## Change-Point Detection for High-Dimensional Data

Yao Xie\* and Rebecca Willett<sup>†</sup>

 \* Georgia Institute of Technology, <sup>†</sup> University of Wisconsin, Madison Asilomar Conference on Signals, Systems, and Computers 2013

November 5, 2013

# Power network monitoring



Northeast blackout, 2003

 Northeast blackout of 2003 is a widespread power outage in the US

#### caused by

"...did not recognize the deteriorating condition of the system [in the Ohio part]."

- change-point: break-down of power line
- detect the change-point in real-time might prevent large-scale blackout

# Solar flare detection



June, 2012.

- solar storm: a large explosion in the sun's atmosphere
- a direct hit by solar storm can shut down power lines and destroy airplane communications
- predict major solar storms: detecting small solar flares (sudden brightening over sun's surface)
- change-point: solar flare

a change-point



## Data for solar flare detection



#### source: NASA SDO

images taken by helioseismic sensors mounted on the satellite

#### Detecting solar flares is hard

- ▶ high-dimensional: each frame has 232 × 292 = 67744 pixels
- ► large volume: 130Mbps, acquire ~ 11 terabytes/day
- dynamic: sun surface (background) changing
- quick detection of a small solar flare
- Iow complexity: real-time detection necessitates computationally efficient algorithms
- missing data: sensors may be overloaded
- communication and storage



# High-dimensional streaming data

- Each dimension is sequence of data measured by a "sensor"
- Large number of "sensors"



kk.org, wikipedia, ubiu.co.kr, sensysnetworks.com, P. Varaiya 6/29

## Background is dynamic and low-dimensional

#### Background is dynamic...



#### ... and low-dimensional



Tenenbaum, Silva and Langford 2000, Roweis and Saul 2001.

implicitly reduced Picard iteration for online manifold learning: Peng and Mosheni, 2012. 7/29

## Anomaly signal is sparse

t = 226





change-point only affects a small subset of sensors

today.mccombs.utexas.edu

Detect sparse changepoint in low-dimensional signal

After anomaly occurs:



**Goal**: Detect occurrence of a sparse signal in a slowly-time varying low-dimensional background **in real time** 

Low-dimensional and slowly time-varying signal

many high-dimensional signals exhibit low-dimensional structures

rotating hyperplane

time-varying manifold



## Model



## Formulation

Data 
$$\{y_{n,t}\}_{n=1,\dots,N, t=1,2,\dots, t}$$

N: size of the dimension

$$H_0: \quad y_{n,t} = x_{n,t} + w_{n,t}, \quad n = 1, \cdots, N, \quad t = 1, 2, \cdots$$
 (1)

$$H_1: \begin{cases} y_{n,t} = x_{n,t} + w_{n,t}, & n \in \mathcal{S}, \quad t = 1, \cdots, k; \\ y_{n,t} = x_{n,t} + \mu_n + w_{n,t}, & n \in \mathcal{S}^c, \quad t = k+1, \cdots \\ w_{n,t} \sim \mathcal{N}(0, 1) \end{cases}$$

- Unknown parameters
  - ▶  $x_{n,t} \in M_t$ : slowly time-varying, low-dimensional
  - $\mu_n$ : changepoint amplitude
  - S: subset of sensors affected
  - k: time when changepoint occurs

#### Two-stage algorithm

**Track** time-varying component  $x_{n,t}$  using  $y_{n,t}$ 

Detect changepoint as soon as possible after it occurs

$$\{y_{n,t}\} \longrightarrow \texttt{MOUSSE} \xrightarrow{\{e_{n,t}\}} \overbrace{\texttt{mixture procedure change-point detection}}^{\texttt{mixture procedure}} \xrightarrow{\texttt{mixture procedure change-point detection}} \xrightarrow{\texttt{mixture procedure change-point detection}}} \xrightarrow{\texttt{mixture procedure change-point detection}} \xrightarrow{\texttt{mixture procedure change-point detection}}} \xrightarrow{\texttt{mixture procedure change-point detection}}}$$

# Tracking dynamic manifolds: MOUSSE algorithm [2]

simple online manifold learning algorithm:

(a) learn low-dimensional approximation sequentially

(b) deal with missing data

• union-of-subsets: 
$$\widehat{\mathcal{M}}_t = \bigcup_{(j,k)} \mathcal{S}_{j,k}$$
,



Xie, Huang and Willett, Change-point detection for high-dimensional time series with missing data, IEEE Journal Sel. Topics Signal Processing, Feb. 2013

# Online learning in MOUSSE

 subsets are multiscale and organized in tree structure



online-learning

 $\cdots \xrightarrow{y_{n,t}} \widehat{\mathcal{M}}_t \xrightarrow{y_{n,t+1}} \widehat{\mathcal{M}}_{t+1} \xrightarrow{y_{n,t+2}} \cdots$ 

 update subset parameters and tree structure

> Subspace tracking: Balzano et.al. 2011, Chi et.al. 2012 Geometric wavelets: Allard, Chen and Maggioni, 2011

#### Robust to missing data

(Xie, 2013) Given union-of-subset:  $\bigcup_{i=1}^{K} S_i$ . If entries "missing at random",

1) enough number of observed entries:

$$|\Omega| \geq \max_{i=1}^{K} \left\{ \frac{8}{3} d_i \operatorname{coh}(U_i) \log(2d_i(K-1)/\delta) \right\},$$

2) enough "distance margin" between "optimal" subset and other subsets

$$c_\star \sin( heta_\star) + a_\star 
ho(x, \mathcal{S}_\star) < c_i \sin( heta_i) + a_i 
ho(x, \mathcal{S}_i), \quad orall i 
eq \star,$$

then with prob.  $1 - 6\delta$ , projection of data can be well-approximated:

$$\|U_{\star}^{\dagger}(x-c_{\star})-U_{\Omega}^{\dagger}(x_{\Omega}-c_{\Omega})\|^{2} \leq (1+\eta)^{2} \underbrace{\frac{D-|\Omega|}{(1-\gamma)^{2}}}_{undersampling} \underbrace{\frac{d_{\star}\operatorname{coh}(U_{\star})}{D}}_{subspace} \underbrace{\frac{\|q^{\star}\|^{2}}{best}}_{approx. \ err.}$$

Coherence of basis:  $\operatorname{coh}(U_i) = (D/d_i) \max_j \|U_i U_j^{\dagger} e_j\|^2$ 

and Nowak 2011.

Proof ideas from "matrix completion",

"subspace matching" Balzano, Recht

Candes and Tao, 2009,

#### **MOUSSE** residuals

estimate time varying component

$$\hat{x}_{n,t}$$
 = projection of  $y_{n,t}$  onto  $\widehat{\mathcal{M}}_{t-1}$ 

residuals

$$\boldsymbol{e}_{\boldsymbol{n},\boldsymbol{t}}=\boldsymbol{y}_{\boldsymbol{n},\boldsymbol{t}}-\hat{\boldsymbol{x}}_{\boldsymbol{n},\boldsymbol{t}},$$

before change-point, residual small



after change-point, around solar flare, residual large



#### Multi-sensor changepoint detection with sparsity

If tracking algorithm is working well, model for the residual

$$H_0: \quad e_{n,t} = w_{n,t}, \quad n = 1, \cdots, N, \quad t = 1, 2, \cdots$$

$$H_1: \quad \begin{cases} e_{n,t} = w_{n,t}, & n \in S, & t = 1, \cdots, k; \\ e_{n,t} = \mu_n + w_{n,t}, & n \in S^c, & t = k+1, \cdots \\ w_{n,t} \sim \mathcal{N}(0, 1) \end{cases}$$

• only few entries of  $\{\mu_n\}$  are non-zero

### Exact likelihood procedure

each sensor forms GLR statistic

$$U_{n,k,t} = \frac{\left(\sum_{i=k+1}^{t} y_{n,i}\right)^2}{t-k}$$

ΤΤ

sum over set of affected sensors

$$T = \inf\{t : \max_{k < t} \max_{\mathcal{S} \in \Omega} \sum_{n \in \mathcal{S}} U_{n,k,t} \ge b\}$$

- ▶ S unknown, have to search all possible subsets of  $\{1, \dots, N\}$
- number of possible subsets  $|\Omega| = 2^N$ , exponential in N

#### Mixture procedure

- exploit signal sparsity: introduce mixture model
  - assume each sensor affected with probability p<sub>0</sub>
  - ▶  $p_0$  is a guess for fraction of affected sensors (p = |S|/N)
- mixture procedure

$$T_{\text{mix}} = \inf\{t : \max_{k < t} \sum_{n=1}^{N} \log(1 - \rho_0 + \rho_0 e^{U_{n,k,t}^2/2}) \ge b\}$$



Xie and Siegmund, Sequential multi-sensor change-point detection, Annals of Statistics, 2013.

#### Soft-thresholding

select sensors with useful information by

"soft-thresholding" the GLR statistic (not the signal)

soft-threshold function:  $f(x) = \log(1 - p_0 + p_0 e^x)$ 



#### **GLR** statistics

unaffected sensor:  $U_{n,k,t} \approx 1$ affected sensor:  $U_{n,k,t} \approx (t-k)\mu_n^2$ 

$$T_{\text{mix}} = \inf\{t : \max_{k < t} \sum_{n=1}^{N} \log(1 - p_0 + p_0 e^{U_{n,k,t}^2}) \ge b\}$$

## Performance metrics



average run length (ARL):

$$\mathbb{E}^{\infty}\{T\}$$

expected detection delay (EDD):

$$\sup_{k} \operatorname{ess\,sup} \mathbb{E}^{k} \{ T - k | T > k \}$$

## Average Run Length (ARL)

Theorem (Xie and Siegmund, 2013)

As  $b \to \infty$ ,  $N \to \infty$ , with b/N fixed, for  $\theta : \dot{\psi}(\theta) = b/N$ ,

(ARL) 
$$E^{\infty}{T} = \frac{\theta [2\pi \ddot{\psi}(\theta)]^{1/2}}{c(N)\gamma(\theta)N^{1/2}} \exp{\{N[\theta \dot{\psi}(\theta) - \psi(\theta)]\}} + o(1).$$

*b*: threshold, *N*: number of sensors.

- complicated expression, but approximation highly accurate
- ▶ given ARL, *b* can be efficiently determined
- ARL =  $\mathcal{O}(e^{b-N/2})$

## Expected Detection Delay (EDD)

Theorem (Xie and Siegmund, 2013) As  $b \to \infty$ ,

(EDD) 
$$\mathbb{E}^{0}\{T\} = (\Delta^{2}/2)^{-1}[b + 2\rho(\Delta) - |S| \log p_{0} - |S|/2 - (N - |S|)\mathbb{E}\{g(U, p_{0})\} - 1 - \Delta^{2}/4 + o(1)].$$

signal energy:

$$\Delta^2 = \sum_{n \in \mathcal{S}} \mu_n^2$$

 $\mu_n$ ,  $n \in S$ : post-change mean for affected sensors

- $\Delta^2/2 = Kullback-Leibler (K-L) divergence$
- EDD =  $\mathcal{O}(\frac{b}{\Delta^2/2})$

## Sharp approximations

| $p_0$ | b    | Theory | Monte Carlo | % difference |
|-------|------|--------|-------------|--------------|
| 0.1   | 19.5 | 5000   | 4968        | 0.6%         |
| 0.1   | 20.4 | 10001  | 10093       | 0.9%         |
| 0.03  | 12.7 | 5001   | 4830        | 3.4%         |
| 0.03  | 13.5 | 10001  | 9948        | 0.5%         |

Table : Average run length (ARL) of  $T_{mix}$ 

Table : Expected detection delay (EDD) of  $T_{\text{mix}}$ , ARL  $\approx$  5000,  $\mu_n = 1$ .

| р    | $p_0$ | Theory | Monte Carlo | % difference |
|------|-------|--------|-------------|--------------|
| 0.1  | 0.1   | 7.2    | 6.7         | 6.9%         |
| 0.03 | 0.1   | 13.9   | 14.3        | 2.9%         |
| 0.03 | 0.03  | 13.9   | 14.2        | 2.1%         |

mixture procedure is first-order asymptotic optimal

#### **Detection delay**

#### Performance of mixture procedure is better



### Hard-thresholding

- Avoid numerical stability issue in  $log(1 p_0 + p_0 e^{x^2/2})$
- We have analytic approximate ARL of hard-thresholding mixture procedure.



#### Apply on solar data



#### Future work

- Detect in real-time
  - abrupt occurrence of sparse changepoint (anomaly)
  - in slowly time-varying low-dimensional background
- combines
  - tracking of low-dimensional background
  - sparse changepoint detection
- when there is correlation among the sensors affected by the changepoint, how do we capture that in the detection statistic

