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Abstract

1 Introduction

1.1 Background

X-ray computed tomography (CT) builds on the physical principles of radiography. It uses
multiple views of an external x-ray source and images x-ray attenuation properties µ as a
function of location within the body.

In a CT scanner, large amounts of raw data are collected in the rotating gantry and
must be transferred offline for processing and image reconstruction. Generally this transfer
is made through a slip ring that has a limited data transfer rate. Compression can be used
to reduce the data rate through the slip ring, but one needs to ensure that the compression
does not degrade image quality.

This problem becomes more severe in the new inverse geometry CT (IGCT) system
[GRGJ04][SFP05]. Because IGCT has multiple sources, it requires higher data rate than
that of a typical cone beam CT system, which is already quite heavy. Consider a typical
cone beam geometry CT system whose data transmission rate can be estimated as: 984
views/rotation × 888 detectors/row × 64 rows × 3.33 rotation/s × 16 bits/detector ≈ 400
MB/s.

However, our preliminary literature search has shown that no one has considered com-
pressing data before transmitting it through the slip ring, and the only work that has been
done on compressing raw data (sinogram) has used standard image compression techniques
such as JPEG [BW01]. These techniques do not take into account the nature of the sinogram
and how errors in the sinogram contribute to errors (noise) in the reconstructed image.
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Figure 1: A fan beam CT system.

Compression can be applied not only to raw data transmission, but also to raw data
storage. Currently, only reconstructed images are stored in PACS (picture archiving and
communication system). This does not allow the flexibility to reconstruct different slices or
do planar reformats since the original raw data is discarded. If we are able to compress the
sinogram data with a tolerable amount of loss in the reconstructed image quality, we can
store the raw data and then reconstruct desired images in the future.

1.2 Raw Data Model

To form images in CT systems, a set of x-ray beams are scanned through the entire field of
view (where the object lies) in what is known as fan or, more generally, cone beam geometry.
We will consider 2-D scan with fan beam geometry, as shown in Fig. 11. Each x-ray beam
(measured by the nth detector), is modelled as a line positioned at rn with orientation θi.
The attenuation values µ(x, y) along the path of the x-ray beam are superimposed, resulting
in a line-integral of the attenuation. The attenuated x-ray beam intensities are measured
using detectors. The expected value of the measured intensity for a particular beam is given
by Beer’s law:

I(rn, θi) = I0 exp

{
−

∫

l(rn,θi)
µ(x, y)dl

}
,

1www.medcyclopaedia.com
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where I0 is the incident intensity of the x-ray beam passing through the object, and l(rn, θi)
is the line through which the x-ray passing through the object.

This process is repeated for a large number of angles, yielding line attenuation samples of
all angles θi, i = 0, · · · , Nθ − 1 and of all distances rn, n = 0, · · · , Nr − 1 from the center
of the detector array within the field of view (FOV). Then we have a complete data set of
{gθi

(rn)}. Due to the discrete nature of the x-ray photon, each measurement gθi
(rn) follows

a Poisson distribution with mean and variance I(rn, θi).
The sinogram is a two-dimensional representation of the measured signal {gθi

(rn)}. We
also refer to the sinogram as the raw data. From the sinogram, the actual attenuation at
each voxel of the scanned slice can be reconstructed [DeM01]. Before image reconstruction,
the raw data is often normalized by I0 and followed by a logarithmic operation:

− log

(
gθi

(rn)

I0

)
=

∫

l(rn,θi)
µ(x, y)dl.

This logarithmic operation essentially corresponds to a logarithmic compander before quan-
tization, which is widely used for A/D conversion. The logarithmic compander effectively
reduces the data dynamic range. In addition to the logarithmic compander, we can also
consider other companders such a square root compander (as studied in Adam’s project
report). In this project we only use the logarithmic compander.

1.3 Project Goal

In our project, we will consider quantization and fixed rate lossy compression for CT imag-
ing raw data (sinogram). We will design our quantizer considering the data properties of
sinograms.

Our problem can be explained by the block diagram in Fig. 2. We will compress the
raw data, and then the raw data is reconstructed to form the image {µ̂(x, y)}, and our
ultimate goal is to keep the maximum difference between the image reconstructed from the
compressed and from the uncompressed raw data to be “visibly indistinguishable.”

Typically, the reconstructed images are displayed in integer units of Houndsfield Units
(HU) [DeM01], from -1000 to +3000, so errors that we introduce from compression of ±1 HU
are within the contrast resolution capability of CT systems. Therefore, when we subtract the
reconstructed compressed image from the original reconstructed image, if the peak difference
is within ±1 HU, then “no one will complain.” Thus our distortion measure is defined in
terms of this difference image.

However, if we use a distortion measure in the reconstructed image space, since the image
reconstruction process is not spatial invariant, it is not a convenient distortion measure for
Lloyd types of iterative algorithms (for each quantizer, we have to reconstruct the image, find
out the distortion, and go back and forth.) To solve this problem, we study the relationship
between the quantization errors in the sinogram space with the errors in the reconstructed
image, and introduce a frequency weighted distortion measure in the sinogram space. The
second distortion measure directly relates the quantized data with raw data.
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Figure 2: Block diagram of CT raw data quantization/compression model.
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The contributions of this project are: 1) study a distortion measure that relates the raw
data space to the reconstructed image; 2) without changing rate, we consider two approaches
to achieve a lower noise level due to quantization in the center region of the reconstructed
image: first, noise shaping, and second, sub-band coding using DFT and bit-loading.

2 Quantizer Model

We will consider a scalar uniform quantizer with bin width ∆ and N levels. In our project
we will use 8 to 10 bits for CT data compression, which corresponds to a minimum number
of quantizer levels of N = 28. Under these high rate and small distortion assumptions, we
can use the high rate Bennett’s approximation [Gra07], and model the quantizer error as
additive white process uncorrelated with each other and uncorrelated with the quantizer
output. The quantizer model is given by:

gθi
(rn) = ĝθi

(rn) + eθi
(rn), n = 1, · · · , Nr, i = 1, · · · , Nθ.

where ĝθi
(rn) is the quantizer output and eθi

(rn) is the quantizer error.
Under the high rate assumptions, the quantizer error eθi

(rn) follows the uniform distri-
bution in [−∆/2, ∆/2], with mean 0 and variance ∆2/12.

3 Distortion Measure

3.1 Quantization Error Frequency Property Study

We found that the low frequency band of the quantization errors contributes to the center
of the reconstructed image, and the high frequency band error contributes more to the
peripheral region of the image. (In fact, noise in different detectors will also contribute to
different parts in the image, as studied in Adam’s project report. In this report, we will
explore the frequency property of quantization error.)

To study the quantizer noise distribution property, we created a thorax phantom as
shown in Fig. 3, and simulated the CT data using CatSim [DBC+07], a GE proprietary
package developed for the express purpose of simulating various CT configurations. In fact,
without such simulation software, raw data is exceedingly difficult to acquire since all of the
processing to produce the final reconstructed image is “hidden away” within a commercial
system. The image reconstruction block is also implemented using CatSim. The so-obtained
CT raw data are represented with 32 bit floating point accuracy.

To study the effects of different frequency components of the quantization errors in the
reconstructed image, we performed the following experiment. We added three frequency
banded (with equal total bandwidth) noise signals to the 1D DFT of the uncompressed
sinogram (32 bits floating point) in the view direction (as opposed to 2D DFT). The noise is
uniformly distributed in [−∆/2, ∆/2], and the total power is about the same in these three
frequency bands. We find the dynamic range of the raw data to be [Umin, Umax], and then
use an 8-bit uniform scalar quantizer, with ∆ = Umax−Umin

28 .
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Figure 3: Reconstructed image for the thorax phantom, using raw data (32 bit floating
point).

The frequency banded noises are shown in Fig. 4(a), Fig. 4(b) and Fig. 4(c). The resulted
noisy sinograms are then reconstructed, and the difference images using the quantized and
unquantized data are then found, as shown in in Fig. 4(b), Fig. 4(d), and Fig. 4(e). We
can clearly see that the high frequency noise has less error in the center of the reconstructed
image, whereas the low frequency noise has almost uniform noise throughout the image. Fig.
5(a) shows the absolute peak value (in the unit cm−1) in the difference image, as a function
of distance di from the center of the image.

3.2 Distortion Measure

In many clinical applications, the center of the image contains the object of interest. So
we would like to keep the error due to quantization/compression small in the center of the
image, and allow a large error in the peripheral region of the image. For these reasons, we
define the following distortion measure in the image space:

DI =
1

Np

Np−1∑

i=0

α2(di)ε
2
i ,
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Figure 4: Different band frequency noise (used to modelling the quantizer error),
added to DFT of the sinogram, and their corresponding difference images.
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Figure 5: (a): peak error versus distance from the center of the image (pixels).

where Np is the number of pixels,

εi = max
x2+y2=d2

i

|µ(x, y)− µ̂(x, y)|

is the peak error in the difference image (with distance di from the center of the image), and
weights {α2

i } are inversely proportional to distances with

α2
i ∝ 1/d2

i ,
∑

i

α2
i = 1.

However, this distortion measure DI is not easy to handle because it is not directly related
to the raw sinogram data. From our study, we found that high frequency noise contributes
to the peripheral region, whereas the low frequency noise contributes to the center of the
reconstructed image. For this consideration, we can define a frequency weighted distortion
measure. If we denote by capital letters the components of the discrete Fourier transform
(DFT) of a signal, then in the frequency domain, the weighted MSE is given by:

DS =
1

NθNd

Nθ−1∑

j=0

β2
j

Nd−1∑

n=0

|Ĝn(fj)−Gn(fj)|2 =
1

NθNd

Nθ−1∑

j=0

β2
j

Nd−1∑

n=0

|En(fj)|2.

The weights {βj} are inversely proportional to frequency of the noise:

β2
j ∝ 1/f2

j ,
∑

β2
j = 1.

Here we let β0 = 1. This distortion directly measures the distortion in the sinogram space
due to quantization and compression. Note that it is similar to the (relate to the Itakura
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Figure 6: Di versus Df , in Figs. 4(b), 4(d), and 4(f).

distortion measure [Ita75]) It can be used as a distortion measure for quantization, such as
in the Lloyd algorithm [Gra07].

Then we measure the two distortions, DS and DI , for these three cases as shown in Fig.
6(b). Although we only have three points, we can see these two distortion measures are
positively correlated. In the following, as a heuristic, we can minimize DS to achieve the
goal of minimizing DI (because DS is under the control of the quantizer, whereas DI is
affected by image reconstruction algorithm).

4 Error Diffusion Coding

4.1 Error Feedback Quantization

Our motivation for error feedback quantization is to ensure that the quantization error does
not accumulate in the reconstructed image. We find that it is related to the early work of
error diffusion code [Ana89]. However, we come to our algorithm from a different perspective.

To simplify our analysis, we consider the parallel beam CT image reconstruction algo-
rithm (which is a good approximation to the fan-beam reconstruction algorithm in most
cases). The parallel beam reconstruction algorithm forms the reconstructed image by back-
projecting all the filtered rays, as shown in Fig. 72:

µ̂(x, y) =
Nr−1∑

i=0

Nθ−1∑

j=0

(
ĝθj

(ri) ∗ c(ri)
)
δ(x cos θj + y sin θj − ri),

2Courtesy: www.dspguide.com
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Figure 7: Back projection for parallel beam geometry.

the backprojection filer c(ri) can be well approximated by a delta function δ(·). Then the
reconstructed pixel value is simply determined by summing all the projection ray passing
through that pixel.

Our error feedback quantization method is given by (for notational simplicity, we drop
the dependence of variables on rn):

• Set eθ1 = 0;

• For each reading gθi

g′θi
= gθi

+ eθi−1
;

ĝθi
= E(g′θi

) (the codeword to be transmitted);

eθi
= g′θi

−D(ĝθi
)

where E is the encoder and D is the decoder. We note that this scheme is related to error
diffusion coding with a particular noise shaping filter [Ana89].

The quantization error will not accumulate in the reconstructed image in this way. As
an example, we consider the pixel at the center of the image, whose value is determined by
the sum of all the measurements from the center detector. Consider all Nθ measurements
made by the center detector, and recall that compression introduces a zero mean error with
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an RMS value of ∆2/12. If the error is independent for each of the Nθ readings, the sum
of the Nθ readings will have an RMS value (DC error) of

√
Nθ∆

2/12. However, using our
proposed scheme, the RMS value of the sum will reduce to ∆2/12 (see Appendix A for more
detailed explanation).

This can also be interpreted from the frequency domain perspective. Indeed, the process
of feeding the error due to compression into another reading will reduce the low temporal
frequency components of the noise. If we consider the z-transform of all the quantities in
Fig. 8(a), we have the z transform of the quantization error

En(z) = Ĝn(z)− Un(z) = Ĝn(z)−Gn(z) + z−1H(z)E(z) = Ên(z).

And in our error feedback system, as shown in Fig. 8(a), H(z) = 1. Hence, the quantization
error ên(i) = ĝn(i)− gn(i) is related to the quantizer error en(i) = ĝn(i)− un(i) by

Ĥ(z) =
Ên(z)

En(z)
= 1 + z−1H(z).

The filter Ĥ(z) has one zero at z = −1, hence creates a high-pass filter, whose frequency
response is given in Fig. 10(a). Then the quantization error is a filtered version of the
quantizer error. If the quantizer error is assumed to be an independent white noise sequence
in the linearized model then the noise shaping is achieved by properly choosing H(z).

We apply this simple error feedback quantizer to the thorax phantom raw data in Fig. 3,
reconstruct the image and find the difference image. Fig. 9(b) gives the spectrum of the noise
(pixel value of the difference image). Note that when compared with the noise spectrum of
the linear scalar quantizer without feedback in Fig. 8(a), the error feedback system passes
the error through a high pass filter and achieves a desired noise spectrum shape.

Note that herein we only perform error feedback for each detector independently. We can
also consider feeding errors across different detectors, however, it is not yet clear to us how
this will benefit the final image reconstruction. Also, implementing error feedback online for
each detector independently is easier in the CT gantry hardware.

We may also consider feeding errors for a single view (independent of other views) across
all the detectors. However, our preliminary simulation results have shown that this scheme
will create more noise in the center region of the reconstructed image than the peripheral
region. One possible explanation for this is that, in the image reconstruction algorithm, we
have applied a high pass ramp filter across detector measurements, for each view. The image
reconstruction ramp filter will counteract the efforts of our noise shaping filter, so we will
not consider this type of error feedback.

4.2 Error feedback filter comparison

A more general case to the first order error feedback system in Fig. 8(a), is to design the
filter H(z) to achieve our desired noise spectrum. Particularly, we would like to push the
quantizer noise power to the high frequency region as much as possible.
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Figure 8: Block diagram for the error feedback schemes: (a): our error feedback
scheme is a first order system; (b): general error feedback scheme.
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Figure 9: (a): quantizer error spectrum, without error feedback; (b): quantizer error
spectrum with feedback.

In case of an FIR filter, the transfer function of the kth-order filter is given by

H(z) =
k−1∑

i=0

wiz
−i,

and the corresponding system is shown in Fig. 8(b).
However, stability is a major problem in nonlinear recursive systems [TA88]. In our case,

we should have
wi < 0, i = 0, · · · , k − 1.

for the system to be stable. If not, say, when we have some noise oscillating from +1 to −1,
then the feedback error can easily accumulate (which also happens in our simulations). So
we would rather not use this two pole system.

Note that these weights should add to -1,

k−1∑

i=0

wi = −1;

i.e., H(z) should be unity-gain, so that the exact value of the quantizer error is diffused.
Because of the unity-gain property, H(1) = 1, Ĥ(z) is guaranteed to have a zero at z = 1
(dc value).

Also note that it is possible to arrange the N weights wi so that they all sum to one and
there are N zeros of H(z) at z = 1 (so that we can have a sharper cutoff frequency). For
example, for a second order system N = 2, the choice is w1 = 2, w2 = −1, which creates two
poles at z = 0, and whose frequency response is given in Fig. 10(b).

We examine several different types of FIR filters: another second order FIR filter, h =
[1,−0.5,−0.5], and a third order FIR filter, h = [1,−0.4,−0.3,−0.3], all of which guaranteed
the stability of the system. The frequency responses for them are given in Fig. 10.
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Figure 10: Comparison frequency response of different feedback filter.

Fig. 11 gives the peak error in the image as a function of distance di from the center of
the image. The first, second, and third order stable filters have similar performances. So we
would rather use the simplest first order error feedback.

Fig. 12 shows the rate distortion curves for different error feedback quantization schemes.
With more bits for quantization, we have less distortion Di, but at the cost of higher rate.
Note that we have an error floor, i.e., Ds stops decreasing even when the number of bits
continues to increase.

Interestingly, we found out that our goal for CT data compression is similar to the case
of oversampled Σ∆ modulation [Ana89], where it is desired to minimize the error at the very
low frequencies (around z = 1).

5 Sub-Band Coding

We can also achieve our quantizer noise shaping goal by frequency subband coding. We
can transform the sinogram into the frequency domain, and then use a different number of
bits for different frequency bands, while still maintaining the same rate. In our CT data
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compression case, to have an equivalent high pass filtering effect on the quantizer error, we
can use more bits for low frequency bands and less bits for high frequency bands.

5.1 Coefficients Truncation

By examining the DFT coefficients of the sinogram, we find that most of the coefficients
are quite small. So we can truncate the small coefficients while keeping the distortion of
sinogram due to truncation under a certain level.

We will quantize/compress the real and imaginary parts of the Fourier coefficients of
the sinogram separately (we could also quantize the magnitude and phase of the Fourier
coefficients; but the real and imaginary parts of the Fourier coefficients should have similar
dynamic range and be easier to design quantizers for).

Since we have a real object, the Fourier coefficients are Hermitian symmetric, so we could
only quantize half of the Fourier coefficients. At the same time, we have to quantize the real
and imaginary parts of the coefficients. So when comparing the rates of transform coding
methods with the quantizer in image space, we should take this into consideration.

Since lower frequency components are more important to the error level in the center of
the reconstructed image, we will define the frequency weighted truncation level. The DFT
of the sinogram is frequency weighted,

ReĜn(θi) =

{
ReĜn(fi), |β2

i ReĜn(fi)| > max{β2
i ReĜn(fi)}/c;

0, Otherwise.

where c is the truncation level. A similar truncation algorithm was applied to imaginary
part of the DFT sinogram.

Determining how many coefficients need to be kept (or deciding the truncation level)
involves a trade off between the distortion and rates. The more non-zero DFT/DCT coef-
ficients we keep, the less the distortion of the sinogram to the original sinogram, however,
at the same time the rates are higher. This trade-off is shown in Fig. 13. We can choose
the truncation level according to our desired MSE level and rates. Herein we choose the
truncation level to be 2e−6.

5.2 Bit allocation

Keep the same overall rates, we can allocate more bits to quantize low frequency bands of
the sinogram, and less bits for high frequency bands of the sinogram. In this way we can
manually form the quantized error spectrum. For example, while keep the same rate as that
of an Nb bit quantizer, we can use Nb +v bits, Nb bits, and Nb−v bits, for the high, mid, and
low frequency bands data respectively, where v is bits variation with respect to the center
band.

We will study the noise shaping effects for v = 1, · · · , 5, for Nb = 8 bits. The difference
image of the reconstructed image using different bit allocation schemes are shown in Fig.
14. We can achieve the same goal of pushing the error to the peripheral region of the
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Figure 14: (a): sub-band bit allocation, 8-8-8 bits (low-mid-high frequency band);
(b): bit allocation, 9-8-7 bits (low-mid-high frequency band); (c): bit allocation, 11-8-5
bits (low-mid-high frequency band). The images are displayed in the 1/cm unit.

reconstructed image by using sub-band coding and bit allocation as that achieved using our
error feedback system.

The peak error in the image as a function of distance di from the center of the image is
shown in Fig. 18 (compared with a Lloyd quantizer as described below).

The rate distortion curves for different bit allocation schemes are shown in Fig. 15. We
found that bit allocation can achieve a lower distortion than that can be achieved by error
feedback quantization.

The main advantage of using sub-band coding with bit allocation is that it can achieve
better distortion performance compared with the error feedback quantization. However, the
DFT approach can be implemented only after we have acquire data from all views, so unlike
the error feedback quantization, it cannot be implemented online. The DFT sub-band coding
approach may be more useful for sinogram storage compression.
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Figure 15: Rate distortion curve of different bit loading schemes (The vertical axis
should be Ds. Sorry about the confusion).

5.3 Lloyd algorithm

We can find a better quantizer by using Lloyd algorithm. Here we use Lloyd algorithm to
design quantizer for our sub-band coding. We apply Lloyd algorithm on the real and the
imaginary parts of the coefficients, for different sub-bands data, respectively.

We use half of the thorax data as training data to the Lloyd quantizer, and apply that on
the entire thorax phantom raw data. We test two sets of initial conditions for the Lloyd algo-
rithm, the uniform quantizer and the quantizer level that follows the quantizer point density
as predicted by the Gersho’s approximation [Gra07]. They converge to different quantizers,
which shows that our problem is a nonconvex problem and has many local minima.

The results shown below are using a uniform quantizer as the initial condition. The
MSE as a function of iteration number for the Lloyd algorithm is shown in Fig. 16. The so
obtained Lloyd quantizer for different frequency bands data are shown in Fig. 17.

Fig. 18 shows the peak error in the image for all bit allocation schemes. Clearly we can
have a better performance by using Lloyd optimal quantizer.

However, we found that in our problem, the quantizer is quite object dependent. The
quantizer trained from the thorax raw data may perform quite poorly on the shoulder raw
data (this issue is discussed in more detail in Adam’s report.)

6 Discussion and future work

In our project, we considered the raw data compression problem for CT imaging. In designing
our quantizer, we take into consideration the properties of sinogram. We found that the low
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Figure 16: MSE convergence for a particular Lloyd algorithm realization.

frequency noise is responsible for the error in the center of the image, whereas the high
frequency noise contributes to the peripheral region of the image. Thus we considered two
types of noise shaping approaches: error feedback scheme, and sub-band coding with bit
allocation.

We found that, error feedback quantization (with first order filter) is the simplest one and
has similar performance with other higher order FIR feedback filter. The second approach,
sub-band coding with bit allocation, has better MSE performance when the number of bits
is large; it may be more useful for sinogram data storage compression since it cannot be
implemented in real time.

Given more time, we would like to explore the following aspects of this problem.
1. Vector quantizer. Herein in our project, we only consider scalar quantizers. We

may achieve better compression by using vector quantization. For example, we can consider
quantizing the data from all detectors, for one view, as a vector in the raw data space. We
can use the LGB algorithm [GG92] on training data to obtain a vector codebook.

2. Bit allocation across all the detectors. Besides the frequency property of the sinogram,
we can also consider the bit allocation schemes for different detector bands (the dependence
as explained in Adam’s report). We can use more bits to quantize the data from center
detectors, and less bits for side detectors.

3. For now we only consider the fixed rate quantization. We can also consider variable
rate coding (such as Huffman coding), to achieve an even better data compression.
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Figure 17: Codewords found using the Lloyd algorithm (8 bits) for three subbands
and their real and imaginary parts of the DFT coefficients.
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Figure 18: Comparison of different subband bit allocation schemes, in terms of peak
errors in pixel values versus the distance from the center of the image.
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A Noise Variance with Error Feedback

The pixel values near the center of the image are approximately determined by summing all
the projections from a same detector. For each reading gθi

, we have (using the additive noise
model)

gθ1 − eθ1 = ĝθ1 ;

(gθ2 + eθ1)− eθ2 = ĝθ2 ;

So

ĝθ1 + ĝθ2 = gθ1 − eθ1 + (gθ2 + eθ1)− eθ2 = gθ1 + gθ2 − eθ2 ;

In a similar way, we have

Nθ∑

i=1

ĝθi
=




Nθ∑

i=1

gθi


− eθN−1

;

so the noise variance in the sum with error feedback is ∆2

12
.

Without using error feedback, we have

Nθ∑

i=1

ĝθi
=

Nθ∑

i=1

gθi
−

Nθ∑

i=1

eθi
;

the noise variance accumulates to Nθ
∆2

12
.

Similar argument exists for neighboring pixels to the center of the image. However, for
the peripheral pixels in the image, the pixel values are determined by summing the projection
from different detectors. So the above analysis does not hold. So the error energy has actually
be pushed from the center of the image to the peripheral region of the image.
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