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Power network monitoring

» Northeast blackout of 2003
is a widespread power
outage in the US

a change\-point » caused by
P S

“...did not recognize the
deteriorating condition of
the system [in the Ohio
part].”

» change-point:
break-down of power line

» detect the change-point in
real-time might prevent
large-scale blackout

Northeast blackout, 2003



Solar flare detection

June, 2012.

solar storm: a large explosion in the
sun’s atmosphere

a direct hit by solar storm can shut
down power lines and destroy airplane
communications

predict major solar storms: detecting
small solar flares (sudden brightening
over sun’s surface)

change-point: solar flare

a change-point
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Data for solar flare detection

Solar Dynamic
Observatory (SDO)

source: NASA SDO

» images taken by helioseismic sensors mounted on the satellite



movie193.mp4
Media File (video/mp4)


Detecting solar flares is hard

high-dimensional: each frame has 232 x 292 = 67744 pixels
large volume: 130Mbps, acquire ~ 11 terabytes/day
dynamic: sun surface (background) changing

quick detection of a small solar flare

vV v v Vv

v

low complexity: real-time detection necessitates
computationally efficient algorithms

» missing data: sensors may be overloaded
» communication and storage

marinecorpstimes.com  5/29



High-dimensional streaming data

» Each dimension is sequence of data measured by a “sensor”

» Large number of “sensors”

EEG brain imaging power network social solar flare
» monitoring network detection
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2| ~21—128 ~ 10,000 thousands ~ 60,000
i in a subnet to millions pixels

kk.org, wikipedia, ubiu.co.kr, sensysnetworks.com, P. Varaiya
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Background is dynamic and low-dimensional

Background is dynamic...

t=100 t=200 t=300

manifold

Tenenbaum, Silva and Langford 2000, Roweis and Saul 2001.
implicitly reduced Picard iteration for online manifold learning: Peng and Mosheni, 2012. 7/29



Anomaly signal is sparse

=226

today.mccombs.utexas.edu

change-point only affects a
small subset of sensors



Detect sparse changepoint in low-dimensional signal

After anomaly occurs:

signal = background + anomaly

/

low-dimensional
slowly time-varying

sparse

appear abruptly in time

Goal: Detect occurrence of a sparse signal in a slowly-time
varying low-dimensional background in real time
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Low-dimensional and slowly time-varying signal

many high-dimensional signals
exhibit low-dimensional structures

rotating hyperplane time-varying manifold
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Model
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Formulation

Data {ynt}n=1,-.N, =12,

N: size of the dimension

Ho: Ynt=Xnt+ W, n=1,--- N, t=1,2--- (1)

H, - Ynt = Xnt + Wnt, nes, t=1,--- Kk
T Ynt=Xnt+ fin+Wnt, nesS° t=k+1,-..
Wn,tNN(071)

» Unknown parameters
Xn,t € M;: slowly time-varying, low-dimensional
1n: changepoint amplitude
: subset of sensors affected
k: time when changepoint occurs

vV vy VvVyy
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Two-stage algorithm

» Track time-varying component x,; using yn.¢

» Detect changepoint as soon as possible after it occurs

{yn,t}_’

MOUSSE

{ent)

mixture procedure
change-point
detection

—>
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Tracking dynamic manifolds: MOUSSE algorithm [2]
» simple online manifold learning algorithm:
(a) learn low-dimensional approximation sequentially

(b) deal with missing data
> union-of-subsets: M; = Uik Sick,

» subset: ellipsoid on hyperplane

subspace
basis

z € RY}

spread

1
Ajkt

Bj k.t

origin

Xie, Huang and Willett, Change-point detection for high-dimensional time series with missing data, IEEE Journal

Sel. Topics Signal Processing, Feb. 2013

14/29



Online learning in MOUSSE

» subsets are multiscale and
organized in tree structure

S11t
» online-learning
A\ Yot 25 Yot 7 Yn,t+2
S21t () Saoil) e My My —— -

» update subset parameters and
83,1,,5Q Q Ss.0.4 tree structure

Subspace tracking: Balzano et.al. 2011, Chi et.al. 2012
Geometric wavelets: Allard, Chen and Maggioni, 2011
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Robust to missing data

(Xie, 2013) Given union-of-subset: [, S;. If entries “missing at
random”,
1) enough number of observed entries:

2] = max { Zdcoh(U) og(2al(k — 1)/3)}
2) enough “distance margin” between “optimal” subset and other
subsets
C. sin(6y) + a.p(x,Ss) < ¢isin(6;) + aip(x, Si), Vi # *,
then with prob. 1 — 64, projection of data can be well-approximated:
D—|Q| d.coh(U,)

Ul (x-0)-UhOra—ea)lP < (140f r—y =g 9
. b best
undersampling SUPSpace approx. err.
property

Proof ideas from “matrix completion”,
Coherence of basis: coh(U;) = (D/d;) max; || U; UIT &2 Candes and Tao, 2009,
“subspace matching” Balzano, Recht
and Nowak 2011.
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MQOUSSE residuals

» estimate time varying component
Xnt = projection of y, ; onto M

» residuals
ent=Ynt— )A(n,t,

before change-point, after change-point,
residual small around solar flare, residual large

29



Multi-sensor changepoint detection with sparsity

If tracking algorithm is working well, model for the residual

HO: ent = Wnyt, n:17"'7N7 t:1a2>

Hy - ent = Wnt, nesS, t=1,---,k;
T ent=fin+Wnt, N€S, t=k+1,--
Wn,t~N(0,1)

» only few entries of {1.,} are non-zero
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Exact likelihood procedure

» each sensor forms GLR statistic

Uikt
1

3 4

77_ t_k W, ~’ i
W/ W

» sum over set of affected sensors

T = inf{t : max max U >b
{ k<t Sefz,% nit 2 b}

» S unknown, have to search all possible subsets of
{1,--- N}
» number of possible subsets |Q| = 2V, exponential in N
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Mixture procedure
> exploit signal sparsity:
introduce mixture model

» assume each sensor affected with probability pg
» po is a guess for fraction of affected sensors (p = |S|/N)
» mixture procedure

N
Tix = inf{t log(1 — B2y >
inf{t r?gf; og(1 — po + poe ) > b}

Ul,k,t ; 7\ log(1 —po + po(’f)|-é
1

5

J v

affected w.p. po

Xie and Siegmund, Sequential multi-sensor change-point detection, Annals of Statistics, 2013.
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Soft-thresholding
» select sensors with useful information by
“soft-thresholding” the GLR statistic (not the signal)

soft-threshold function: ~ f(x) = log(1 — po + po€e”)

g;); _pn=0.01
S —Fom GLR statistics
t, po=1 m—_
S | i
I unaffected sensor: Uy« ~ 1
B T affected sensor: Uy k¢ ~ (t — k)2
I
S
= %
N 2
Toix = inf{t : max > "log(1 — po + poe’r/2) > b}
k<t —
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Performance metrics

detection delay

N

threshold b |-

» average run length (ARL):
E*{T}
» expected detection delay (EDD):
sup ess sup EK{T — k|T > k}
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Average Run Length (ARL)

Theorem (Xie and Siegmund, 2013)
As b — oo, N — oo, with b/N fixed, for 6 : 4(#) = b/N,

b[2my(0)]'/?

(ARL)  EX{T} = N7

b: threshold, N: number of sensors.

» complicated expression, but approximation highly accurate
» given ARL, b can be efficiently determined

» ARL = O(eb~N/?)

exp{N[64(0) — ()]} + o(1).
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Expected Detection Delay (EDD)

Theorem (Xie and Siegmund, 2013)
As b — o,

(EDD) EX{T} = (2%/2) '[b+ 20(A) — || log po—

[5]/2 = (N = |SNE{g(U. po)} — 1 — A%/4 + o(1)].

» signal energy:

AZ =)

nes
un, N € S: post-change mean for affected sensors
» A2?/2 = Kullback-Leibler (K-L) divergence

> EDD = O(375)
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Sharp approximations

Table : Average run length (ARL) of T«

Po b | Theory | Monte Carlo | % difference
0.1 | 19.5 | 5000 4968 0.6%

0.1 | 20.4 | 10001 10093 0.9%
0.03 | 12.7 | 5001 4830 3.4%
0.03 | 13.5 | 10001 9948 0.5%

Table : Expected detection delay (EDD) of T,x, ARL ~ 5000, u, = 1.

p po | Theory | Monte Carlo | % difference
0.1 0.1 7.2 6.7 6.9%
0.03 | 0.1 13.9 14.3 2.9%
0.03 | 0.03 | 13.9 14.2 21%

mixture procedure is first-order asymptotic optimal
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Detection delay

» Performance of mixture procedure is better

QG T T T
—e—Max
80 ——GLR
_p—Mixture, P, = 0.1
——Mei
Modified TV
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Hard-thresholding

» Avoid numerical stability issue in log(1 — pg + poexz/z)

» We have analytic approximate ARL of hard-thresholding
mixture procedure.

g = log(1 - p, + B, &)
5l - -htx) = Glog b + x)*

N
Timix,n = inf {Tt max > [Unk,: + log(po)] " > b}
n=1

0<k<t
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Apply on solar data

“

T T T T 12, T T T T

L Almost missed by i
“eyeball detection™

Lt
12
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1

detection statistic
detection statistic
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mixture procedure,Po = 10" without exploiting sparsity
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Future work

» Detect in real-time
» abrupt occurrence of sparse changepoint (anomaly)
» in slowly time-varying low-dimensional background
» combines
» tracking of low-dimensional background
» sparse changepoint detection
» when there is correlation among the sensors affected by
the changepoint, how do we capture that in the detection
statistic
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