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Abstract—We consider multi-input multi-output (MIMO)
transmit beamforming under the uniform elemental power
constraint. This is a nonconvex optimization problem, and it is
usually difficult to find the optimal transmit beamformer. First,
we show that for the multi-input single-output (MISO) case, the
optimal solution has a closed-form expression. Then we propose
a cyclic algorithm for the MIMO case which uses the closed-form
MISO optimal solution iteratively. The cyclic algorithm has a low
computational complexity and is locally convergent under mild
conditions. Moreover, we consider finite-rate feedback methods
needed for transmit beamforming. We propose a simple scalar
quantization method, as well as a novel vector quantization
method. For the latter method, the codebook is constructed under
the uniform elemental power constraint and the method is referred
as VQ-UEP. We analyze VQ-UEP performance for the MISO case.
Specifically, we obtain an approximate expression for the average
degradation of the receive signal-to-noise ratio (SNR) caused by
VQ-UEP. Numerical examples are provided to demonstrate the
effectiveness of our proposed transmit beamformer designs and
the finite-rate feedback techniques.

Index Terms—Finite-rate feedback, multi-input multi-output
(MIMO), multi-input single-output (MISO), quantization, trans-
mit beamforming, uniform elemental power constraint.

I. INTRODUCTION

EXPLOITING multi-input multi-output (MIMO) spatial
diversity is a spectrally efficient way to combat channel

fading in wireless communications. Although the theory and
practice of receive diversity are well understood, transmit diver-
sity has been attracting much attention only recently. Generally,
the transmit diversity systems belong to two groups. In the
first group, the channel state information (CSI) is available at
the receiver, but not at the transmitter. Orthogonal space-time
block codes (OSTBC) [1], [2] have been introduced to achieve
the maximum possible spatial diversity order. In the second
group, the CSI is exploited at both the transmitter and the
receiver via MIMO transmit beamforming, which has recently
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attracted the attention of the researchers and practitioners alike,
due to its much better performance compared to OSTBC [3],
[4]. Compared to OSTBC, MIMO transmit beamforming can
achieve the same spatial diversity order, full data rate, as well as
additional array gains. However, implementing MIMO transmit
beamforming schemes in a practical communication system
requires additional considerations.

First, optimal transmit beamformers obtained by the conven-
tional, i.e., the maximum ratio transmission (MRT) approach
may require different elemental power allocations on the var-
ious transmit antennas, which is undesirable from the antenna
amplifier design perspective. Especially in an orthogonal fre-
quency division multiplexing (OFDM) system, this power im-
balance can result in high peak-to-average power ratio (PAPR),
and hencewise reduce the amplifier efficiency significantly [5].
These practical problems have been considered in [6]–[8] for
new transmit beamfomer designs, and have also been addressed
for transmitter designs in a downlink multiuser system [9].

Second, we need to consider how to acquire the CSI at the
transmitter. Recent focus has been on the finite-rate feedback
techniques for the current conventional transmit beamforming
[10]–[15]. These techniques attempt to efficiently feed back
the transmit beamformer (or the CSI) from the receiver to the
transmitter via a finite-rate feedback channel, which is assumed
to be delay and error free, but bandwidth-limited. The problem
is formulated as a vector quantization (VQ) problem [16],
[17] and the goal is to design a common codebook, which
is maintained at both the transmitter and the receiver. For
frequency-flat independently and identically distributed (i.i.d.)
Raleigh fading channels, various codebook design criteria
can be used and the theoretical performance (e.g., outage
probability [12], operational rate-distortion [14], capacity loss
[15]) can be analyzed for the multi-input single-output (MISO)
case. The feedback schemes can be readily extended to the
frequency-selective fading channel case via OFDM. The rela-
tionship among the OFDM subcarriers can also be exploited to
reduce the overhead of feedback by vector interpolation [18].

We address the aforementioned problems as follows. First,
we consider MIMO transmit beamformer design under the uni-
form elemental power constraint. This is a nonconvex optimiza-
tion problem, which is usually difficult to solve, and no globally
optimal solution is guaranteed [6]. Generally, we can relax the
original problem to a convex optimization problem via semidef-
inite relaxation (SDR). The relaxed problem can be solved via
public domain software [19]. We can then obtain a solution to
the original nonconvex optimization problem from the solution
to the relaxed one by, for example, a heuristic method [20] (re-
ferred to as the heuristic SDR solution). Interestingly, we find
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out that in the multi-input single-output (MISO) case, the op-
timal solution has a closed-form expression and is referred to
as the closed-form MISO transmit beamformer. (Similar results
have appeared in [6]–[8] for equal gain transmission (EGT).)
We then propose a cyclic algorithm for the MIMO case which
uses the closed-form MISO optimal solution iteratively and the
solution is referred to as the cyclic MIMO transmit beamformer.
The cyclic algorithm has a low computational complexity and
is shown via numerical examples to converge quickly from a
good initial point. The numerical examples also show that the
proposed transmit beamforming approach outperforms the con-
ventional one with peak power clipping. Meanwhile, the cyclic
solution has a comparable performance to the heuristic SDR
based design and outperforms the latter when the rank of the
channel matrix increases.

Second, we consider finite-rate feedback schemes for the
proposed transmit beamformer designs. A simple scalar quan-
tization (SQ) method is proposed; by taking advantage of the
property of the uniform elemental power constraint, the number
of parameters to be quantized can be reduced to less than one
half of their conventional counterpart. VQ methods are also dis-
cussed. Although the existing codebooks [10]–[12], [14], [15]
can be used with some modifications by the MISO closed-form
solution, the performance may not be optimal since they do
not take into account the uniform elemental power constraint
in the codebook construction. We propose in this paper a VQ
method for transmit beamformer designs whose codebook is
constructed under the Uniform Elemental Power constraint
(referred to as VQ-UEP). The generalized Lloyd algorithm
[16] is adopted to construct the codebook. When the number
of feedback bits is small, VQ-UEP performs similarly to the
conventional VQ (CVQ) method without uniform elemental
power constraint. For the MISO case, we further quantify
the performance of VQ-UEP by obtaining an approximate
closed-form expression for the average degradation of the
receive signal-to-noise ratio (SNR). It is shown that this ap-
proximate expression is quite tight and that we can use it as a
guideline to determine the number of feedback bits needed in
practice, for a desired average degradation of the receive SNR.

The remainder of this paper is organized as follows. Section II
describes the conventional MIMO transmit beamforming and
its limitations. Section III presents our closed-form MISO and
cyclic MIMO transmit beamformer designs under the uniform
elemental power constraint. In Section IV, we consider the
finite-rate feedback schemes, where a simple SQ method and
VQ-UEP are proposed. In Section V, we focus on the MISO
case and quantify the average degradation of the receive SNR
caused by VQ-UEP by obtaining an approximate closed-form
expression. Numerical examples are given in Section VI to
demonstrate the effectiveness of our designs. We conclude
the paper in Section VII. The following notations are adopted
throughout this paper.

Notation: Bold upper and lower case letters denote matrices
and vectors, respectively. We use to denote the transpose
and to denote the conjugate transpose. stands for the ab-
solute value of a scalar and denotes the two-norm of a vector.

is the complex set; and are the complex- and
real-valued matrices, respectively. is the trace of a

matrix. is the expectation, is the ensemble average
and denotes the variance. is the vector formed by the
phase angles of and denotes the floor operation.

II. MIMO TRANSMIT BEAMFORMING

Consider an MIMO communication system
with transmit and receive antennas in a quasi-static
frequency flat fading channel. At the transmitter, the com-
plex data symbol is modulated by the beamformer

, and then transmitted into
a MIMO channel. At the receiver, after processing with the
combining vector , the
sampled combined baseband signal is given by

(1)

where is the channel matrix with its th
element denoting the fading coefficient between the th
transmit and th receive antennas, and is the
noise vector with its entries being independent and identically
distributed (i.i.d.) complex Gaussian random variables with
zero-mean and variance . Note that in the presence of inter-
ference, i.e., when is colored with a known covariance matrix

, we can use pre-whitening at the receiver to get

(2)

Hence (2) is equivalent to (1) except that in (1) is now re-
placed by and the whitened noise has unit variance.
Without loss of generality, we focus on (1) hereafter.

The transmit beamformer and the receive combining
vector in (1) are usually chosen to maximize the receive
SNR. Without loss of generality, we assume that

, and . Then the receive SNR is
expressed as

(3)

To maximize the receive SNR, the optimal transmit beamformer
is chosen as the eigenvector corresponding to the largest eigen-
value of [14] (referred to as MRT in [6]), which is also the
right singular vector of corresponding to its dominant sin-
gular value. The optimal combining vector is given by

, which can be shown to be the left singular
vector of corresponding to its dominant singular value (re-
ferred to as maximum ratio combining (MRC) in [6]). Thus, the
maximized receive SNR is , where

denotes the maximum eigenvalue of a matrix. The co-
variance matrix of the transmitted signal is

(4)

The average transmitted power for each antenna is

(5)

where denotes the th diagonal element of . (Note that
if the constellation of is phase shift keying (PSK), rep-
resents the instantaneous power.) The average power may
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Fig. 1. Transmit power distribution across the index of the transmit antennas
for a (4,1) system.

vary widely across the transmit antennas, as illustrated in Fig. 1,
which shows a typical example of transmit power distribution
across the antennas. The wide power variation poses a severe
constraint on power amplifier designs. In practice, each antenna
usually uses the same power amplifier, i.e., each antenna has the
same power dynamic range and peak power, which means that
the conventional MIMO transmit beamforming can suffer from
severe performance degradations since it makes the power clip-
ping of the transmitted signals inevitable.

III. TRANSMIT BEAMFORMER DESIGNS UNDER UNIFORM

ELEMENTAL POWER CONSTRAINT

We consider below both MIMO and its degenerate MISO
transmit beamformer designs under the uniform elemental
power constraint.

A. Problem Formulation and SDR

Given MRC at the receiver, maximizing the receive SNR in
(3) under the uniform elemental power constraint is equivalent
to:

(6)

This is a nonconvex optimization problem, which is usually dif-
ficult to solve, and no globally optimal solution is guaranteed
[20], [21], [6]. The problem in (6) can be reformulated as

(7)

where , and the inequality
means that the matrix is positive semidefinite. Note

that in (7), the objective function is linear in , the constraints
on the diagonal elements of are also linear in , and the
positive semidefinite constraint on is convex. However, the
rank-one constraint on is nonconvex. The problem in (7) can
be relaxed to a convex optimization problem via SDR, which

amounts to omitting the rank-one constraint yielding the fol-
lowing semidefinite program (SDP) [22]:

(8)

The dual form of (8) is given by [20]

(9)

where with denoting an
-dimensional all one column vector, and is a diag-

onal matrix with on its diagonal. The problem in (9) is also a
SDP. Both (8) and (9) can be solved by using a public domain
SDP solver [19]. The worst case complexity of solving (9) is

[23]. We can obtain the optimal solution to (9), whose
dual is also the optimal solution to (8).

Assume that the optimal solution to (8) is . Then
for any under the uniform ele-

mental power constraint. If the rank of is one, then we
obtain the optimal solution to (6) as the eigenvector corre-
sponding to the nonzero eigenvalue of . If the rank of
is greater than one, we can obtain a suboptimal solution from

via a rank reduction method. For example, the heuristic
method in [20] chooses as the eigenvector corresponding to
the dorminant eigenvalue of . The Newton-like algorithm
presented in [24] uses the SDR solution as an initial solution
and then uses the tangent-and-lift procedure to iteratively find
the solution satisfying the rank-one constraint. However, the
approximate heuristic method is preferred, as shown in our
later discussion, due to its simplicity.

Interestingly, we show below that the optimal solution to (6)
has a closed-form expression for the MISO case. Moreover,
we propose a cyclic algorithm for the MIMO case which uses
the closed-form MISO optimal solution iteratively. The cyclic
method has a low complexity and numerical examples in Sec-
tion VI show that it converges quickly given a good initial point.
Furthermore, we also show in Section VI that the performance
of the cyclic algorithm is comparable to that of the Heuristic
SDR solution and in fact better when the rank of the channel
matrix is large. Hence, the former is preferred over the latter in
practice.

B. MISO Optimal Transmit Beamformer

Let be the row channel vector for the MISO case.
We consider the maximization problem in (6)\

(10)

where the equality holds when
, with denoting the unit-norm column

vector having the angles of , and . Note that the
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optimal solution is not unique due to the angle ambiguity; yet
we may take as the optimal solution to (6) for simplicity.
(This result can also be found in [6]–[8] for EGT.)

C. The Cyclic Algorithm for MIMO Transmit Beamformer
Design

The original maximization problem for (6) is

(11)

Inspired by the cyclic method (see, e.g., [25]), we solve the
problem in (11) in a cyclic way for the MIMO case. The cyclic
algorithm is summarized as follows.

1) Step 0: Set to an initial value (e.g., the left singular
vector of corresponding to its largest singular value).

2) Step 1: Obtain the beamformer that maximizes (11) for
fixed at its most recent value. By taking as the

“effective MISO channel,” this problem is equivalent to (6)
for the MISO case. The problem is solved in (10) and the
optimal solution is:

(12)

3) Step 2: Determine the combining vector that maxi-
mizes (11) for fixed at its most recent value. The op-
timal is the MRC and has the form:

(13)

Iterate Steps 1 and 2 until a given stop criterion is satisfied.
An important advantage of the above algorithm is that both
Steps 1 and 2 have simple closed-form optimal solutions. Also
the cyclic algorithm is convergent under mild conditions [25].

We remark here that the cyclic algorithm is flexible and
we can add more constraints on or . A useful one
is the uniform elemental power constraint on the receive
antennas (or equal gain combining (EGC) [11], [6]), i.e.,

. Then we only have to
modify (13) as in Step 2 of each iter-
ation. Given a good initial value (e.g., the one as given in Step
0), the cyclic algorithm usually converges in a few iterations in
our numerical examples, and the computational complexity of
each iteration is very low, involving just (12) and (13).

IV. FINITE-RATE FEEDBACK FOR TRANSMIT

BEAMFORMING DESIGNS

In the aforementioned transmit beamformer designs, we have
assumed that the transmitter has perfect knowledge on the CSI.
However, in many real systems, having the CSI known exactly
at the transmitter is hardly possible. The channel information is
usually provided by the receiver through a bandwidth-limited fi-
nite-rate feedback channel, and SQ or VQ methods, which have
been widely studied for source coding [16], [17], can be used to
provide the feedback information. To focus on our problem, we
assume herein that the receiver has perfect CSI, as usually done
in the literatures [10]–[12], [14], [15].

A. Scalar Quantization

Note that the transmit beamformer under the uniform el-
emental power constraint can be expressed as

... (14)

where the transmit beamformer is a function
of parameters . Via simple manipula-
tions, we obtain

...

(15)

where . Since
, we can

reduce one parameter and quantize instead
of .

Denote

...
(16)

where
, with and denoting the number of

quantization levels and feedback index of , respectively, and
where is the number of feedback bits for . After obtaining
the transmit beamformer from (10) or the cyclic algorithm in
Section III.C, we quantize the parameters to the “closest”
(via round off) grid points . Hence for
this scalar quantization scheme, we need to send the index set

from the receiver to the transmitter, which
requires bits. The receive combing vector is

.
The choice of is known as a counting problem [26],

which has com-
binations. The optimal set is the one that maximizes

. However, this exhaustive search is
too complicated for practical applications. One simple subop-
timal approach is to make approximately equal. Specifically,
let and

. Then we can let bits for the first
parameters and bits for the remaining

parameters .
We remark here that for the conventional MIMO transmit

beamformer without uniform elemental power constraint, the
SQ requires about twice as many parameters. In this case, the
transmit beamformer is expressed as

...

(17)
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where is the th amplitude and
is the th phase of the transmit beamformer vector, respectively,
and hence there are totally parameters.

B. Ad-Hoc Vector Quantization

Vector quantization can be adopted to further reduce the
feedback overhead. In this case, both the transmitter and the
receiver have to maintain a common codebook with a finite
number of codewords. The codebook can be constructed based
on several criteria. One approach is to directly apply the ex-
isting codebooks (e.g., [10]–[12], [14], [15]) constructed for
the conventional transmit beamformer designs obtained without
the uniform elemental power constraint. Among them, the cri-
teria (e.g., [10], [14], [15]) that can be implemented by the
generalized Lloyd algorithm can always lead to a monotoni-
cally convergent codebook. The generalized Lloyd algorithm
is based on two conditions: the nearest neighborhood condition
(NNC) and the centroid condition (CC) [16], [14], [15]. NNC
is to find the optimal partition region for a fixed codeword,
while CC updates the optimal codeword for a fixed partition
region. The monotonically convergent property is guaranteed
due to obtaining an optimal solution for each condition. Max-
imizing the average receive SNR is a widely used criterion to
design the codebook [10], [12], [14] and will also be adopted
here for codebook construction. Some modifications are still
needed as below when the uniform elemental power constraint
is imposed.

Let a codebook constructed for the conventional transmit
beamforming be , where
is the number of codewords in the codebook , and is the
number of feedback bits. The receiver first chooses the optimal
codeword in the codebook as:

(18)

where the operator returns a global maximizer. Then
we need to feed back the index of from the receiver to the
transmitter, which requires bits. The transmit beamformer
satisfying the uniform elemental power constraint is obtained
as:

(19)

and the receive combining vector is .
However, the codebook may not be optimal for our proposed
transmit beamformer designs, since it is ad-hocly constructed
without the uniform elemental power constraint (referred to as
the ad-hoc vector quantization (AVQ) method).

C. Vector Quantization Under Uniform Elemental Power
Constraint

Like AVQ, herein we also maximize the average receive SNR,
while the codebook is constructed under the uniform elemental
power constraint (referred to as “VQ-UEP”). For a given code-

book , the receiver first chooses the
optimal transmit beamformer as:

(20)

and the corresponding vector quantizer is denoted as
. Then we need to feedback the index of from the re-

ceiver to the transmitter with bits, and the receive
combining vector is .

Now the design problem becomes finding the codebook,
which can be constructed off-line as follows. First, we generate
a training set from a sufficiently large
number of channel realizations. Next, starting from an initial
codebook (e.g., a codebook obtained from the conventional
transmit beamformer designs or one obtained via the splitting
method [16]), we iteratively update the codebook according
to the following two criteria until no further improvement is
observed.

1) NNC: for given codewords , assign a training ele-
ment to the th region

(21)

where is the partition set for the th
codeword .

2) CC: for a given partition , the updated optimum code-
words satisfy

(22)

for . Let and
be Hermitian square root of . A simple reformu-

lation results in

(23)

This problem is identical to (6) ( is replaced by )
and can be efficiently solved by the cyclic algorithm pro-
posed in Section III.C.

V. AVERAGE DEGRADATION OF THE RECEIVE SNR

For frequency flat i.i.d. MISO Rayleigh fading channels,
various analysis approaches have been proposed to quantify
the vector quantization effect (outage probability [12], op-
erational rate-distortion [14], capacity loss [15], etc.). These
analyses provide theoretical insights into the vector quanti-
zation methods and can serve as a guideline for determining
the optimum number of feedback bits needed for the conven-
tional transmit beamforming. We quantify below the effect of
VQ-UEP with finite-bit feedback on our closed-form MISO
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transmit beamformer design. Let . Without
loss of generality, we assume . The average
degradation of the receive SNR is defined as:

(24)

where is the parti-
tion set (or Voronoi cell) for the th codeword

is the probability
that a channel realization belongs to the partition , and
the last equality is due to the independence between and
the normalized vector [14], [26]. Obviously, we have

.

A. Maximum Average Receive SNR

Using in (10), we get:

(25)

where the last equality is due to the i.i.d. property of .
The in (25) has the probability density function (pdf) as
follows [27]:

(26)

The mean and variance of are, respectively

(27)

(28)

Combining (27) and (28) into (25), we get

(29)

B. Approximate Value of

Note that the vector is considered as uniformly distributed
on the unit hypersphere [10], [12], [14], [15]. For a fixed

codeword , the random variable has a
beta distribution [15], with the pdf:

(30)

Now we consider the conditional density . Gen-
erally, each Voronoi cell [10], [12], [15], [16] obtained from
the generalized Lloyd algorithm has a very complicated shape
and it is difficult to obtain an exact closed-form expression for

. We adopt herein the approximate method used in
[12], [15] to analyze the problem at our hand.

When is reasonably large, we can approximate the proba-
bility as . The Voronoi
cells can be considered as identical to each other. We then ap-
proximate each Voronoi cell as a spherical segment on the
surface of a unit hypersphere:

(31)

where
is the maximum average value of

achieved by perfect feedback in our MISO transmit
beamformer design, and the parameter is the minimum
value of in each Voronoi cell. We need to solve the
following equation related to to obtain :

(32)

Using the pdf in (30), we get

(33)

Thus, for the Voronoi cell , we approximate the conditional
pdf of as

(34)

where

otherwise
(35)

is the indication function.
From the conditional pdf in (34), we obtain

(36)
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C. Quantifying the Average Degradation of the Receive SNR

Now we quantify the average degradation of the receive SNR
in (24) using the approximate conditional pdf .
From (36), we observe that the average receive SNR is

(37)

Combining (29) and (37) into (25), we obtain the following
proposition.

Proposition 5.1: For i.i.d. MISO Raleigh fading channels,
the average degradation of the receive SNR, for an -antenna
transmit beamforming system with an -size VQ-UEP
codebook, can be approximated as

(38)

The average degradation of the receive SNR in (38) can be
proven to be monotonically decreasing with respect to nonnega-
tive real number (see Appendix). Given a degradation amount

, this proposition provides a guideline to determine the nec-
essary number of feedback bits. That is, we can always find
the optimum integer number of feedback bits (via, e.g., the
Newton’s method) with the average degradation of the
receive SNR being less than or equal to . Similarly, the av-
erage receive SNR in (37) can be shown to be monotonically
increasing with respect to , and we can determine the needed
number of feedback bits with the average receive SNR being
less or equal to a desired .

Although our analysis shares some similar features to those in
[7] and [8], our results are more accurate (see Section VI). In [7]
and [8], the authors found the pdf of
via making more approximations. Under high-resolution ap-
proximations, the average degradation of the receive SNR given
in [7], [8] has the form:

(39)

Both (38) and (39) are compared with numerically deter-
mined average receive SNR loss at the end of the next section
and (38) is shown to be more accurate than (39).

VI. NUMERICAL EXAMPLES

We present below several numerical examples to demonstrate
the performance of the proposed MISO and MIMO transmit

Fig. 2. Performance comparison of various transmit beamformer designs with
perfect CSI at the transmitter. (a) (4,1) MISO case. (b) (4,2) MIMO case. Note
that the (4,2) UEP TxBm and (4,2) Heuristic SDR curves almost coincide with
each other in (b).

beamformer designs under the uniform elemental power con-
straint. We assume a frequency flat Rayleigh channel model
with . In the
simulations, we use QPSK for the transmitted symbols.

First, we consider the bit-error-rate (BER) performance of
our proposed MISO and MIMO transmit beamformer with per-
fect CSI available at the transmitter. For comparison purposes,
we also implement several other designs. The “Con TxBm” de-
notes the conventional transmit beamforming design without
the uniform elemental power constraint. The “TxBm with Clip-
ping” stands for the conventional design with peak power clip-
ping, which means that for every transmit antenna, if

will be clipped by
. The “Heuristic SDR” refers to the Heuristic SDR

solution described in Section III.A. We denote “UEP TxBm”
as the closed-form MISO and the cyclic MIMO transmit beam-
former designs under uniform elemental power constraint.

Fig. 2 shows the bit-error-rate (BER) performance compar-
ison of various transmit beamforming designs for both the (4,1)
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Fig. 3. Performance comparison of various transmit beamformer designs for
the (8,8) MIMO case.

MISO and (4,2) MIMO systems. The “Con TxBm” achieves
the best performance since it is not under the uniform ele-
mental power constraint. Under the uniform elemental power
constraint, the “UEP TxBm” schemes have much better perfor-
mance than the “TxBm with Clipping.” At , for
example, the improvement is about 1.5 dB for the (4,2) MIMO
system. In the MIMO system, we note that our “UEP TxBm”
achieves almost the same performance as the “Heuristic SDR.”
Interestingly, if we increase both the transmit and receive
antennas to 8, as shown in Fig. 3, our “UEP TxBm” outper-
forms the “Heuristic SDR.” The performance degradation of
“Heuristic SDR” is caused by reducing the high rank optimal
solution to (8) to a rank-one solution heuristically. We note here
that our “UEP TxBm” is also much simpler than the “Heuristic
SDR” (see the discussions in Section III).

We examine next the effects of the two quantization methods
(SQ and VQ) on the overall system performance. We use
herein the suboptimal combination of described in
Section IV-A for SQ due to its simplicity (although the optimal
one can provide a better performance). We show in Figs. 4–7
the BER performance of various quantization schemes for our
proposed and conventional transmit beamformer designs, with
various numbers of feedback bits . We note
that VQ-UEP outperforms the AVQ for all cases. When the
number of feedback bits is small (e.g., ), VQ-UEP can
provide a similar performance as that of CVQ, even though the
latter is not under the uniform elemental power constraint! The
VQ-UEP performance approaches that of the perfect channel
feedback for “UEP TxBm” when the number of feedback bits
becomes larger (e.g., ). However, CVQ needs more bits
to approach the performance of its perfect channel feedback
counterpart. By using relatively large numbers of feedback bits
(e.g., ), we can reduce the gap between the suboptimal
SQ method and VQ-UEP, since we have already reduced the
number of parameters to be quantized for the scalar method
due to imposing the uniform elemental power constraint.

Fig. 4. Performance comparison of various transmit beamformer designs with
2-bit feedback. (a) (4,1) MISO case. (b) (4,2) MIMO case. Note that 2-bit CVQ
and 2-bit VQ-UEP curves basically coincide with each other for both (4,1) and
(4,2) systems, although the former is not under the uniform elemental power
constraint while the latter is.

Moreover, Fig. 8 shows the BER performance of various
(2,1) MISO systems. In this case, we know that the “Alamouti
Code” [1] has full rate and satisfies the uniform elemental
power constraint. Compared to the “Alamouti Code,” our
proposed transmit beamformer design can achieve more than 2
dB SNR improvement using only a 2-bit feedback, via either
the suboptimal SQ or VQ-UEP. Our proposed transmit beam-
former design with a 2-bit feedback also performs similarly to
its CVQ counterpart.

Finally, we examine the accuracy of the approximate degra-
dation of the receive SNR given in (38) for the
MISO case. We carry out Monte Carlo simulations for a
(4,1) system and plot the numerically simulated degradation
results in Fig. 9. The training sequence size is set to ,
and the channel variance is . We observe that the
approximate degradation given in (38) is very close to the nu-
merically simulated one for any feedback bit number (or rate)
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Fig. 5. Performance comparison of various transmit beamformer designs with
4-bit feedback. (a) (4,1) MISO case. (b) (4,2) MIMO case. Note that 4-bit CVQ
and 4-bit VQ-UEP curves basically coincide with each other for both (4,1) and
(4,2) systems, although the former is not under the uniform elemental power
constraint while the latter is.

. However, the high-resolution approximation given in (39)
has accurate prediction only at high feedback bit rates. Note
also that the SQ and VQ-UEP perform similarly when the
feedback bit number is relatively large, which means that our
approximate degradation expression of the receive SNR given
in (38), which is obtained for VQ-UEP, can also be used for
SQ for large .

VII. CONCLUSION

We have investigated MIMO transmit beamformer designs
under the uniform elemental power constraint. The original
problem is a difficult-to-solve nonconvex optimization problem,
which can be relaxed to an easy-to-solve convex optimization
problem via SDR. However, the rank reduction from an optimal
SDR solution to a rank-one transmit beamfomer may degrade
the system performance. We have shown that a closed-form

Fig. 6. Performance comparison of various transmit beamformer designs with
6-bit feedback. (a) (4,1) MISO case. (b) (4,2) MIMO case. Note that 6-bit CVQ
and UEP TxBm with perfect feedback curves almost coincide with each other
for both (4,1) and (4,2) systems.

expression for the optimal MISO transmit beamformer design
exists. Then we have proposed a cyclic algorithm for the MIMO
case which uses the closed-form MISO solution iteratively.
This cyclic algorithm has a very low computational complexity.
The numerical examples have been used to demonstrate that
our proposed transmit beamformer designs outperform the
conventional counterpart with peak power clipping. They can
have a better performance than the Heuristic SDR solution as
well.

Furthermore, we have considered finite-rate feedback tech-
niques for our proposed transmit beamformer designs. A scalar
quantization method has been proposed and shown to be
quite effective when the number of feedback bits is rela-
tively large [e.g., for a (4,1) or (4,2) system]. We
have also proposed a vector quantization approach referred
to as VQ-UEP. When the number of feedback bits is small,
VQ-UEP can provide the same performance as CVQ even
though the latter is not subject to the uniform elemental power
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Fig. 7. Performance comparison of various transmit beamformer designs with
8-bit feedback. (a) (4,1) MISO case. (b) (4,2) MIMO case. Note that 8-bit SQ,
8-bit VQ-UEP and UEP TxBm with perfect feedback curves almost coincide
with each other for both (4,1) and (4,2) systems.

constraint. Interestingly, for a (2,1) system, our finite-rate feed-
back schemes can achieve more than 2 dB in SNR improvement
compared to the “Alamouti Code” at the cost of requiring only
a 2-bit feedback.

Finally, we have studied the average degradation of the re-
ceive SNR caused by VQ-UEP for the MISO case and obtained
an approximate closed-form expression. This approximation
has been shown to be quite accurate, and can serve as an
accurate guideline to determine the number of feedback bits
needed in a practical system.

We remark in passing that MIMO transmit beamforming has
exhibited great potential for reliable wireless communications
and most likely will be adopted into the next-generation wire-
less local area network (WLAN) standards. Although our dis-
cussions here focus on the frequency flat Rayleigh fading chan-
nels, our MIMO transmit beamformer designs can be readily
extended to the frequency selective fading channels and used
in, for example, MIMO-OFDM based WLAN systems.

Fig. 8. Performance comparison of various (2,1) MISO systems. Note that
CVQ, SQ, VQ-UEP and UEP TxBm with perfect feedback curves almost co-
incide with each other, although SQ and VQ-UEP are subject to both the uni-
form elemental power and 2-bit feedback rate constraints, while UEP TxBm as-
sumes perfect feedback and CVQ is not subject to the uniform elemental power
constraint.

Fig. 9. Average degradation of the receive SNR for a (4,1) MISO system.

APPENDIX

We prove that the average degradation of the receive
SNR in (38) is a monotonically decreasing function of the non-
negative real number . We let . Then
the first derivative of with respect to is

(40)

where is a constant.
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(44)

Note that

(41)

Using the Taylor series expansion, we can expand
as

(42)

(43)

where

Since , we obtain
the inequalities as shown in (44) at the top of the page.

For the case, we have

(45)

For the case, we have

(46)

Summarizing the above inequalities, we get .
Thus, the average degradation of the receive SNR is
a monotonically decreasing function of the nonnegative real
number .
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