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Sequential Changepoint Approach for
Online Community Detection

David Marangoni-Simonsen and Yao Xie

Abstract—We present new algorithms for detecting the emer-
gence of a community in large networks from sequential obser-
vations. The networks are modeled using Erdds-Renyi random
graphs with edges forming between nodes in the community with
higher probability. Based on statistical changepoint detection
methodology, we develop three algorithms: the Exhaustive Search
(ES), the Mixture, and the Hierarchical Mixture (H-Mix) methods.
Performance of these methods is evaluated by the average run
length (ARL), which captures the frequency of false alarms, and
the detection delay. Numerical comparisons show that the ES
method performs the best; however, it is exponentially complex.
The Mixture method is polynomially complex by exploiting the
fact that the size of the community is typically small in a large
network. However, it may react to a group of active edges that
do not form a community. This issue is resolved by the H-Mix
method, which is based on a dendrogram decomposition of the
network. We present an asymptotic analytical expression for ARL
of the Mixture method when the threshold is large.

Index Terms— Changepoint detection, community detection, se-
quential methods, social networks.

I. INTRODUCTION

OMMUNITY detection within a network is a problem

which arises from a wide variety of applications, in-
cluding social networks, biology, and speech processing
[1]-[4]. These problems often consist of some graph ¢ which
contains a community C < G where C and G\C differ in some
fundamental characteristic, such as the frequency of interaction
(see [5] for more details). For example, in social networks, a
node would be an individual and an edge between two nodes
would represent a friendship or kinship of some sort shared
by these two individuals, and community detection is about
clustering the nodes into groups with strong inner interaction
and weak outer interaction.

Community detection problems can be divided into either
one-shot [5]-[10] or dynamic categories [11]-[13]. The more
commonly considered one-shot setting assumes observations
from static networks. The dynamic setting is concerned with
sequential observations from possibly dynamic networks, and
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has become increasingly important since such scenarios become
prevalent in social networks [12]. These dynamic categories can
be further divided into networks with (1) structures that either
continuously change over time [11], or (2) structures that change
abruptly after some changepoint [13], the latter of which will
be the focus of this paper. In online community detection prob-
lems, due to the real time processing requirement, we cannot
simply adopt the exponentially complex algorithms, especially
for large networks.

In this paper, we propose a new sequential changepoint detec-
tion framework for detecting an abrupt emergence of a single
community using sequential observations of random graphs.
We also adopt the Erdés-Renyi model, but our methods differ
from [9] in that we use a sequential hypothesis testing formu-
lation and the methods are based on sequential likelihood ra-
tios, which have statistically optimal properties. On the other
hand, our work is a new addition to the field of online com-
munity detection: previous work such as [6] focus on empirical
study, whereas we take an approach from the rigorous statis-
tical methodology. From the likelihood formulations, three se-
quential procedures are derived: the Exhaustive Search (ES),
the Mixture, and the Hierarchical Mixture (H-Mix) methods.
The ES method performs the best but it is exponentially com-
plex even if the community size is known; the Mixture method
is polynomially complex and it exploits the fact that the size of
the community inside a network is typically small. A limit of the
Mixture method is that it may raise a false alarm due to a set of
highly active edges that do not form a community. The H-Mix
method addresses this problem by imposing a dendrogram de-
composition of the graph. The performance of the changepoint
detection procedures are evaluated using the average-run-length
(ARL) and the detection delay. We derived a theoretical asymp-
totic approximation of the ARL of the Mixture method, which
was numerically verified to be accurate even in the non-asymp-
totic regime. Hence, the theoretical approximation can be used
to determine the detection threshold efficiently. The complexity
and performance of the three methods are also analyzed using
numerical examples.

II. FORMULATION AND METHODS

Assume a network with IV nodes and an observed sequence
of independent adjacency matrices over time Xi, Xs, ... with
X,; € RV*N where X; represents the interaction of these nodes
at time i. Also assume when there is no community, there are
only random interactions between all nodes in the network with
relatively low frequency. There may exist an (unknown) time at
which a community emerges and nodes inside the community
have much higher frequencies of interaction.
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We formulate this problem as a sequential changepoint
detection problem. The null hypothesis is that the graph cor-
responding to the network at each time step is a realization
of an Erd6s-Renyi random graph, i.e., edges are independent
Bernoulli random variables that take values of 1 with prob-
ability po and values of 0 with probability 1 — pg. Let [X];;
denote the ith element of a matrix X, then

1 w.p.po

[Xii; = V(i) (1

0 otherwise
The alternative hypothesis is that there exists an unknown time
& such that after x, an unknown subset of nodes §* in the graph
form edges between community nodes with a higher probability
P1, P1 > po, implying that the interaction is stronger between
nodes in the community:

1 wopp
(Xilij = Vi, j e S* 1> k, )
0 otherwise
and for all others
1 w.p.po
[(Xilij = Vid¢ S*orj ¢ S*,t >k (3)

0 otherwise

We assume that py is known, as it is a baseline parameter which
can be estimated from historic data. We will consider both cases
when p; is either unknown or known. Let |S| denote the car-
dinality of a set S. Here, to simplify problem, we assume that
nodes within community take the a homogeneous probability of
interaction p; .

Our goal is to define a stopping rule 7" such that for a given
large average-run-length (ARL) value, E{T}, the expected
detection delay E"{T — &|T > k} is small. Here E> and E*
consecutively denote the expectation when there is no change-
point, and when the changepoint occurs at time . This formu-
lation corresponds the classic mini-max changepoint detection
problem [14], and the desired stopping rules are determined by
likelihood ratios that we describe below.

Define the following statistics for edge (i, j) and assumed
changepoint time x = k for observations up to some time ¢,

U(l:J)

ktpt

1—po

4
Then for a given changepoint time x = k% and a commun(lt}z

S, we can write the log-likelihood ratio for (1), (2) and (3) as
follows:

m=k-+1

A ’ P1 1 - p1) Xl
Ue=klp,$)210g | T[] T
m=k+1 (i,j)e8 po (1 - ) T
= > Uit 5)
(1,7)€8

A. Exhaustive Search (ES) method

Often, the probability of two community members interacting
P1 1s unknown since it typically represents an anomaly (or new
information) in the network. One approach is to set p; equal to
anominal value, say §, which would be important to detect, and
set a targeted size of the community s that may be a guess for

i [Xom]is log (%)ﬁl[Xm]z‘j)IOg <1 p1> .
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|S*|. Thus, we define a stopping rule that detects a community
whenever the likelihood ratio exceeds a threshold b at certain
time #:

S Uiy,

(,7)S

Trs1=inf ¢ ¢t max max
t—mi1 <k<t-mg SC[[N]]:|S|=s

which we refer to as the exhaustive search (ES) procedure. Here
[[N]] £ {1,...,N}. In (6), the test statistic is the maximum
log likelihood ratio (5) over all possible sets S of size s and
all possible changepoint locations in a time window k € [t —
m1,t — mgl, with mq being the start and m; being the end of
the window. There exists a recursive way to calculate the test
statistic in (6), known as the CUSUM statistic [14]. If mg = 0,
for each possible S, we calculate Wg ;11 = max{Ws, +
>ipes U t’i)l 5,0}, with Ws o = 0, and (6) can be imple-
mented as

TES 1= = inf { (7)

An alternative approach is to replace p; by its maximum likeli-
hood estimate, which can be found by taking the derivative of
£(k = k|p1, S) in (5) with respect to p; for fixed S, k and ¢, set-
ting it equal to 0 and solving for py:

ZZ

(i,5)eS m=k+1

max Ws, > b} .
SC[[N]I:|S|=s

1/7\1(8) l]a (8)

IS\(ISlfl )t —k

and uses U( 7).

k.t.p1
refer to as TES 2!

when forming the detection statistic, which we

TEsﬁgzinf t:

2

However, for this approach, there is no recursive formula for
calculating the statistic, due to a nonlinearity resulting from sub-
stituting p; for p1.

max max
t—my <k<t—-mg SC[[N]] S\—s

B. Mixture method

Note that the testing statistic of the ES method in (6) searches
over all 2° possible communities. The Mixture method avoids
the exponential complexity of the ES method by introducing
a simple probabilistic mixture model, which exploits the fact
that typically the size of the community is small, i.e. |S*|/N
< 1. It is motivated by the mixture method developed for de-
tecting a changepoint using multiple sensors [15] and detecting
aligned changepoints in multiple DNA sequences [16]. Assume
two nodes (4, j) are both in the community with probability «,
which is indicated by a set of i.i.d. Bernoulli random variables
Qij

1 W. p. &

Qij = Vi, 5 € 8*. (10)
0 otherwise
Here o can be interpreted as a guess for |S*|/N. Let
h(z) £ log{l — a + aexp(z)}. (11)

Then after the changepoint, if nodes # and j both belong to the
community, the likelihood ratio is given by exponential of (5);
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(a) (b)

Fig. 1. (a): a community where all nodes in the community are connected with
a higher probability than under the null hypothesis. (b): a model which would
output the same mixture statistic that does not correspond to a community.

otherwise the likelihood ratio is 1. Hence, the likelihood ratio
for the mixture model is given by

Z 10g {IEQij [(1 - Qz])
1<i<j<N
t [Xm]ij 1-[Xm];,
P (1—p1) 7
+ Qi H Xl
m—k—+1 pg mli (1- Po)lf[Xm]“
= > MU

1<i<j<N

é("i = k‘plvs) =

12
Again, similarly, for the unknown p; we can either rep‘acg

it with a fixed nominal value §, or with a maximum likelihood
estimate. Forming the exact maximum likelihood estimate for
p1 in the mixture model is hard. One possible estimate would
be p1 = maxgc(nis|=s P1(S), which, however, requires
searching over all possible sets. Therefore, hereafter we only
consider the first approach

Taix = Inf S 2 max Z h(U]S Jg) >by,

t—mi1<k<t—mg L
1<i<j<N
(13)
where b is the threshold. Here h{x) can be viewed as a soft-
thresholding function [15] that selects the edges which are more

likely to be between community members.

C. Hierarchical Mixture method (H-Mix)

One problem with the Mixture method is that its statistic
can be gathered from edges that do not form a community.
Fig. 1 below displays two scenarios where the mixture statistics
will be identical, but Fig. 1(b) does not correspond to a network
forming a community. To solve this problem, we introduce the
hierarchical Mixture method (H-Mix) that takes advantage of
the low computational complexity of the Mixture method while
enforcing the statistics to be calculated only over meaningful
communities. The H-Mix method requires setting a targeted size
of the community s that may be a guess for |S*|.

The H-Mix method enforces the community structure by con-
structing a dendrogram decomposition of the network, which is
a hierarchical partitioning of the graphical network [17]. The hi-
erarchical structure provided by dendrogram enables us to sys-
tematically remove nodes from being considered for the com-
munity. Suppose a network has a community of size s. Starting
from the root level with all nodes belonging to the community,
each of the nodes in the dendrogram tree decomposition is a sub-
graph of the entire network that contains all but one node. Then
the mixture statistic from (13) is evaluated for each subgraph:
using h(z) defined in (11), for a given set of nodes &y, nominal
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value p; = 4, and a hypothesized changepoint location k, the
mixture statistic is calculated as

M(S)= Y h(US).

(4,5)€80

(14)

We iteratively select the subgraph with the highest mixture
statistic value, since it indicates that the associated node re-
moved is most likely to be a non-member of the community
and will be eliminated from subsequent steps. The algorithm
repeats until there are only s nodes remaining in the subgraph.
Denote the mixture statistic for the selected subgraph as P.
Then { Py }: _, is a series of test statistics at each hypothesized
changepoint location k. Finally, the H-Mix method is given by

max
t—mi1<k<t—mo

THfMix = inf {t Pk 2 b}, (15)
where b is the threshold. The idea for a dendrogram decomposi-
tion is similar to the edge removal method [18]. An illustration
for the procedure described above and Algorithm 1 summarizes
the H-Mix method can be found in [19].

Algorithm 1 Hierarchical Mixture Method

1:  Input: { X, }t,_;, X, € RVXY

2: Output: {P},_; € R’, a set of statistics for each
hypothesized changepoint location k.
fork =1 — tdo
S = [[N]]
while |S| > s do
i* = argmax;cs M (S\{i})
§ = S\{i"}
end while
P, = M(S)
10:  end for

LR W

The complexity for the algorithms are summarized as fol-
lows (derivations can be found in [19]): (1) when s < N/2,
the complexity of the ES algorithm is O(N*®), of the Mixture
method is O(N?), of the H-Mix method is O(N*); and (2) when
s is on the order of N/2, the complexity of the ES algorithm
is 0(2°/2), of the Mixture method is O(N?), of the H-Mix
method is @(N*). Note that the mixture and the H-Mix both
have much lower complexity than the ES method.

III. THEORETICAL ANALYSIS FOR THE MIXTURE METHOD

In this section, we present a theoretical approximation for the
ARL of the Mixture method with a nominal value p; = § using
techniques outlined as follows. In [16] a general expression for
the tail probability of scan statistics is given, which can be used
to derive the ARL of a related changepoint detection procedure.
For example, in [15] a generalized form for ARL was found
using the expression in [16]. The basic idea is to relate the proba-
bility of stopping a changepoint detection procedure when there
is no change, P> {T" < m}, to the tail probability of the maxima
of a random field: P*={S > b}, where .S is the statistic used
for the changepoint detection procedure, b is the threshold, and
P> denotes the probability measure when there is no change.
Hence, if we can write P> {S > b} &~ mA for some A, by re-
lying on the assumption that the stopping time is asymptotically
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exponentially distributed when b — oc, we can find the ARL is
1/A. However, the analysis for the Mixture method here differs
from that in [15] in two major aspects: (1) the detection statis-
tics here involve a binomial random variable, and we will use a
normal random variable to approximate its distribution; (2) the
change-of-variable parameter # depends on ¢ — k and, hence, the
expression for ARL will be more complicated than that in [15].

Theorem 1: When b — oo, an upper approximation to the
ARL E®°[T},ix] of the Mixture method with known p; is given
by:

—1
V2N/mo y® (y1/7(8y))
ARLUA = |:fx/Wmlo Tﬂy)ydy N (16)

and a lower approximation to the ARL is given by:

ARLL« [i zwﬂ(gzvﬁ(—er)/#)] o

72H(N, 0,)

T=mMq

where

co =log (p1/pa), c1 = log[(1 —p1)/(1 — po)l,

£ h(g,(x)), for h(z)defined in(11),

(2)
hT(x)
- (8) = log E{e’" )},
) oOh+(Z)
VT(H) _ IE{TILET{(EZGZT(Z)} },
, E{h2(2)e?h (D} (E{h.(Z)e"(D)})*
wr(0) = E{e'}  (E{etn- @)

1(0) = S0°E {[h(2))? exp {00-(2) - (0)),

8,is solution tot) (6,) = b/N,
72 ((%)\/ﬁ

and f and f denote the first and second order derivatives of
a function f, Z is a normal random variable with zero mean
and unit variance, the expectation is with respect to Z, and the
special function v(z) is given by [15]

o) o LNR(/2) ~1/2]
(2/2)2(/2) + 3(x/2)

Here 8. is the solution to
¢ (6;) =b/N.

Proof for this theorem can be found in [19]. We verify the theo-
retical upper and lower approximations for ARL of the Mixture
method versus the simulated values, and consider a case with
po = 0.3, p1 = 0.8, and N = 6. The comparison results are
shown in Fig. 2. These comparisons show that the lower ap-
proximation is an especially good approximation to the simu-
lated ARL and, hence, it can be used to efficiently determine a
threshold corresponding a desired ARL (which is typically set
to a large number around 5000 or 10000), as shown in Table I.

H(N,8,) = eN[6¥(0-) —(8-)]

IV. NUMERICAL EXAMPLES

In this section, we compare the performance of our three
methods via numerical simulations. We first use simulations to
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Fig. 2. Comparison of the theoretical upper and lower approximations with the
simulated ARL for a case with N = 6, pg = 0.3, and p; = 0.8.

TABLE 1
THEORETICAL VS. SIMULATED THRESHOLDS FOR po = 0.3, p1 = 0.8, AND N
= 6. THE THRESHOLD b CALCULATED USING THEORY IS VERY CLOSE TO
THE CORRESPONDING THRESHOLD OBTAINED USING SIMULATION

ARL | Theory b | Simulated ARL | Simulated b

5000 7.37 5049 7.04

10000 8.05 10210 7.64
TABLE II

COMPARISON OF DETECTION DELAYS FOR VARIOUS CASES WHEN N = 6.
THE NUMBERS INSIDE THE BRACKETS ARE THE THRESHOLD b SUCH THAT

ARL = 5000

Tes,1 Tviix T e | Dhix 0=

S=p |I=pm HoMix ]~ 0.1
N =6,s = 3,38 4.3 3.8 6.0
Po=02p =09 | 996 | (671) | (995 | (6.71)
N =6,s = 3,95 12.8 10.8 233
po=03,p1 =07 | (10.17) | 677) | (10.18) | (6.77)
N =6,s = 4,150 6.7 6.4 11.0
po=0.3,p1 =0.7 | (8.48) (6.88) (10.17) | (6.88)
N = 50, s = 10, 27.5
po=0.3,p1 =0.7 (-7.44)
N = 50, s = 20, 1.1
po=0.3,p =0.7 (-7.41)

determine the threshold & for each method, so these methods all
have the same average run length (ARL) which is equal to 5000,
and then estimate the detection delays using these &’s under dif-
ferent scenarios. The results are shown in Table II, including the
detection delay and the thresholds (shown in brackets). The «
= 0.3 was set for all mixture model statistics and communities
were formed. Note that the low-complexity mixture and H-Mix
methods can both detect the community quickly. The detection
delays in the first row are smaller than those in the the second
row, as the first row represents an easier case to detect. Similar
explanation can be applied to the second and third row. Also
note that when § does not equal the true py, the Mixture method
can still be applied but the detection delay will be longer. For
larger N, we only show the Mixture method as it has the lowest
complexity.

V. DISCUSSIONS

As we use simple stylized Erd6és-Renyi models for the
networks, this framework works for the communities with
noticeable change of the frequency of members. Other kinds
of communities with different characteristics such as friends,
colleagues, special groups, etc. cannot be detected using this
framework.
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