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Estimating an image M∗ ∈ Rm1×m2+ from its linear mea-
surements under Poisson noise is an important problem arises
from applications such as optical imaging, nuclear medicine
and x-ray imaging [1]. When the image M∗ has a low-rank
structure, we can use a small number of linear measurements
to recover M∗, also known as low-rank matrix recovery. This
is related to compressed sensing, where the goal is to develop
efficient data acquisition systems by exploiting sparsity of
underlying signals.

While there has been much success for low-rank matrix
recovery and completion under Gaussian noise, little has been
done in developing algorithms and establishing performance
bounds under Poisson noise. What makes the problems under
Poisson noise challenging is that the variance of the noisy
observations is proportional to the signal intensity and, hence,
instead of using `2 penalty, we need to use a highly non-linear
likelihood function for data fit. Also, in many practical sys-
tems associated with Poisson noise, many inherent physical
constraints have to be taken into consideration, such as signal
positivity and total signal flux preservation.

In this paper, we present a regularized maximum likelihood
estimator to recover an approximately low-rank matrix under
Poisson noise. We also establish performance bounds for the
proposed estimator, by combining techniques for recovering
sparse signals under Poisson noise [2], and methods for
recovering low-rank matrices [3]. Our bound demonstrates
that as the overall intensity of the signal increases, the
upper bound on the risk performance of proposed estimator
decays at certain rate depending how well the image can be
approximated by a low-rank matrix. On the other hand, our
bound also indicates there is certain threshold effect such
that the risk might not monotonically decrease with respect
to the number of measurements, in line with the result in
compressed sensing.

Suppose we wish to estimate a signal of image M∗ ∈
Rm1×m2+ consisting of positive entries. We can make N
Poisson measurements y ∈ ZN+ , which takes the form of

y ∼ Poisson(AM∗), (1)

where the linear operator A ∶ Rm1×m2+ → RN models the
measurement process of the system. We assume that the total
intensity of M∗, given by I ≜ ∥M∥1,1 ≜ ∑m1

i=1∑
m2

j=1M
∗
i,j is

known a priori. Our goal is to estimate the signal M∗ from
the noisy measurements y.

We propose a regularized maximum-likelihood estimator,
which is the solution to the following optimization problem

M̂ ≜ arg min
M∈Γ

[− log p(y∣AM) + 2ρ(M)], (2)

where ρ(M) > 0 is a regularization function. Here Γ is a
countable set of feasible estimators with total intensity I

Γ ≜ {Mi ∈ Rm1×m2+ ∶ ∥Mi∥1,1 = I, i = 1,2, . . .}, (3)

and the regularization function satisfies the Kraft inequality
∑M∈Γ e−ρ(M) ≤ 1. We can think of this formulation as a
discretized feasible domain version of the general regularized
maximum likelihood estimator. The regularization function
assigns small value for low-rank M . Using Kraft-compliant
regularization to prefix codes for estimators is a commonly
used technique in constructing estimators. Here ρ(M) can
be viewed as a measure of complexity for M , or the number
of bits needed to represent an estimator M uniquely.

The performance metric we use for estimator is a normal-
ized risk defined as

R(M∗,M) ≜ 1

I2
∥M∗ −M∥2

F , (4)

where ∥X∥F is the Frobenius norm of a matrix X . We first
present a construction for the linear operator A that satisfies
the weak restricted isometry property. For such an A, we
establish a performance bound for estimating a general signal
M∗ from noisy measurements without requiring M∗ to be
low-rank. Then we further make the assumption M∗ has a
low-rank approximation, and in particular, compressible, i.e.,
its singular value decay geometrically with a rate q. Then we
can obtain the following main theorem:

Theorem 1. Assume M∗ ∈ Rm1×m2+ is compressible,
[M∗]i,j ≥ c

N
for some positive constant c ∈ (0,1). Then

exists a finite set of candidate estimators Γ and regularization
function satisfying the Kraft inequality such that

ER(M∗, M̂) ≤ O(N) min
1≤k≤k∗

[k−2α + 164

m

+ (m1 +m2 + 3)k logm

I
] +O (

log(m1m2

N
)

N
)

where the expectation is taken with respect to y, m ≜
min{m1,m2}, k∗ ≜ 2N

c1(m1+m2+3) logm
for some constant

c1 > 0, and α = 1/q − 1/2.
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