and there is enough observations

to perform the K individual tests of the testing stage. From now on we assume that O(1)

in (4.9) meets this requirement.

For k ≤ i(p), let Ek be the condition stating that the training-step is successful and

terminates at stage k. Note that this is a condition on the first Nk = 4SQk observations of

the sample set X1. Let us fix a realization of these Nk observations satisfying condition

Ek; from now on, speaking about probabilities of various events, we mean probabilities

taken with respect to conditional, the above realization given, probability distribution of

the remaining N −Nk observations in sample X1 and the entire N observations in X2.

We first prove the type-I risk is at most α. Note that we are in the situation when the

training-step was successful, hence % ≥ ‖p‖2
2. Consequently, the threshold (4.8) satisfies

relation (4.3) with θ = 3 and σi ≡ 1, implying by the first claim in Proposition 4.1 (where

we set L = R = M ) that when p = q, the probability to claim H1 by a particular one of

164



the K individual tests is at most 1/9. By the definition of K(α, β), we conclude that the

type-I risk is indeed at most α.

We then prove the type-II risk is at most β whenever the condition (4.10) holds. Assume

that ‖p − q‖2 ≥ ε‖p‖2 with some ε > 0, and set L = R = M , θ = 3 and σi ≡ 1. With `

given by (4.8), the inequality (4.4) reads

‖p− q‖2
2 > 6

√
2
[
M−1√%+M−1/2

√∑
i(pi − qi)2(pi + qi)/2+

M−1
√

(‖p‖2
2 + ‖q‖2

2)/2
]
.

(B.5)

Note that the condition (B.5) ensures that the power of every individual test is at least 2/3;

thus, due to the choice ofK(α, β), the type-II risk is at most β. It only remains to verify that

condition (4.10) implies the validity of (B.5). Since we are in the situation that the training-

step is successful, the condition (4.5) holds and in particular, ‖p‖2 ≤ √% ≤
√

3‖p‖2,

implying that the right hand side in (B.5) is at most

R = O(1)
[
M−1[

√
%+ ‖q‖2] +M−1/2‖p− q‖2

√√
%+ ‖q‖2

]
,

and therefore in order to ensure the validity of (B.5), it suffices to ensure that

‖p− q‖2
2 ≥ O(1)M−1[

√
%+ ‖q‖2]. (B.6)

First consider the case when ‖q‖2 ≤ 2‖p‖2, which combines with (4.5) to imply that the

right hand side in (B.6) is ≤ O(1)M−1√%. By (4.5) and ‖p − q‖2 ≥ ε‖p‖2, the left

hand side in (B.6) is at least O(1)ε2%, so that (B.6) indeed is implied by (4.10), provided

that the absolute constant factor in the latter relation is selected properly. Then consider

the case when ‖q‖2 ≥ 2‖p‖2. In this case, by (4.5), the right hand side in (B.6) is at

most O(1)M−1‖q‖2, and the left hand side in (B.6) is at least O(1)‖q‖2
2, implying that

(B.6) holds true when M ≥ O(1)/‖q‖2. The validity of the latter condition, in view of

‖q‖2 ≥ 2‖p‖2, clearly is guaranteed by the validity of (4.10), provided O(1) in the latter
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relation is selected properly. 2

Proof of Proposition 4.3. Assuming n is even, consider the following two scenarios on dis-

tributions p, q from which the two sets of sample X1 and X2 are independently generated:

1. Both samples are i.i.d. drawn from the uniform distribution on Ω.

2. The nature draws, independently of each other, two n/2-element subsets, Ω1 and Ω2,

of Ω, from the uniform distribution on the family of all subsets of Ω of cardinality

n/2; the N -observation samples X1 are i.i.d. drawn from the uniform distribution on

Ω1, and the N -observation samples X2 are i.i.d. drawn from the uniform distribution

on Ω2.

In the first scenario, the hypothesisH0 is true; in the second, there is a significant difference

between p and q – with probability close to 1 when n is large enough, we have the ‖p −

q‖2 ≥ ε‖p‖2 = ε
√

2/n for any ε small enough, e.g., for 0 < ε < 1/2. Denote the union of

two sets of samples as x2N := (x1, ..., x2N). It follows that if there exists a test T obeying

the premise of Proposition 4.1, then there exists a low risk test deciding on whether the

entire 2N -element sample x2N shown to us is generated according to the first or the second

scenario.

Specifically, given x2N , let us split it into two halves and apply to the two resulting

N -observation samples the test T ; if the test claim H1, we conclude that x2N is generated

according to the second scenario, otherwise we claim that x2N is generated according to

the first scenario. When x2N is generated by the first scenario, the probability for T to

claim H1 is at most α, that is, the probability to reject the first scenario when it is true is

at most α. On the other hand, when x2N is generated according to the second scenario, the

conditional, p and q given, probability for T to accept H0 should be at most β, provided

that ‖p − q‖2 ≥ ε‖p‖2 for a given ε ∈ (0, 1/2); when n is large, the probability for the

condition ‖p − q‖2 ≥ ε‖p‖2 to hold true approaches 1, so that for large enough values of

n, the probability for the condition to hold is at least 1− β and therefore the probability of
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claiming a sample generated according to the second scenario as one generated according

to the first one, is at most 2β. Thus, for properly selected n0 and all n ≥ n0, given x2N , we

can decide with risk ≤ 2β on the scenario resulted in x2N .

On the other hand, consider the distribution of x2N . The corresponding observation

space is the space Ω2N of 2N -element sequences with entries from Ω. Let Ω̂ be the part

of Ω2N comprised of sequences with all entries different from each other, and Ω̃ be the

complement of Ω̂ in Ω2N . Let also P1 and P2 be the distributions of our observations

under the first and the second scenarios, and P be the distribution on Ω2N which assigns

equal masses to all points from Ω̂ and zero masses to the points outside of Ω̂. By evident

symmetry reasons, we have

Pi = (1− εi)P + εiQi, i = 1, 2,

where Q1 and Q2 are probability distributions supported on Ω̃, and εi is the probability,

under scenario i, to observe 2N -element sample in Ω̃. We clearly have

ε1 ≤
N(2N − 1)

n
, ε2 ≤

4N(2N − 1)

n
.

Indeed, for a fixed pair of indexes t1, t2, 1 ≤ t1 < t2 ≤ 2N , the probability to get xt1 = xt2

in x2N is 1/n under the first scenario and is at most 4/n under the second scenario, while

the number of pairs t1, t2 in question is N(2N − 1). We see that

∑
ζ2N∈Ω2N min{P1(ζ2N), P2(ζ2N)} = min{1− ε1, 1− ε2}

∑
ζ2N∈Ω̂ P (ζ2N)

+
∑

ζ2N∈Ω̃ min{ε1Q1(ζ2N), ε2Q2(ζ2N)} ≥ min{1− ε1, 1− ε2},

implying that our scenarios cannot be decided upon with risk ≤ min{1 − ε1, 1 − ε2}/2.

When N � √n, both ε1 and ε2 are small, so that it is impossible to decide on our scenarios

with risks α (and 2β). The bottom line is that under the premise of Proposition 4.1, we

either have n ≤ n0, or N ≥ O(1)
√
n with properly selected constant O(1) that depends on
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α, β, ε, and the conclusion follows. Note that here the dependence on reliability parameters

is logarithmic and is not our focus here since here we aim to study the sample optimality

with respect to the cardinality n of the set Ω. 2

Proof of Proposition 4.5. In order to approximate the correlation between statistics χt,k and

χτ,s, we consider a simple case when the sample size t−k = τ−s = 2m. Denote the cardi-

nality of the non-overlapping part in two time windows as δ = |t−τ | = |k−s|. Without loss

of generality, we consider two sequences, {x1, x2, . . . , x4m} and {x1+δ, x2, . . . , x4m+δ},

with 4m− δ overlapping elements, as illustrated and grouped in Figure B.1.

!" !#⋯ !#%" !&⋯ !&%" !&%#⋯ !&%#%" !'&⋯ !'&%" !'&%#⋯ !'&%#%" !(&⋯ !(&%" !(&%#⋯ !(&%#%" !)&⋯

!#%" !&%#⋯ !&%#%" !'&⋯ !'&%" !'&%#⋯ !'&%#%" !(&⋯ !(&%" !(&%#⋯ !(&%#%" !)&⋯

*"

+"

*'

+' +( +)

*( *) *,

Length of *-: /
Length of +-: 0 − /

Figure B.1: Sliding window illustration.

Recall that Var(χt,k) = 4
[∑n

i=1 σ
2
i p

2
i (1− pi)2 +

∑
i 6=j σiσjp

2
i p

2
j

]
from the previous

computations. Therefore, it remains to compute E[χt,kχτ,s]. For simplicity, we compute

m2E[χtχt+δ] by writing it as a summation of several indicator functions as follows:

m2E[χt,kχτ,s]

=E

[
n∑

i=1

σi (1i{S1}+ 1i{L1} − 1i{S3} − 1i{L3}) (1i{S2}+ 1i{L2} − 1i{S4} − 1i{L4})
]

·
[

n∑

i=1

σi (1i{L1}+ 1i{S2} − 1i{L3} − 1i{S4}) (1i{L2}+ 1i{S3} − 1i{L4} − 1i{S5})
]
,

where 1i{S} =
∑

k∈S 1{xk = i} for a given index set S. Since xi are i.i.d. random

variables, we have E(1i{S}) = |S|pi, Var(1i{S}) = |S|pi(1−pi), and E(1i{S}1j{S}) =

|S|(|S| − 1)pipj , with |S| denotes the cardinality. More specifically, for the decomposition

shown in Figure B.1, we have |Si| = δ and |Li| = m − δ. Substitute these into the above

formulation, we have

m2E[χt,kχτ,s] = [4(m− δ)2 − 2δ2]
[∑n

i=1 σ
2
i p

2
i (1− pi)2 +

∑
i 6=j σiσjp

2
i p

2
j

]
.
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Therefore, the correlation of the statistic χt,k and χτ,s is

Corr(χt,k, χτ,s) =
4(m− δ)2 − 2δ2

4m2
= 1− 2

δ

m
+

δ2

2m2
.

Substitute δ = |t− τ | = |k − s| into the above equation then we complete the proof. 2

Proof of Theorem 4.2. The proof is based on a general method for computing first passage

probabilities first introduced in [227] and further developed in [191] and [186], and com-

monly used in similar problems [223, 122, 35]. First of all, it is worth mentioning that the

probability measure in the following proof always stands for the nominal case where all

samples are from the same distribution p. We define the variable

Zτ = τ(ξτ − ητ )>Σ(ξ′τ − η′τ ),

where ξτ , ητ , ξ′τ , η
′
τ are empirical distributions of four independent (non-overlapping) se-

quences with equal length τ . Recall that E[Zτ ] = 0 and Var(Zτ ) = σ2
p . We denote the

moment generating function as

ψτ (θ) = logE [exp{θZτ}] ,

and select θ = θτ by solving the equation ψ̇τ (θ) = b. Since Zτ is defined by a function

of 4τ independent random samples, φτ converges to a limit as τ → ∞ and θτ converges

to a limiting value, denoted by θ. The transformed distribution for all sequences at a fixed

center position k and the window size τ is denoted by Pτk and is defined by

dPτk = exp{θZτ
k − ψτ (θτ )}dP,

where Zτ
k = τ(ξk,τ − ηk,τ )>Σ(ξ′k,τ − η′k,τ ) is the statistic for location k and window size τ ,

as indicated in Figure 4.2.

169



Let

`(k, τ) := log(dPτk/dP) = θZτ
k − ψτ (θτ ).

Denote D = {(k, τ) : 0 ≤ k ≤ m, dm0/2e ≤ τ ≤ dm1/2e} be the set of all possible

windows in the scan. Let A = {max(k,τ)∈D Zτ
k ≥ b} be the event of interests (the event

{T ′ ≤ m}), i.e., the procedures stop before time m.

By measure transformation, we have

P(A) =
∑

(k,τ)∈D
E

[
exp[`(k, τ)]

( ∑

(k′,τ ′)∈D
exp[`(k′, τ ′)]

)−1

;A

]

=
∑

(k,τ)∈D
Eτk

[( ∑

(k′,τ ′)∈D
exp[`(k′, τ ′)]

)−1

;A

]

=
∑

(k,τ)∈D
e

˜̀(k,τ)−`(k,τ) × Eτk

[
maxk′,τ ′ e

`(k′,τ ′)−`(k,τ)

∑
k′,τ ′ e

`(k′,τ ′)−`(k,τ)
e−

˜̀(k,τ)−[maxk′,τ ′ `(k
′,τ ′)−`(k,τ)];A

]

= e−θτ ψ̇τ (θτ )+ψτ (θτ ) ×
∑

(k,τ)∈D
Eτk
[
M(k, τ)

S(k, τ)
e−

˜̀(k,τ)−logM(k,τ);A

]
,

(B.7)

where
˜̀(k, τ) = θτ [Z

τ
k − ψ̇τ (θτ )],

M(k, τ) = maxk′,τ ′ exp{θτ (Zτ ′

k′ − Zτ
k )},

S(k, τ) =
∑

k′,τ ′ exp{θτ (Zτ ′

k′ − Zτ
k )}.

Since k, τ are fixed in much of the following analysis, we suppress the dependence of the

notation on k, τ and simply writet ˜̀, S,M . Under certain verifiable assumptions [186], a

localization lemma allows us to simplify the expectation

Eτk
[
M

S
e−

˜̀−logM ; ˜̀+ logM ≥ 0

]

into a simpler form
1√

2πσ2
τ

E
[
M

S

]
,
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where σ2
τ stands for the variance of ˜̀ under measure Pτk. The reduction relies on the fact

that for large m, the local processes M and S are approximately independent of the global

process ˜̀. Such independence allows the above decomposition into the expectation ofM/S

times the expectation involving ˜̀+ logM , treating logM essentially as a constant.

We first consider the process M and S and derive the expectation E[M/S] following

[191]. The difference between Zτ ′

k′ and Zτ
k can be writted in the form

Zτ ′

k′ − Zτ
k = τ ′(ξk′,τ ′ − ηk′,τ ′)>Σ(ξ′k′,τ ′ − η′k′,τ ′)− τ(ξk,τ − ηk,τ )>Σ(ξ′k,τ − η′k,τ )

= τ ′
[
(ξk′,τ ′ − ηk′,τ ′)>Σ(ξ′k′,τ ′ − η′k′,τ ′)− (ξk,τ − ηk,τ )>Σ(ξ′k,τ − η′k,τ )

]

+ (τ ′ − τ)(ξk,τ − ηk,τ )>Σ(ξ′k,τ − η′k,τ ).

Observe that one may let τ ′ = τ and substitute θ = limτ→∞ θτ for θτ in the definition of

the increments and still maintain the required level of accuracy. When τ ′ = τ , the second

term in the above expression vanish and the first term consists of two terms that are highly

correlated. As characterized in Proposition 4.5, when τ ′ = τ , the covariance between the

two terms is given by

Cov(θτZ
τ ′

k′ , θτZ
τ
k ) = θ2

τE[Zτ ′

k′ , Z
τ
k ] = θ2

τσ
2
p

(
1− 2

|k′ − k|
τ

+
|k′ − k|2

2τ 2

)
.

When τ is large, we have that the correlation depends on the difference |k′ − k| in a linear

form, which shows that we have the random walk in the change time k, and the variance of

the increment equals to 2θ2
τσ

2
p/τ . Following [191], we have

E[M/S] = [θ2
τσ

2
p/τν([2θτσ

2
p/τ ]1/2)]2.

Moreover, the process ˜̀ is zero-mean and has variance σ2
τ = Varτk(

˜̀) = θ2
τ ψ̈(θτ ) under
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the measure Pτk. Substituting the result for the expectations in (B.7) yields

P(T ′ ≤ m) = 2

dm1/2e∑

τ=dm0/2e
(m− 2τ)e−θτ ψ̇τ (θτ )+ψτ (θτ )

[θ2
τσ

2
p/τν([2θτσ

2
p/τ ]1/2)]2

[2πθ2
τ ψ̈τ (θτ )]

1/2
.

In the limiting case, Zτ
k can be well approximated using Gaussian distribution N (0, σ2

p).

The moment generating function then becomes ψ(θ) = θ2σ2
p/2, and the limiting θ = b/σ2

p ,

as the solution to ψ̇(θ) = b. Furthermore, the summation term can be approximated by an

integral, to obtain

P(T ′ ≤ m) = 2

dm1/2e∑

τ=dm0/2e
(m− 2τ)e−b

2/(2σ2
p)[2πb2/σ2

p]
−1/2[b2/(τσ2

p)ν([2b2/(τσ2
p)]

1/2)]2

≈ 4e−b
2/(2σ2

p)[2πb2/σ2
p]
−1/2[b2/σ2

p]
2

∫ m1/m

m0/m

ν2([4b2/(mtσ2
p)]

1/2)(1− t)dt/t2.
(B.8)

Here it is assumed that m is large, but small enough that the right-hand side of (B.8) con-

verges to 0 when b→∞. Changing variables in the integrand, we can rewrite this approx-

imation as

P{T ′ ≤ m} ≈ m× 2e−b
2/(2σ2

p)[2πb2/σ2
p]
−1/2[b2/σ2

p]

∫ [4b2/(m0σ2
p)]1/2

[4b2/(m1σ2
p)]1/2

yν2(y)dy. (B.9)

From the arguments in [189, 193], we know that T ′ is asymptotically exponentially dis-

tributed and is uniformly integrable. Hence if λ denotes the factor multiplying m on the

right-hand side of (B.9), then for large m, in the range where mλ is bounded away from

0 and +∞, P{T ′ ≤ m} − [1 − exp(−λm)] → 0. Consequently, E[T ′] ≈ 1/λ, thereby

we complete the proof. Here we omit some technical details needed to make the derivation

rigorous. Those details have been described and proved in [186]. 2

Proof of Theorem 4.3. Recall that χt,0 is defined in (4.13). For any time t, we have

E0[χt,0] =
t

2
(p− q)>Σ(p− q),
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which grows linearly with respect to time. At the stopping time T = T , the expectation of

the window-limited statistic in (4.15) can be computed if m1 is sufficiently large (at least

larger than the expected detection delay):

E[ max
0≤k≤T

χt,k] ≈ E[χt,0] =
T

2
(p− q)>Σ(p− q).

On the other hand, we have that

E[ max
0≤k≤T

χt,k] = b+ E[ max
0≤k≤T

χt,k − b].

If we ignore the overshoot of the threshold over b since it is a of order o(b) when b → ∞

(detailed analysis for overshoot has been developed in [187]), then we obtain a first-order

approximation as b→∞, by solving

E0[T ]

2
(p− q)>Σ(p− q) = b(1 + o(1)).

Therefore, a first-order approximation for the expected detection delay is given by

E0[T ] =
b(1 + o(1))

(p− q)>Σ(p− q)/2 .

2

Proof of Proposition 4.6. For the minimization problem that defines f(σ) := minS∈S Tr(ΣS),

we introduce matrix variable T ∈ Rn×n such that Tij ≥ |Sij| and
∑n

i=1

∑n
j=1 Tij ≤ 4. We

will jointly minimize over S and T in f(σ). The Lagrangian function of the problem f(σ)
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writes

L(σ, S, P, T, λ,W,U, ξ, {xk}Kk=1)

= Tr(ΣS)− Tr(PS)− rTr(SJ) + λ(ρ2 − Tr(S))

+
∑

k xk(Tr(SQk)− 4) + ξ(Tr(TJ)− 4)− Tr(U(T − S))− Tr(W (T + S))

= Tr
((

Σ− P − rJ − λIn +
∑K

k=1 xkQk + U −W
)
S
)

+λρ2 − 4
∑K

k=1 xk − 4ξ + Tr ((ξJ − U −W )T ) ,

where J ∈ Rn×n is a matrix with all elements equal to 1, and we have

f(σ) = min
S,T

max
P<0,U≥0,W≥0

λ≥0,ξ≥0,xk≥0,r∈R

L(σ, S, P, T, λ,W,U, ξ, {xk}Kk=1).

Then we have the dual problem of f(σ) can be represented as

max λρ2 − 4
∑

k xk − 4ξ

s.t. λ ≥ 0, P < 0, ξ ≥ 0, xk ≥ 0, U ≥ 0,W ≥ 0, r ∈ R,
∑

k xkQk + U −W − P − rJ − λIn < −Σ,

Uij +Wij ≤ ξ, 1 ≤ i ≤ n, 1 ≤ j ≤ n.

Next we derive the dual form for g(σ), similarly, we write the Lagrangian function as

L(Σ, P,Λ, V, ν, {µk}Kk=1)

= Tr((Σ2 + Λ + V )P ) + ν(Tr(PJ)− 1) +
∑

k µk(1− Tr(PQk)),

and we have

g(σ) = max
P

min
Λ<0,V≥0,ν∈R,µk≥0

L(Σ, P,Λ, V, ν, {µk}Kk=1).
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Then we have the dual form of g(σ) is

min
∑

k µk − ν

s.t. Λ < 0, V ≥ 0, µk ≥ 0, 1 ≤ k ≤ K,

−Λ− V +
∑

k µkQk − νJ < Σ2.

Then the constraint g(σ) ≤ 1 can be simplified to: ∃Λ < 0, V ≥ 0, µk ≥ 0, ν ∈ R, such

that
∑

k µk − ν ≤ 1, −Λ− V +
∑

k µkQk − νJ < Σ2.

Combine with the dual form of f(σ), we have the problem (4.21) is equivalent to

max λρ2 − 4
∑

k xk − 4ξ

s.t. λ ≥ 0, P < 0, ξ ≥ 0, xk ≥ 0, U ≥ 0,W ≥ 0, r ∈ R,
∑

k xkQk + U −W − P − rJ − λIn < −Σ,

Uij +Wij ≤ ξ, 1 ≤ i ≤ n, 1 ≤ j ≤ n,
∑

k µk − ν ≤ 1,

Λ < 0, V ≥ 0, µk ≥ 0, 1 ≤ k ≤ K,

−Λ− V +
∑

k µkQk − νJ < Σ2.

2
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APPENDIX C

PROOFS FOR CHAPTER 5

Proof of Lemma 5.1. Note that the probability measures P1, P2 are absolutely continuous

with respect to P1 + P2, hence we have

inf
π

Φ(π;P1, P2)

= inf
π

∫

Ω

[
(1− π(ω)) dP1

d(P1+P2)
(ω) + π(ω) dP2

d(P1+P2)
(ω)
]
d(P1 + P2)(ω)

= inf
π

∫

Ω0

[
(1− π(ω)) dP1

d(P1+P2)
(ω) + π(ω) dP2

d(P1+P2)
(ω)
]
d(P1 + P2)(ω)

=

∫

Ω0

inf
06x61

[
(1− x) dP1

d(P1+P2)
(ω) + x dP2

d(P1+P2)
(ω)
]
d(P1 + P2)(ω),

(C.1)

where the second equality holds because the integral depends only on the subset Ω0 :=
{
ω ∈ Ω : 0 < dPk

d(P1+P2)
(ω) < 1, k = 1, 2

}
, on which P1, P2 are absolutely continuous with

respect to each other; the third equality is due to the Interchangeability Principle (Theorem

7.80, [179]).

For any ω, the infimum π∗(ω) of the inner minimization in (C.1) is attained at 0 or 1.

Therefore, for any ω ∈ Ω,

(1− π∗(ω)) dP1

d(P1+P2)
(ω) + π∗(ω) dP2

d(P1+P2)
(ω) = min

{
dP1

d(P1+P2)
(ω), dP2

d(P1+P2)
(ω)
}
.

This completes the proof. 2

Proof of Lemma 5.2. Denote by L1(µ) the space of all integrable functions with respect to

the measure µ. Using Lagrangian and Kantorovich’s duality (Theorem 5.10, [210]), we
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rewrite the LFD problem as:

sup
P1∈P1,P2∈P2

ψ(P1, P2)

= sup
P1∈P(Ω)
P2∈P(Ω)

inf
λ1,λ2≥0

{
ψ(P1, P2) +

2∑

k=1

λkθk −
2∑

k=1

λk sup
uk∈Rnk
vk∈L1(Pk)

{
1

nk

nk∑

i=1

uik

+

∫

Ω

vkdPk : uik + vk(ω) ≤ c(ω, ω̂ik), ∀1 ≤ i ≤ nk,∀ω ∈ Ω

}}

= sup
P1∈P(Ω)
P2∈P(Ω)

inf
λ1,λ2≥0
uk∈Rnk
vk∈L1(Pk)

{
ψ(P1, P2) +

2∑

k=1

λkθk −
2∑

k=1

λk

(
1

nk

nk∑

i=1

uik +

∫

Ω

vkdPk

)
:

uik + vk(ω) ≤ c(ω, ω̂ik), ∀1 ≤ i ≤ nk,∀ω ∈ Ω

}

= sup
P1∈P(Ω)
P2∈P(Ω)

inf
λ1,λ2≥0
uk∈Rnk
vk∈L1(Pk)

{
ψ(P1, P2) +

2∑

k=1

λkθk −
2∑

k=1

(
1

nk

nk∑

i=1

uik +

∫

Ω

vkdPk

)
:

uik + vk(ω) ≤ λkc(ω, ω̂
i
k), ∀1 ≤ i ≤ nk,∀ω ∈ Ω

}
,

where the second equality holds by combining the innermost supreme problem with the

infimum problem; and the third equality holds by replacing λkuik with uik and λkvk with

vk (note that such change of variable is valid even when λk = 0). Furthermore, since the

objective function is non-increasing in vk, we can replace vk with min1≤i≤nk{λkc(ω, ω̂ik)−

uik} without changing the optimal value. Interchanging sup and inf yields

sup
P1∈P1,P2∈P2

ψ(P1, P2)≤ inf
λ1,λ2≥0
uk∈Rnk

{ 2∑

k=1

λkθk −
2∑

k=1

1

nk

nk∑

i=1

uik + sup
P1∈P(Ω)
P2∈P(Ω)

{
ψ(P1, P2)

−
∫

Ω

2∑

k=1

min
1≤i≤nk

{λkc(ω, ω̂ik)− uik}dPk
}}

.

(C.2)

Now let us study the inner supremum in (C.2). For a given distribution (P1, P2) and

any ω ∈ supp P1 ∪ supp P2, where supp P denotes the support of the distribution P , let
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ik(ω) = arg mini{λkc(ω, ω̂ik)− uik}, k = 1, 2, set

T (ω) :=





ω̂
i1(ω)
1 , if λ1

dP1

d(P1+P2)
(ω) ≥ λ2

dP2

d(P1+P2)
(ω),

ω̂
i2(ω)
2 , if λ1

dP1

d(P1+P2)
(ω) < λ2

dP2

d(P1+P2)
(ω),

whence

T (ω) ∈ arg min
ω′∈Ω

{ 2∑

k=1

[
λkc(ω

′, ω̂ik(ω)
k )− uik(ω)

k

]
dPk

d(P1+P2)
(ω)

}
.

By definition we have T (ω) ∈ Ω̂. Define another solution (P ′1, P
′
2) such that P ′k(B) =

Pk{ω ∈ Ω : T (ω) ∈ B} for any Borel set B ⊂ Ω̂. It follows that

2∑

k=1

∫

Ω̂

min
1≤i≤nk

{λkc(ω, ω̂ik)− uik}dP ′k(ω)

=
2∑

k=1

∫

Ω

min
1≤i≤nk

{λkc(T (ω), ω̂ik)− uik}dPk(ω)

≤
2∑

k=1

∫

Ω

(
λkc(T (ω), ω̂

ik(ω)
k )− uik(ω)

k

)
dPk(ω)

≤
2∑

k=1

∫

Ω

(
λkc(ω, ω̂

ik(ω)
k )− uik(ω)

k

)
dPk(ω).

In addition, by a simple fact that
∑

i min{xi, yi} ≤ min{∑i xi,
∑

i yi} for any series

{xi, yi}, we have

ψ(P1, P2) =

∫

Ω

min

{
dP1

d(P1 + P2)
(ω),

dP2

d(P1 + P2)
(ω)

}
d(P1 + P2)(ω)

≤
∑

ω̂∈Ω̂

min{P1{ω ∈ Ω : T (ω) = ω̂}, P2{ω ∈ Ω : T (ω) = ω̂}}

=
∑

ω̂∈Ω̂

min{P ′1(ω̂), P ′2(ω̂)}

= ψ(P ′1, P
′
2).

Hence (P ′1, P
′
2) yields an objective value no worse than (P1, P2) for the inner supremum in
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(C.2). This suggests that in order to solve the inner supremum of (C.2), it suffices to only

consider (P1, P2) with supp P1 ⊂ Ω̂ and supp P2 ⊂ Ω̂.

For l = 1, . . . , n, set plk = Pk(ω̂
l), and note that γk ∈ Γ(Pk, Qk,n) can be identified

with a non-negative matrix γk ∈ Rn×n
+ with each column and row summing up to 1. Thus,

the inner supremum in (C.2) can now be equivalently written as

sup
p1,p2∈Rn+∑

l p
l
1=1,

∑
l p
l
2=1

{ n∑

l=1

min
{
pl1, p

l
2

}
−

2∑

k=1

n∑

l=1

plk min
1≤i≤nk

{λkc(ω̂l, ω̂ik)− uik}
}
.

It follows that

sup
P1∈P1,P2∈P2

ψ(P1, P2)

≤ inf
λ1,λ2≥0

{ 2∑

k=1

λkθk −
2∑

k=1

1

nk

nk∑

i=1

uik + sup
p1,p2∈Rn+∑

l p
l
1=1,

∑
l p
l
2=1

{ n∑

l=1

min
{
pl1, p

l
2

}

−
2∑

k=1

n∑

l=1

plk min
1≤i≤nk

{λkc(ω̂l, ω̂ik)− uik}
}
.

Applying the Lagrangian duality for finite-dimensional convex programming on the right-

hand side yields

sup
P1∈P1,P2∈P2

ψ(P1, P2) ≤ sup
P1∈P̂1,P2∈P̂2

ψ(P1, P2),

Observe that both sides have the same objective function, but the feasible region of the

right-hand side is a subset of that of the left-hand side, and thus the right-hand side should

be no greater than the left-hand side, i.e., the above inequality should hold as equality.

Thereby we complete the proof. 2

Proof of Theorem 5.1. Note that from Lemma 5.2, we have

sup
P1∈P̂1,P2∈P̂2

inf
π:Ω→[0,1]

Φ(π;P1, P2) = sup
P1∈P1,P2∈P2

inf
π:Ω→[0,1]

Φ(π;P1, P2)

≤ inf
π:Ω→[0,1]

sup
P1∈P1,P2∈P2

Φ(π;P1, P2).
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Let us prove the other direction.

To begin with, we identify π̂ ∈ [0, 1]n with a function on Ω̂. Using Theorem 2.3, we

have:

sup
P1∈P̂1

EP1 [1− π̂] = min
λ1≥0

{
λ1θ1 +

1

n1

n1∑

l=1

max
1≤m≤n

{1− π̂m − λ1c(ω̂
l, ω̂m)}

}
,

sup
P2∈P̂2

EP2 [π̂] = min
λ2≥0

{
λ2θ2 +

1

n2

n2∑

l=1

max
1≤m≤n

{π̂m − λ2c(ω̂
l, ω̂m)}

}
.

(C.3)

Let λ∗1 and λ∗2 be respectively the minimizers of the two problems in (C.3). Observe that

the right-hand sides of (C.3) and (5.9) are identical. Hence (5.9) implies that π̂∗ defined in

the statement of Theorem 5.1 satisfies

EP ∗1 [1− π̂∗] = sup
P1∈P̂1

EP1 [1− π̂∗], EP ∗2 [π̂∗] = sup
P2∈P̂2

EP2 [π̂
∗],

and thus

sup
P1∈P̂1,P2∈P̂2

Φ(π̂∗;P1, P2) = sup
P1∈P̂1,P2∈P̂2

inf
π̂∈[0,1]n

Φ(π̂;P1, P2). (C.4)

Hence (π̂∗;P ∗1 , P
∗
2 ) solves the above finite-dimensional convex-concave saddle point prob-

lem that always has an optimal solution, which verifies the well-definedness of π̂∗.

On the other hand, for the π∗ defined in the statement of Theorem 5.1, the optimization

problem for finding worst-case risk are decoupled and admits the following equivalent

reformulations (Theorem 2.3)

sup
P1∈P1

EP1 [1− π∗(ω)] = min
λ1≥0

{
λ1θ1 +

1

n1

n1∑

i=1

sup
ω∈Ω

{
1− π∗(ω)− λ1c(ω, ω̂

i
1)
}
}
,

sup
P2∈P2

EP2 [π
∗(ω)] = min

λ2≥0

{
λ2θ2 +

1

n2

n2∑

i=1

sup
ω∈Ω

{
π∗(ω)− λ2c(ω, ω̂

i
2)
}
}
.

(C.5)
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Comparing (C.3) and (C.5), if we can prove π∗ satisfies

sup
ω∈Ω

{
1− π∗(ω)− λ∗1c(ω, ω̂i1)

}
≤ max

ω∈Ω̂

{
1− π̂∗(ω)− λ∗1c(ω, ω̂i1)

}
, ∀1 ≤ i ≤ n1,

sup
ω∈Ω

{
π∗(ω)− λ∗2c(ω, ω̂i2)

}
≤ max

ω∈Ω̂

{
π̂∗(ω)− λ∗2c(ω, ω̂i2)

}
, ∀1 ≤ i ≤ n2,

(C.6)

then π∗ would be an optimal solution to (5.2) since

inf
π:Ω→[0,1]

sup
P1∈P1,P2∈P2

Φ(π;P1, P2) ≤ sup
P1∈P1,P2∈P2

Φ(π∗;P1, P2)

≤ sup
P1∈P̂1,P2∈P̂2

Φ(π̂∗;P1, P2)

= sup
P1∈P1,P2∈P2

inf
π:Ω→[0,1]

Φ(π;P1, P2).

To show (C.6), for π∗ restricted on the empirical support Ω̂, we have

sup
ω∈Ω̂

{
1− π∗(ω)− λ∗1c(ω, ω̂i1)

}
= max

ω∈Ω̂

{
1− π̂∗(ω)− λ∗1c(ω, ω̂i1)

}
, ∀1 ≤ i ≤ n1,

sup
ω∈Ω̂

{
π∗(ω)− λ∗2c(ω, ω̂i2)

}
= max

ω∈Ω̂

{
π̂∗(ω)− λ∗2c(ω, ω̂i2)

}
, ∀1 ≤ i ≤ n2.

Indeed, this holds by construction π∗(ω) = π̂∗(ω) for ω ∈ Ω̂. It remains to show (C.6) also

holds outside of Ω̂:

sup
ω/∈Ω̂

{
1− π∗(ω)− λ∗1c(ω, ω̂i1)

}
≤ max

ω∈Ω̂

{
1− π̂∗(ω)− λ∗1c(ω, ω̂i1)

}
, ∀1 ≤ i ≤ n1,

sup
ω/∈Ω̂

{
π∗(ω)− λ∗1c(ω, ω̂i2)

}
≤ max

ω∈Ω̂

{
π̂∗(ω)− λ∗2c(ω, ω̂i2)

}
, ∀1 ≤ i ≤ n2.

To prove this, note that it is equivalent to that ∀ω /∈ Ω̂:

π∗(ω) ≥ min
ω̂∈Ω̂

{
π∗(ω̂) + λ∗1c(ω̂, ω̂

i
1)
}
− λ∗1c(ω, ω̂i1), ∀i = 1, . . . , n1,

π∗(ω) ≤ λ∗2c(ω, ω̂
j
2)−min

ω̂∈Ω̂

{
λ∗2c(ω̂, ω̂

j
2)− π∗(ω̂)

}
, ∀j = 1, . . . , n2.

(C.7)

181



Observe that ∀ω ∈ Ω, ∀i = 1, . . . , n1 and ∀j = 1, . . . , n2, we have:

min
ω̂∈Ω̂

{
π∗(ω̂) + λ∗1c(ω̂, ω̂

i
1)
}

+ min
ω̂∈Ω̂

{
λ∗2c(ω̂, ω̂

j
2)− π∗(ω̂)

}

≤





π∗(ω̂j2) + λ∗1c(ω̂
j
2, ω̂

i
1)− π∗(ω̂j2), λ∗1 ≤ λ∗2,

π∗(ω̂i1) + λ∗2c(ω̂
i
1, ω̂

j
2)− π∗(ω̂i1), λ∗1 > λ∗2,

= min{λ∗1, λ∗2}c(ω̂i1, ω̂j2)

≤ λ∗1c(ω, ω̂
i
1) + λ∗2c(ω, ω̂

j
2),

where we have used the triangle inequality of the metric c(·, ·). And we note that

min
ω̂∈Ω̂

{
π∗(ω̂) + λ∗1c(ω̂, ω̂

i
1)
}
− λ∗1c(ω, ω̂i1) ≤ π∗(ω̂i1) ≤ 1,

and

λ∗2c(ω, ω̂
j
2)−min

ω̂∈Ω̂

{
λ∗2c(ω̂, ω̂

j
2)− π∗(ω̂)

}
≥ π∗(ω̂j2) ≥ 0,

since π∗(ω) = π̂∗(ω) ∈ [0, 1] for ω ∈ Ω̂. Therefore we always have l(ω) ≤ u(ω) and (C.7)

always admits a feasible solution, as defined in the Theorem statement. 2

Proof of Proposition 5.1. Given batch samples ω1, . . . , ωm sampled i.i.d. from the true dis-

tribution P ◦1 , define Boolean random variables ξi, 1 ≤ i ≤ m as:

ξi =





1 π1(ωi) = 0;

0 π1(ωi) = 1,

more specifically, the random variable ξi = 1 if and only if the test, as applied to observa-

tion ωi, rejects hypothesis H0.

Further, by construction of the Majority test, if the hypothesis H0 is rejected, then

the number of i’s with ξi = 1 is at least m/2. Thus, the probability to reject H0 is not

greater than the probability of the event: in m random Bernoulli trials with probability ε∗
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of success, the total number of successes is ≥ m/2. The probability of this event clearly

does not exceed:
∑

m/2≤i≤m

(
m

i

)
(ε∗)i(1− ε∗)m−i.

When ε∗ < 1/2, by the Chernoff bound, we have

∑

m/2≤i≤m

(
m

i

)
(ε∗)i(1− ε∗)m−i ≤ exp {−D(1/2||ε∗)m} ,

where D(1/2||ε∗) = 1
2

log 1
2ε∗

+ 1
2

log 1
2(1−ε∗) is the relative entropy between two Bernoulli

distributions with “success” probabilities being 1/2 and ε∗ respectively. It is easy to see

that D(1/2||ε∗) > 0. Therefore, the risk goes to 0 exponentially fast, in the order of

exp{−D(1/2||ε∗)m} as m→∞.

2

Proof of Lemma 5.3. We first establish an optimality condition (Lemma C.1) for the con-

straint

π◦ ∈ arg min
π:Ω→[0,1]

Φ(π;P1, P2).

Without causing confusion, we simply write π◦ ∈ arg minπ Φ(π;P1, P2) in subsequent

proofs.

Lemma C.1. Let π◦ be the oracle test. For any P1, P2 ∈ P(Ω), the constraint π◦ ∈

arg minπ:Ω→[0,1] Φ(π;P1, P2) holds if and only if

sup
α1,α2∈B+(Ω)

∫

Ω

[α2(ω)1Ω◦2
(ω)−α1(ω)1Ω◦1

(ω)](dP1 − dP2)(ω) = 0. (C.8)

Proof. We first prove the necessity. Suppose π◦ ∈ arg minπ Φ(π;P1, P2). Then by defini-

tion for all randomized test π, we have

Φ(π;P1, P2) ≥ Φ(π◦;P1, P2).
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For any α1,α2 ∈ B+(Ω), there exists a small enough ε > 0 such that the following

perturbed π◦ is still a randomized test:

π◦(ω) + ε[α2(ω)1Ω◦2
(ω)−α1(ω)1Ω◦1

(ω)] =





1− εα1(ω), ω ∈ Ω◦1,

εα2(ω), ω ∈ Ω◦2,

which means that the probability of accepting hypothesis H0 is reduced on Ω◦1, and prob-

ability of accepting hypothesis H0 is increased on Ω◦2. Recall α = α21Ω◦2
− α11Ω◦1

. The

optimality of π◦ implies that

EP1 [1− π◦(ω)− εα(ω)] + EP2 [π
◦(ω) + εα(ω)] ≥ EP1 [1− π◦(ω)] + EP2 [π

◦(ω)].

Dividing ε on both sides gives EP1 [α(ω)]−EP2 [α(ω)] ≤ 0. Moreover, the equality in (C.8)

holds by taking α1 = α2 ≡ 0, which proves (C.8).

Next, we prove the sufficiency. Suppose (C.8) holds. For any randomized test π, set

α̃ := π − π◦. Pick α̃1, α̃2 ∈ B+(Ω) such that

α̃1(ω) =





1− π(ω) if ω ∈ Ω◦1,

0 otherwise;
α̃2(ω) =





π(ω) if ω ∈ Ω◦2,

0 otherwise.

Then by the definition of π◦, we have α̃(ω) = α̃2(ω)1Ω◦2
(ω)− α̃1(ω)1Ω◦1

(ω) for all ω ∈ Ω.

It follows that EP1 [α̃(ω)]− EP2 [α̃(ω)] ≤ 0, and consequently,

EP1 [1− π(ω)] + EP2 [π(ω)]

=EP1 [1− π◦(ω)− α̃(ω)] + EP2 [π
◦(ω) + α̃(ω)]

=EP1 [1− π◦(ω)] + EP2 [π
◦(ω)]− (EP1 [α̃(ω)]− EP2 [α̃(ω)])

≥EP1 [1− π◦(ω)] + EP2 [π
◦(ω)].

This indicates that the risk of any test π is greater than or equal to the risk of π◦, implying
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π◦ ∈ arg minπ Φ(π;P1, P2). Therefore we have completed the proof. 2

Let us proceed by defining the Lagrangian function

L(P1, P2;λ1, λ2,α1,α2)

:=
2∑

k=1

λkW(Pk, Qk,nk) +
2∑

k=1

∑

j 6=k

{
EPk [αj(ω)1Ω◦j

(ω)−αk(ω)1Ω◦k
(ω)]

}
,

(C.9)

where the second term is equivalent to
∫

Ω
[α2(ω)1Ω◦2

(ω)− α1(ω)1Ω◦1
(ω)](dP1 − dP2)(ω).

Using Lemma C.1, if π◦ /∈ arg minπ Φ(π;P1, P2), then there exists functions α′1,α
′
2 ∈

B+(Ω) such that
∑2

k=1

∑
j 6=k EPk [α′j(ω)1Ω◦j

(ω)−α′k(ω)1Ω◦k
(ω)] > 0, whence

sup
α1,α2∈B+(Ω)

L(P1, P2;λ1, λ2,α1,α2) ≥ lim
t→∞

L(P1, P2;λ1, λ2, tα
′
1, tα

′
2) = +∞.

Therefore, we arrive at an equivalent formulation for the profile function Fn1,n2 defined in

(5.12):

Fn1,n2 = inf
P1,P2∈P(Ω)

sup
λ1,λ2≥0
λ1+λ2≤1

α1,α2∈B+(Ω)

L(P1, P2;λ1, λ2,α1,α2). (C.10)

In what follows, we prove the strong duality (i.e. exchanging of sup and inf) in five

steps. We start by showing the weak duality and simplify the dual formulation of Fn1,n2 .

Next, we show that it suffices to restrict the feasible region of α1,α2 from B+(Ω) to

B+(Ω) ∩ Lip(Ω), which eventually leads to the set A defined in (5.13), and prove the

strong duality by assuming the support Ω is compact. Finally, we relax the compactness

assumption.

Step 1. (Weak duality.) Exchanging inf and sup in Equation (C.10) yields

Fn1,n2 ≥ sup
λ1,λ2≥0
λ1+λ2≤1

α1,α2∈B+(Ω)

inf
P1,P2∈P(Ω)

L(P1, P2;λ1, λ2,α1,α2).
(C.11)

Let us simplify the right-hand side by deriving a closed-form solution to the inner inf
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problem. Recall that Γ(P,Q) denotes the collection of all Borel probability measures on

Ω × Ω with marginal distributions P and Q. By the definition of Wasserstein metric,

since the empirical distribution Qk,nk is supported on a finite set Ω̂k = {ω̂1
k, . . . , ω̂

nk
k } for

k = 1, 2, we have

λkW(Pk, Qk,nk) = inf
γk∈Γ(Pk,Qk,nk )

{
nk∑

i=1

∫

Ω

λkc(ω, ω̂
i
k)dγk(ω, ω̂

i
k)

}
.

Moreover, for any distribution γk ∈ Γ(Pk, Qk,nk), k = 1, 2, we have

∑

j 6=k

{
EPk [αj(ω)1Ω◦j

(ω)−αk(ω)1Ω◦k
(ω)]

}

=

nk∑

i=1

∫

Ω

∑

j 6=k
[αj(ω)1Ω◦j

(ω)−αk(ω)1Ω◦k
(ω)]dγk(ω, ω̂

i
k).

Substituting the above equations to (C.9), it follows that:

L(P1, P2;λ1, λ2,α1,α2)

=
2∑

k=1

inf
γk∈Γ(Pk,Qk,nk )

{ nk∑

i=1

∫

Ω

[
λkc(ω, ω̂

i
k)

+
∑

j 6=k
(αj(ω)1Ω◦j

(ω)−αk(ω)1Ω◦k
(ω))

]
dγk(ω, ω̂

i
k)
}
.

Thereby for fixed λ1, λ2, α1, α2, infP1,P2 L(P1, P2;λ1, λ2,α1,α2) can be expressed equiv-

alently as a minimization problem over γk, whose first marginal distribution can be arbitrary
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and second marginal is the empirical distribution Qk,nk , k = 1, 2:

inf
P1,P2

L(P1, P2;λ1, λ2,α1,α2)

=
2∑

k=1

inf
γk∈Γ(·,Qk,nk )

{ nk∑

i=1

∫

Ω

[
λkc(ω, ω̂

i
k)

+
∑

j 6=k
(αj(ω)1Ω◦j

(ω)−αk(ω)1Ω◦k
(ω))

]
dγk(ω, ω̂

i
k)
}

=
2∑

k=1

1

nk

nk∑

i=1

inf
ω∈Ω

{
λkc(ω, ω̂

i
k) +

∑

j 6=k
(αj(ω)1Ω◦j

(ω)−αk(ω)1Ω◦k
(ω))

}
,

where Γ(·, Qk,nk) denotes the collection of all Borel probability measures on Ω × Ω with

second marginal being Qk,nk , and the last equality is attained by picking

γk(ω
i
k, ω̂

i
k) =

1

nk
, i = 1, . . . , nk, k = 1, 2,

where

ωik ∈ arg min
ω∈Ω

{
λkc(ω, ω̂

i
k) +

∑

j 6=k
(αj(ω)1Ω◦j

(ω)−αk(ω)1Ω◦k
(ω))

}
.

If the minimizer does not exist, we can argue similarly using a sequence of approximate

minimizers. If there are multiple minimizers, we can simply choose one of them or dis-

tribute the probability mass 1/nk uniformly on the optimal solution set. Therefore, we have

the right-hand side of (C.11) equals to

sup
λ1,λ2≥0
λ1+λ2≤1

α1,α2∈B+(Ω)

2∑

k=1

Eω̂k∼Qk,nk
[

inf
ω∈Ω

{
λkc(ω, ω̂k) +

∑

j 6=k
[αj(ω)1Ω◦j

(ω)−αk(ω)1Ω◦k
(ω)]

}]
.

(C.12)

In the sequel, we will refer to the right-hand side of (C.12) as the dual problem.

Step 2. (Restricting on the subsetA as defined in (5.13).) We first prove that we can restrict

α1 and α2 on the space of Lipschitz continuous functions without affecting the optimal

value.
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For any feasible solution (λ1, λ2,α1,α2) of the dual problem in (C.12) such that the

dual objective is finite, let us construct a modification (λ1, λ2, α̃1, α̃2) which yields an

objective value no worse than (λ1, λ2,α1,α2), but enjoys a nicer continuity property. For

i = 1, 2, . . . , n1, set

φ1(ω̂i1) : = inf
ω∈Ω
{λ1c(ω, ω̂

i
1) + α2(ω)1Ω◦2

(ω)−α1(ω)1Ω◦1
(ω)}

= min
{

inf
ω∈Ω◦1
{λ1c(ω, ω̂

i
1)−α1(ω)}, inf

ω∈Ω◦2
{λ1c(ω, ω̂

i
1) + α2(ω)}

}
.

It follows that

α1(ω) ≤ λ1c(ω, ω̂
i
1)− φ1(ω̂i1), ∀ω ∈ Ω◦1, ∀i = 1, . . . , n1. (C.13)

Define another function α̃1 as

α̃1(ω) = min
i=1,...,n1

{
λ1c(ω, ω̂

i
1)− φ1(ω̂i1)

}
, ∀ω ∈ Ω◦1. (C.14)

This yields α1(ω) ≤ α̃1(ω) for all ω ∈ Ω◦1, due to (C.13). Moreover, the objective

value in (C.12) associated with (λ1, λ2, α̃1,α2) is no less than the value associated with

(λ1, λ2,α1,α2) since

φ1(ω̂i1) ≤ λ1c(ω, ω̂
i
1)− α̃1(ω), ∀ω ∈ Ω◦1, ∀i = 1, . . . , n1,

λ2c(ω, ω̂
j
2) + α1(ω) ≤ λ2c(ω, ω̂

j
2) + α̃1(ω), ∀ω ∈ Ω◦1, ∀j = i, . . . , n2.

Furthermore, the function α̃1 defined in this way is Lipschitz with constant λ1. Indeed, for

any two points ξ, η ∈ Ω◦1, let i1 and i2 be the indices at which the minimum are attained in
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the definition (C.14) for ξ and η, respectively. We have

α̃1(ξ)− α̃1(η) = [λ1c(ξ, ω̂
i1
1 )− φ1(ω̂i11 )]− [λ1c(η, ω̂

i2
1 )− φ1(ω̂i21 )]

≤ [λ1c(ξ, ω̂
i2
1 )− φ1(ω̂i21 )]− [λ1c(η, ω̂

i2
1 )− φ1(ω̂i21 )]

= λ1[c(ξ, ω̂i21 )− c(η, ω̂i21 )]

≤ λ1c(ξ, η),

where the last inequality is due to the triangle inequality of the metric c(·, ·); and the same

inequality holds for α̃1(η)− α̃1(ξ). In a similar fashion, for j = 1, 2, . . . , n2, define

φ2(ω̂j2) : = inf
ω
{λ2c(ω, ω̂

j
2) + α̃1(ω)1Ω◦1

(ω)−α2(ω)1Ω◦2
(ω)}

= min
{

inf
ω∈Ω◦1
{λ2c(ω, ω̂

j
2) + α̃1(ω)}, inf

ω∈Ω◦2
{λ2c(ω, ω̂

j
2)−α2(ω)}

}
,

and set

α̃2(ω) := min
j=1,...,n2

{
λ2c(ω, ω̂

j
2)− φ2(ω̂j2)

}
, ∀ω ∈ Ω◦2. (C.15)

Then α2(ω) ≤ α̃2(ω) for all ω ∈ Ω◦2 and the objective value associated with (λ1, λ2, α̃1, α̃2)

is no less than the objective value associated with (λ1, λ2, α̃1,α2); and α̃2 is Lipschitz with

constant λ2. Since we are in the region {λ1, λ2 ≥ 0, λ1 + λ2 ≤ 1}, the argument above

proves that without loss of generality we can restrict α1,α2 on the set of 1-Lipschitz con-

tinuous functions.

Observe that the objective value does not change if we shift αk by any constant Ck, k =

1, 2. Hence, without loss of generality, we can only consider those satisfying αk(ω
◦
k) = 0

without affecting the optimal value, where ω◦k ∈ Ω◦k, k = 1, 2. By the above argument, we

have shown that it suffices to restrict the feasible region on A.

Step 3. (Strong duality for compact space.) Now assume Ω is compact. We aim to prove the

strong duality by applying Sion’s minimax theorem. Observe that L(P1, P2;λ1, λ2,α1,α2)

defined in (C.9) is convex in Pk, linear in λk and αk; by Prokhorov’s theorem [158], the
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convex space P(Ω) × P(Ω) is compact since Ω is relatively compact with respect to the

weak topology; the space {λ1, λ2 ≥ 0, λ1 + λ2 ≤ 1} is also a convex compact space. The

feasible region of αk, k = 1, 2 belongs to a linear topological space under the sup-norm.

This justifies the conditions for Sion’s minimax theorem, thereby we can exchange sup and

inf in (C.9) when Ω is compact.

Step 4. (Relaxing the compactness assumption when the cost is bounded.) We now relax the

compactness assumption made in the previous step, using a technique similar to the proof

of Theorem 1.3 in [209]. We temporarily assume the cost function c(·, ·) is bounded by a

positive constant C and is uniformly continuous. We will relax the bounded assumption

later. We already have the weak duality:

v1 := inf
P1,P2∈P(Ω)

sup
λ1,λ2≥0
λ1+λ2≤1

α1,α2∈B+(Ω)

L(P1, P2;λ1, λ2,α1,α2)

≥ sup
λ1,λ2≥0
λ1+λ2≤1

α1,α2∈B+(Ω)

2∑

k=1

Eω̂k∼Qk,nk
[

inf
ω∈Ω

{
λkc(ω, ω̂k) +

∑

j 6=k
[αj(ω)1Ω◦j

(ω)−αk(ω)1Ω◦k
(ω)]

}]

=: v2.

In the following we show that v1 ≤ v2.

For any ε > 0, let Ωε ⊂ Ω be a compact subset sufficiently large, such that P ◦k (Ω\Ωε) ≤

ε and Qk,nk(Ω
ε) = 1, k = 1, 2. This is always possible since Qk,nk is the empirical

distribution and with finite support. Then the previous steps imply that the strong duality
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holds on Ωε:

vε1 := inf
P1,P2∈P(Ωε)

sup
λ1,λ2≥0
λ1+λ2≤1

α1,α2∈B+(Ωε)

L(P1, P2;λ1, λ2,α1,α2)

= sup
λ1,λ2≥0
λ1+λ2≤1

α1,α2∈B+(Ωε)

2∑

k=1

Eω̂k∼Qk,nk
[

inf
ω∈Ωε

{
λkc(ω, ω̂k) +

∑

j 6=k
[αj(ω)1Ω◦j

(ω)−αk(ω)1Ω◦k
(ω)]

}]

=: vε2.

Consider the inf sup problem defining v1. For the optimal solution (P ε
1 , P

ε
2) to the

inf sup problem that induces vε1, we define distributions P̃1, P̃2 via

P̃k(A) = P ◦k (Ωε) · P ε
k(A ∩ Ωε) + P ◦k (A ∩ (Ω \ Ωε)), ∀ Borel set A ⊂ Ω.

Recall α = α21Ω◦2
− α11Ω◦1

. We compare the Lagrangian function L defined in (C.9)

associated with (P̃1, P̃2) and (P ε
1 , P

ε
2). For the first term in (C.9), we have that

W(P̃k, Qk,nk) ≤ P ◦k (Ωε)W(P ε
k , Qk,nk) + CP ◦k (Ω \ Ωε) ≤ W(P ε

k , Qk,nk) + Cε.

For the second term in (C.9), we have

∫

Ω

α(ω) (P̃1 − P̃2)(dω)

=

∫

Ωε
α(ω) (P ◦1 (Ωε)P ε

1 − P ◦2 (Ωε)P ε
2)(dω) +

∫

Ω\Ωε
α(ω) (P ◦1 − P ◦2 )(dω).
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By definition of Ω◦1,Ω
◦
2, we have

∫
Ω\Ωε α(ω)(P ◦1 − P ◦2 )(dω) ≤ 0. Moreover,

∫

Ωε
α(ω) (P ◦1 (Ωε)P ε

1 − P ◦2 (Ωε)P ε
2)(dω)

=





P ◦1 (Ωε)
∫

Ωε
α(ω)(P ε

1 − P ε
2)(dω)− (P ◦2 (Ωε)− P ◦1 (Ωε))

∫
Ωε

α(ω)P ε
2(dω),

if P ◦1 (Ωε) ≤ P ◦2 (Ωε);

P ◦2 (Ωε)
∫

Ωε
α(ω)(P ε

1 − P ε
2)(dω) + (P ◦1 (Ωε)− P ◦2 (Ωε))

∫
Ωε

α(ω)P ε
1(dω),

if P ◦1 (Ωε) > P ◦2 (Ωε).

By definition
∫

Ωε
α(ω)(P ε

1 − P ε
2)(dω) ≤ 0 and P ◦k (Ωε) ≥ 1− ε, thereby

P ◦k (Ωε)

∫

Ωε
α(ω)(P ε

1 − P ε
2)(dω) ≤ (1− ε)

∫

Ωε
α(ω)(dP ε

1 − dP ε
2)(ω) ≤ 0.

Moreover, since P ◦k (Ωε) ≥ 1− ε, we have |P ◦1 (Ωε)− P ◦2 (Ωε)| ≤ ε, consequently we have

|P ◦1 (Ωε)− P ◦2 (Ωε)|
∫

Ωε
α(ω)dP ε

k(ω) ≤ ε

∫

Ω

c(ω, ω0
k)dP

ε
k(ω) ≤ Cε,

where the last inequality is due to the 1-Lipschitz property of αk and C may be a different

constant. Combining with previous inequality that W(P̃k, Qk,nk) ≤ W(P ε
k , Qk,nk) + Cε,

k = 1, 2, we have

v1 ≤ vε1 + 2Cε.

Now consider the dual problem defining v2. Let (αε
1,α

ε
2) be the optimal solution to

the dual problem supported on the subset Ωε. We will construct an approximate maximizer

(α̃1, α̃2) of the original dual problem from (αε
1,α

ε
2). To this end, let us define

φε1(ω̂i1) : = min
{

inf
ω∈Ω◦1∩Ωε

{λ1c(ω, ω̂
i
1)−αε

1(ω)}, inf
ω∈Ω◦2∩Ωε

{λ1c(ω, ω̂
i
1) + αε

2(ω)}
}
,

φε2(ω̂j2) : = min
{

inf
ω∈Ω◦1∩Ωε

{λ2c(ω, ω̂
j
2) + αε

1(ω)}, inf
ω∈Ω◦2∩Ωε

{λ2c(ω, ω̂
j
2)−αε

2(ω)}
}
.
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From the above equations we have that αε
1,α

ε
2 satisfy:

αε
1(ω) ≤ λ1c(ω, ω̂

i
1)− φε1(ω̂i1), ∀ω ∈ Ωε, i = 1, . . . , n1,

αε
2(ω) ≤ λ2c(ω, ω̂

j
2)− φε2(ω̂j2), ∀ω ∈ Ωε, j = 1, . . . , n2.

(C.16)

Define α̃1, α̃2 as

α̃1(ω) = min
1≤i≤n1

{λ1c(ω, ω̂
i
1)− φε1(ω̂i1)},

α̃2(ω) = min
1≤j≤n2

{λ2c(ω, ω̂
j
2)− φε2(ω̂j2)}.

(C.17)

This implies that φεk(ω̂
i
k) ≤ infω∈Ω◦k

{λkc(ω, ω̂ik) − α̃k(ω)}, k = 1, 2, i = 1, . . . , nk. Com-

paring (C.17) and (C.16), we have that α̃k(ω) ≥ αε
k(ω), k = 1, 2, for ω ∈ Ωε. Conse-

quently, we have

φε1(ω̂i1) ≤ min
{

inf
ω∈Ω◦1∩Ωε

{λ1c(ω, ω̂
i
1)− α̃1(ω)}, inf

ω∈Ω◦2∩Ωε
{λ1c(ω, ω̂

i
1) + α̃2(ω)}

}
,

φε2(ω̂j2) ≤ inf
{

min
ω∈Ω◦1∩Ωε

{λ2c(ω, ω̂
j
2) + α̃1(ω)}, inf

ω∈Ω◦2∩Ωε
{λ2c(ω, ω̂

j
2)− α̃2(ω)}

}
.

Moreover, we can choose Ωε sufficiently large so that for every ω ∈ Ω◦2 ∩ (Ω \ Ωε),

λ1c(ω, ω̂
i
1) + α̃2(ω) = λ1c(ω, ω̂

i
1) + λ2c(ω, ω̂

j
2)− φε2(ω̂j2)

≥ inf
ω∈Ω◦2∩Ωε

{λ1c(ω, ω̂
i
1) + αε

2(ω)} ≥ φε1(ω̂i1),

where j is the minimizer in the definition (C.17). Combining these together, we have

φε1(ω̂i1) ≤ min
{

inf
ω∈Ω◦1
{λ1c(ω, ω̂

i
1)− α̃1(ω)}, inf

ω∈Ω◦2
{λ1c(ω, ω̂

i
1) + α̃2(ω)}

}
,

φε2(ω̂j2) ≤ min
{

inf
ω∈Ω◦1
{λ2c(ω, ω̂

j
2) + α̃1(ω)}, inf

ω∈Ω◦2
{λ2c(ω, ω̂

j
2)− α̃2(ω)}

}
.

Therefore, from α̃1, α̃2 defined in (C.17), we see v2 ≥ vε2. Combine with previous argu-

ment, we have

vε2 ≤ v2 ≤ v1 ≤ vε1 + 2Cε.
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By letting ε → 0, we have shown the strong duality, provided that the cost function is

bounded.

Step 5. (Relaxing the bounded cost assumption.) Next, we turn to the general case with

cost function by writing c := supm cm, where cm(x, y) = min{c(x, y),m} is the truncated

cost function that are bounded for each m ∈ N. Let vm1 be the optimal value of the primal

problem under cost cm, and vm2 denote the optimal value of the dual problem under cost cm.

More specifically, let

Lm(P1, P2;λ1, λ2,α1,α2)

:=
2∑

k=1

λkW
m(Pk, Qk,nk) +

2∑

k=1

∑

j 6=k

{
EPk [αj(ω)1Ω◦j

(ω)−αk(ω)1Ω◦k
(ω)]

}
,

where Wm(Pk, Qk,nk) is the Wasserstein distance associated with cost function cm(·, ·).

Define

vm1 := inf
P1,P2∈P(Ω)

sup
λ1,λ2≥0
λ1+λ2≤1

α1,α2∈B+(Ω)

Lm(P1, P2;λ1, λ2,α1,α2)

= sup
λ1,λ2≥0
λ1+λ2≤1

α1,α2∈B+(Ω)

2∑

k=1

Eω̂k∼Qk,nk
[

inf
ω∈Ω

{
λkcm(ω, ω̂k) +

∑

j 6=k
[αj(ω)1Ω◦j

(ω)−αk(ω)1Ω◦k
(ω)]

}]

=: vm2 .

We have proved vm1 = vm2 in previous steps. And clearly we have vm2 ≤ v2 since cm ≤ c,

leading to vm1 = vm2 ≤ v2 ≤ v1, so we only need to show v1 = supm v
m
1 .

Observe that Wm(Pk, Qk,nk) is a non-decreasing sequence bounded above by W(Pk, Qk,nk).

If {(Pm
1,l, P

m
2,l)}l∈N is a minimizing sequence for the problem vm1 , then we can extract a sub-

sequence that converges weakly to some probability measure Pm
1 , P

m
2 [209].

We claim that the sequence {Pm
k }m∈N is relatively compact with respect to the weak

topology, k = 1, 2. To show this, suppose {Pm
k }m∈N is not relatively compact, then

there exists ε > 0 such that for any compact set A and any m0 ∈ N, there exists m >
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m0 such that Pm
k (A) ≥ ε. We choose m0 = dW(Qk,nk , P

◦
k )/εe and a set A such that

infω∈A,ω̂∈Ω̂ c(ω, ω̂) ≥ m0. Then for any m > m0, we have

Wm(Qk,nk , P
m
k ) = min

γ∈Γ(Pmk ,Qk,nk )

{
E(ω,ω′)∼γ [cm(ω, ω′)]

}

> m0P
m
k (A) ≥ m0ε ≥ W(Qk,nk , P

◦
k ),

while at the same time we have

Wm(Qk,nk , P
m
1 ) ≤ Wm(Qk,nk , P

◦
1 ) ≤ W(Qk,nk , P

◦
1 ),

which is a contradiction. Therefore {Pm
k }m∈N is relatively compact and we can extract a

subsequence that converges to some probability measure P ∗k .

For any m1 > m2, we have Wm1(Pm1
k , Qk,nk) ≥ Wm2(Pm1

k , Qk,nk), and

lim sup
m1→∞

Wm1(Pm1
k , Qk,nk) ≥ lim sup

m1→∞
Wm2(Pm1

k , Qk,nk) ≥ Wm2(P ∗k , Qk,nk).

Moreover, Wm2(P ∗k , Qk,nk) is a non-decreasing sequence and converges to W(P ∗k , Qk,nk)

as m2 →∞, hence:

lim sup
m→∞

vm1 = lim sup
m→∞

Wm(Pm
k , Qk,nk) ≥ W(P ∗k , Qk,nk) = v1.

Thereby we complete the proof. 2
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APPENDIX D

PROOFS FOR CHAPTER 6

Proof of Lemma 6.2. We start with describing an application of the Bernstein inequality

for martingales (cf., e.g., [12, 64, 60, 21]) in our situation. Let ωi i = ..., 0, 1, 2, ... be

a sequence of random binary vectors in Rm such that the conditional distribution of the

j-th component ωij , j = 1, ...,m, of ωi given ωi−1 is Bernoulli distribution with parameter

µij = E|ωi−1{ωij}. Now, consider the sequence of Boolean vectors γi, i = 1, 2, ..., γi ∈

Rm, such that γi is |ωi−1-measurable with
∑

j γ
j
i ≤ 1 a.s.. Finally, let ζi = γ>i ωi − γ>i µi;

note that, in this case,

E|ωi−1{ζi} = 0, σ2
i := E|ωi−1{ζ2

i } = γ>i µi(1− γ>i µi) ≤ 1
4 , and |ζi| ≤ 1 a.s..

Denote µ̄N = 1
N

∑N
i=1 γ

>
i µi, ν̄N = 1

N

∑N
i=1 γ

>
i ωi, s̄N = 1

N

∑N
i=1 σ

2
i , and ζ̄N = 1

N

∑N
i=1 ζi.

Lemma D.1. Let 0 < s < s <∞, and let y > 1. One has

P

{
|ζ̄N | ≥

√
2ys̄N
N

+
y

3N
, s ≤ s̄N ≤ s

}
≤ 2e

(
y ln

(
s/s
)

+ 1
)
e−y, (D.1)

and, as a consequence,

P

{
|ζ̄N | ≥

√
2ys̄N
N

+
y

3N

}
≤ 2e

(
y
[

ln((y − 1)N
)

+ 2
]

+ 2
)
e−y. (D.2)

Moreover, we have

P
{
ψ(ν̄N , N ; y) ≤ µ̄N ≤ ψ(ν̄N , N ; y)

}
≥ 1− 2e

(
y
[

ln((y − 1)N
)

+ 2
]

+ 2
)
e−y, (D.3)
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where

ψ(ν,N ; y) =





(N + 2y)−1

[
Nν + 2y

3
−
√

2Nνy + y2

3
− 2y

N

(
y
3
− νN

)2
]
, ν > y

3N
,

0, otherwise;

ψ(ν,N ; y) =





(N + 2y)−1

[
Nν + 4y

3
+
√

2Nνy + 5y2

3
− 2y

N

(
y
3

+ νN
)2
]
, ν < 1− y

3N
,

1, otherwise,
(D.4)

so that

P
{
ν̄N − ψ(ν̄N , N ; y) ≤ ζ̄N ≤ ν̄N − ψ(ν̄N , N ; y)

}

≥ 1− 2e
(
y
[

ln((y − 1)N
)

+ 2
]

+ 2
)
e−y.

(D.5)

Proof of Lemma D.1. Utilizing Bernstein’s inequality for martingales (cf., e.g., [21, Theo-

rem 3.14]) we obtain for all z > 0 and s > 0,

P

{∣∣∣∣∣
N∑

i=1

ζi

∣∣∣∣∣ ≥
√

2zs+
z

3
,

N∑

i=1

σ2
i ≤ s

}
≤ 2e−z. (D.6)

We conclude that

P

{
|ζ̄N | ≥

√
2s̄N
N

z(1 + z−1) +
z

3N
, s̄N ∈ [s, (1 + z−1)s]

}
≤ 2e−z,

implying that for y = z + 1 > 1

P

{
|ζ̄N | ≥

√
2ys̄N
N

+
y

3N
, s̄N ∈

[
s, (y − 1)−1ys

]
}
≤ 2e−y+1. (D.7)

Let now sj = min

{
s,
(

y
y−1

)j
s0

}
, j = 0, ..., J , with s0 = s, sJ = s, and J =

⌋
ln
(
s/s
)

ln−1 ((y − 1)−1y)
⌊
. Note that ln

(
1 + 1/(y − 1)

)
≥ 1/y for y > 1, so that

J ≤ ln
(
s/s
)

ln−1
(
(y − 1)−1y

)
+ 1 ≤ y ln

(
s/s
)

+ 1.
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On the other hand, due to (D.7),

P

{
|ζ̄N | ≥

√
2ys̄N
N

+
y

3N
, s ≤ s̄N ≤ s

}

≤
J∑

j=1

P

{
|ζ̄N | ≥

√
2ys̄N
N

+
y

3N
, s̄N ∈

[
sj, sj+1

]
}
≤ 2Je−y+1

≤2e
(
y ln

(
s/s
)

+ 1
)
e−y

what is (D.1). Let us put s = (18z)−1 in (D.6); together with y = z + 1 > 1, we get

P
{
|ζ̄N | ≥

y

3N
, s̄N ≤

1

18N(y − 1)

}
≤ 2e−y+1. (D.8)

Furthermore, we have s̄N ≤ 1/4 a.s.. When substituting s = (18(y − 1))−1 and s = N/4

into (D.1) we obtain

P

{
|ζ̄N | ≥

√
2ys̄N
N

+
y

3N
, s̄N ≥

1

18N(y − 1)

}
≤ 2e

(
y ln

(
9
2(y − 1)N

)
+ 1
)
e−y.

Finally, when taking into account (D.8) we conclude with

P

{
|ζ̄N | ≥

√
2ys̄N
N

+
y

3N

}

≤2e
(
y ln

(
9
2(y − 1)N

)
+ 2
)
e−y ≤ 2e

(
y
[

ln((y − 1)N
)

+ 2
]

+ 2
)
e−y.

Next, we observe that s̄N ≤ µ̄N(1− µ̄N), and replacing s̄N in (D.2) with this upper bound

come to the inequality:

P

{
|ζ̄N | ≥

√
2yµ̄N(1− µ̄N)

N
+

y

3N

}
≤ 2e

(
y
[

ln((y − 1)N
)

+ 2
]

+ 2
)
e−y.

In other words, there exist a subset Ω
N

of the space ΩN of realizations ωN of probability at
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least 1− 2e
(
y ln

(
(y − 1)n

)
+ 4
)
e−y and such for all ωN ∈ Ω

N
one has

|ζ̄N | ≤
√

2yµ̄N(1− µ̄N)

N
+

y

3N
. (D.9)

Observe that µ̄n can be eliminated from the above inequalities: when denoting νi = γ>i ωi

with ν̄N = 1
N

∑N
i=1 νi = ζ̄N + µ̄N , by simple algebra we deduce from (D.9) that

ψ(ν̄N , I; y) ≤ µ̄N ≤ ψ(ν̄N , I; y)

where ψ(·) and ψ(·) are as in (D.4). We conclude that for ωN ∈ Ω
N

ν̄N − ψ(ν̄N , I; y) ≤ ζ̄N ≤ ν̄N − ψ(ν̄N , I; y)

what implies (D.5). 2

Now, in the premise of Lemma 6.2, let us fix k ∈ {1, ..., κ}, and let us denote γ>i =

[η(ωi−1
i−d)]k = Rowk[η(ωi−1

i−d)], the k-th row of η(ωi−1
i−d). We set νi = γ>i ωi = [η(ωi−1

i−d)]kωi.

Note that conditional distribution of the r.v. νi given ωi−1 is Bernoulli distribution with

parameter µi = E|ωi−1{νi} = [η(ωi−1
i−d)]kη

>(ωi−1
i−d)β. Defining, as above, ζi = νi − µi,

ζ̄N = 1
N

∑N
i=1 ζi = (FωN (β))k, the k-th component of the field FωN (β), ν̄N = 1

N

∑N
i=1 νi =

a[ωN ]k, and µ̄N = 1
N

∑N
i=1 µi = 1

N

∑N
i=1[η(ωi−1

i−d)]kη
>(ωi−1

i−d)β = (A[ωN ]β)k, the k-th

component of A[ωN ]β, and utilizing bound (D.5) of Lemma D.1 we conclude that for any

y > 1, (FωN (β))k, k = 1, ..., κ, satisfy, with probability at least 1− 2e
(
y
[

ln((y − 1)N
)

+

2
]

+ 2
)
e−y, the bound

ν̄N − ψ(ν̄N , N ; y) ≤ (FωN (β))k ≤ ν̄N − ψ(ν̄N , N ; y)

where ψ(·) and ψ(·) are as in (D.4). 2
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