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Power network monitoring

a change-point

Northeast blackout, 2003

I Northeast blackout of 2003
is a widespread power
outage in the US

I caused by

“...did not recognize the
deteriorating condition of
the system [in the Ohio
part].”

I change-point:
break-down of power line

I detect the change-point in
real-time might prevent
large-scale blackout

jcwinnie.biz, bravoprojects.co.in
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Solar flare detection

June, 2012.

I solar storm: a large explosion in the
sun’s atmosphere

I a direct hit by solar storm can shut
down power lines and destroy airplane
communications

I predict major solar storms: detecting
small solar flares (sudden brightening
over sun’s surface)

I change-point: solar flare

t=172

a change-point

June, 2012.
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Data for solar flare detection

• Solar flare detection

• Computer network intrusion detection

• Power network monitoring

• Epidemiology

• Sensors networks for traffic/health 
monitoring

Sources: NASA, UNC, kk.org, U Madrid, eurosurveillance.org

Solar Dynamic 
Observatory (SDO)

source: NASA SDO

I images taken by helioseismic sensors mounted on the satellite
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movie193.mp4
Media File (video/mp4)



Detecting solar flares is hard
I high-dimensional: each frame has 232× 292 = 67744 pixels
I large volume: 130Mbps, acquire ∼ 11 terabytes/day
I dynamic: sun surface (background) changing
I quick detection of a small solar flare
I low complexity: real-time detection necessitates

computationally efficient algorithms
I missing data: sensors may be overloaded
I communication and storage

marinecorpstimes.com 5 / 29



High-dimensional streaming data
I Each dimension is sequence of data measured by a “sensor”
I Large number of “sensors”

“sensor”: 
each 

person 

social 
network

power network 
monitoring

smart 
meters
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in a subnet

thousands 
to millions

solar flare
detection

“sensor”: 
each pixel

⇠ 60, 000
pixels

⇠ 10, 000

EEG brain imaging

EEG sensors

⇠ 21 � 128

kk.org, wikipedia, ubiu.co.kr, sensysnetworks.com, P. Varaiya 6 / 29



Background is dynamic and low-dimensional
Background is dynamic...

t = 300t = 200t = 100t"="100" t"="200" t"="300"

... and low-dimensional

manifold

t=1

t=250

Tenenbaum, Silva and Langford 2000, Roweis and Saul 2001.

implicitly reduced Picard iteration for online manifold learning: Peng and Mosheni, 2012. 7 / 29



Anomaly signal is sparse
t = 226

 

 

Computer network intrusion detection
change-point only affects a
small subset of sensors

today.mccombs.utexas.edu 8 / 29



Detect sparse changepoint in low-dimensional signal

After anomaly occurs:

signal = background + anomaly

!
low-dimensional 

slowly time-varying 
sparse 

appear abruptly in time

Goal: Detect occurrence of a sparse signal in a slowly-time
varying low-dimensional background in real time
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Low-dimensional and slowly time-varying signal

many high-dimensional signals
exhibit low-dimensional structures

rotating hyperplane time-varying manifold
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Model
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Change-point occurs at time  κ

11 / 29



Formulation

Data {yn,t}n=1,··· ,N, t=1,2,···,

N: size of the dimension

H0 : yn,t = xn,t + wn,t , n = 1, · · · ,N, t = 1,2, · · · (1)

H1 :

{
yn,t = xn,t + wn,t , n ∈ S, t = 1, · · · , k ;
yn,t = xn,t + µn + wn,t , n ∈ Sc , t = k + 1, · · ·
wn,t ∼ N (0,1)

I Unknown parameters
I xn,t ∈Mt : slowly time-varying, low-dimensional
I µn: changepoint amplitude
I S: subset of sensors affected
I k : time when changepoint occurs
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Two-stage algorithm

I Track time-varying component xn,t using yn,t

I Detect changepoint as soon as possible after it occurs

MOUSSE{yn,t}
mixture procedure 

change-point 
detection

{en,t}
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Tracking dynamic manifolds: MOUSSE algorithm [2]
I simple online manifold learning algorithm:

(a) learn low-dimensional approximation sequentially

(b) deal with missing data

I union-of-subsets: M̂t =
⋃

(j,k) Sj,k,t

I subset: ellipsoid on hyperplane
subspace
basis offset

spread

Sj,k,t = {v : v = Bj,k,tz + cj,k,t

z>⇤�1
j,k,tz  1

z 2 Rd}

cj,k,t

origin

Bj,k,t

�1
j,k,t

�2
j,k,t

Xie, Huang and Willett, Change-point detection for high-dimensional time series with missing data, IEEE Journal

Sel. Topics Signal Processing, Feb. 2013
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Online learning in MOUSSE
I subsets are multiscale and

organized in tree structure

S1,1,t

S2,1,t S2,2,t

S3,1,t S3,2,t

S3,1,t

S3,2,t S2,2,t

I online-learning

· · · yn,t−−→ M̂t
yn,t+1−−−→ M̂t+1

yn,t+2−−−→ · · ·

I update subset parameters and
tree structure

Subspace tracking: Balzano et.al. 2011, Chi et.al. 2012
Geometric wavelets: Allard, Chen and Maggioni, 2011
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Robust to missing data
(Xie, 2013) Given union-of-subset:

⋃K
i=1 Si . If entries “missing at

random”,
1) enough number of observed entries:

|Ω| ≥ K
max
i=1

{
8
3

dicoh(Ui ) log(2di (K − 1)/δ)

}
,

2) enough “distance margin” between “optimal” subset and other
subsets

c? sin(θ?) + a?ρ(x ,S?) < ci sin(θi ) + aiρ(x ,Si ), ∀i 6= ?,

then with prob. 1− 6δ, projection of data can be well-approximated:

‖U†?(x−c?)−U†Ω(xΩ−cΩ)‖2 ≤ (1+η)2 D − |Ω|
(1− γ)2︸ ︷︷ ︸

undersampling

d?coh(U?)

D︸ ︷︷ ︸
subspace
property

‖q?‖2︸ ︷︷ ︸
bestapprox. err.

Coherence of basis: coh(Ui ) = (D/di ) maxj ‖Ui U
†
i ej‖2

Proof ideas from “matrix completion”,
Candes and Tao, 2009,

“subspace matching” Balzano, Recht

and Nowak 2011.
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MOUSSE residuals
I estimate time varying component

x̂n,t = projection of yn,t onto M̂t−1

I residuals
en,t = yn,t − x̂n,t ,

before change-point,  
residual small

after change-point, 
around solar flare, residual large
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Multi-sensor changepoint detection with sparsity

If tracking algorithm is working well, model for the residual

H0 : en,t = wn,t , n = 1, · · · ,N, t = 1,2, · · ·

H1 :

{
en,t = wn,t , n ∈ S, t = 1, · · · , k ;
en,t = µn + wn,t , n ∈ Sc , t = k + 1, · · ·
wn,t ∼ N (0,1)

I only few entries of {µn} are non-zero
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Exact likelihood procedure

I each sensor forms GLR statistic

Un,k ,t =
(
∑t

i=k+1 yn,i)
2

t − k

U1,k,t

U1,k,t
1 2 

3 4 
5 

affected w.p. p0

log(1 � p0 + p0e
·)

1 2 

3 4 
5 

I sum over set of affected sensors

T = inf{t : max
k<t

max
S∈Ω

∑
n∈S

Un,k ,t ≥ b}

I S unknown, have to search all possible subsets of
{1, · · · ,N}

I number of possible subsets |Ω| = 2N , exponential in N
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Mixture procedure
I exploit signal sparsity:

introduce mixture model

I assume each sensor affected with probability p0

I p0 is a guess for fraction of affected sensors (p = |S|/N)

I mixture procedure

Tmix = inf{t : max
k<t

N∑
n=1

log(1− p0 + p0eU2
n,k,t/2) ≥ b}

1 2 

3 4 
5 

U1,k,t

U1,k,t
1 2 

3 4 
5 

affected w.p. p0

log(1 � p0 + p0e
·)

Xie and Siegmund, Sequential multi-sensor change-point detection, Annals of Statistics, 2013.
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Soft-thresholding

I select sensors with useful information by

“soft-thresholding” the GLR statistic (not the signal)

soft-threshold function: f (x) = log(1− p0 + p0ex )
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GLR statistics

unaffected sensor: Un,k,t ≈ 1

affected sensor: Un,k,t ≈ (t − k)µ2
n

Tmix = inf{t : max
k<t

N∑
n=1

log(1− p0 + p0eU2
n,k,t/2) ≥ b}
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Performance metrics
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threshold

I average run length (ARL):

E∞{T}
I expected detection delay (EDD):

sup
k

ess sup Ek{T − k |T > k}
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Average Run Length (ARL)

Theorem (Xie and Siegmund, 2013)
As b →∞, N →∞, with b/N fixed, for θ : ψ̇(θ) = b/N,

(ARL) E∞{T} =
θ[2πψ̈(θ)]1/2

c(N)γ(θ)N1/2 exp{N[θψ̇(θ)− ψ(θ)]}+ o(1).

b: threshold, N: number of sensors.

I complicated expression, but approximation highly accurate

I given ARL, b can be efficiently determined

I ARL = O(eb−N/2)
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Expected Detection Delay (EDD)

Theorem (Xie and Siegmund, 2013)
As b →∞,

(EDD) E0{T} = (∆2/2)−1[b + 2ρ(∆)− |S| log p0−
|S|/2− (N − |S|)E{g(U,p0)} − 1−∆2/4 + o(1)].

I signal energy:
∆2 =

∑
n∈S

µ2
n

µn, n ∈ S: post-change mean for affected sensors

I ∆2/2 = Kullback-Leibler (K-L) divergence

I EDD = O( b
∆2/2 )
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Sharp approximations

Table : Average run length (ARL) of Tmix

p0 b Theory Monte Carlo % difference
0.1 19.5 5000 4968 0.6%
0.1 20.4 10001 10093 0.9%

0.03 12.7 5001 4830 3.4%
0.03 13.5 10001 9948 0.5%

Table : Expected detection delay (EDD) of Tmix, ARL ≈ 5000, µn = 1.

p p0 Theory Monte Carlo % difference
0.1 0.1 7.2 6.7 6.9%

0.03 0.1 13.9 14.3 2.9%
0.03 0.03 13.9 14.2 2.1%

mixture procedure is first-order asymptotic optimal
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Detection delay

I Performance of mixture procedure is better
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Hard-thresholding

I Avoid numerical stability issue in log(1− p0 + p0ex2/2)

I We have analytic approximate ARL of hard-thresholding
mixture procedure.
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h(x) = (log p
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Tmix ,h = inf

{
t : max

0≤k<t

N∑
n=1

[Un,k ,t + log(p0)]+ ≥ b

}
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Apply on solar data

t=142 t=172
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mixture procedure, without exploiting sparsity
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Future work
I Detect in real-time

I abrupt occurrence of sparse changepoint (anomaly)
I in slowly time-varying low-dimensional background

I combines
I tracking of low-dimensional background
I sparse changepoint detection

I when there is correlation among the sensors affected by
the changepoint, how do we capture that in the detection
statistic
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