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Abstract—A multiple-input multiple-output (MIMQO) radar
system, unlike a standard phased-array radar, can choose freely
the probing signals transmitted via its antennas to maximize the
power around the locations of the targets of interest, or more
generally to approximate a given transmit beampattern, and also
to minimize the cross-correlation of the signals reflected back to
the radar by the targets of interest. In this paper, we show how the
above desirable features can be achieved by designing the covari-
ance matrix of the probing signal vector transmitted by the radar.
Moreover, in a numerical study, we show that the proper choice of
the probing signals can significantly improve the performance of
adaptive MIMO radar techniques. Additionally, we demonstrate
the advantages of several MIMO transmit beampattern designs,
including a beampattern matching design and a minimum sidelobe
beampattern design, over their phased-array counterparts.

Index Terms—Beampattern matching design, multiple-input
multiple-output (MIMO) radar, minimum sidelobe beampattern
design, probing signal design, transmit beampattern.

I. INTRODUCTION

HE multiple-input multiple-output (MIMO) radar is an
Temerging technology that is attracting the attention of
researchers and practitioners alike due to its improved ca-
pabilities compared with a standard phased-array radar; see,
e.g., [1]-[7]. In particular, as shown recently in [6], a MIMO
radar makes it possible to use adaptive localization and detec-
tion techniques, unlike a phased-array radar. In addition, the
probing signal vector transmitted by a MIMO radar system can
be designed to approximate a desired transmit beampattern and
also to minimize the cross-correlation of the signals bounced
from various targets of interest—an operation that, once again,
would be hardly possible for a phased-array radar.

The probing signal design problem for the narrow-band
MIMO radar has been addressed in, e.g., [3] and [5]. It is
also the main topic of this paper. Our approach to this design
problem is similar to the mathematical approach of [3] and is
different from the more pragmatical approach of [5]. Compared
with [3], our main contributions are the following: 1) we
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address the question of determining a desirable transmit beam-
pattern, and show how to obtain such a beampattern; 2) we
modify the beampattern matching criterion of [3] in several
ways; in particular, we include a new term in the said criterion
that involves the cross-correlation between the signals bounced
back to the radar from the targets of interest; and 3) we outline
an efficient Semi-Definite Quadratic Programming (SQP)
algorithm for solving the signal design problem in polynomial
time (the recent full version [8] of [3] also considers a convex
optimization algorithm for solving the design problem, yet one
that is less efficient than the SQP algorithm proposed herein). In
addition, we consider a minimum sidelobe beampattern design,
which is not considered in [3] or [8]. Finally, we demonstrate
the advantages of these MIMO transmit beampattern designs
over their phased-array counterparts. In the sections to follow,
we will discuss these contributions in detail.

II. PROBLEM FORMULATION

Consider a MIMO radar system with M transmit antennas
and let z,,(n) denote the discrete-time base-band signal trans-
mitted by the mth antenna. Also, let  denote the location pa-
rameter(s) of a generic target, for example, its azimuth angle
and its range. Then, under the assumption that the transmitted
probing signals are narrow-band and that the propagation is
nondispersive, the base-band signal at the target location can be
described by the expression (see, e.g., [9, Ch. 6 ])

M

Z e=2mfomm @)y (n) £ a*(0)x(n),

m=1

where fj is the carrier frequency of the radar, 7,,,(#) is the time

needed by the signal emitted via the mth transmit antenna to

arrive at the target, (-)* denotes the conjugate transpose, N de-

notes the number of samples of each transmitted signal pulse
T

za(n)] ()

x(n) = [z1(n)  @2(n)

and
a(@) — [ej27rf0-r1 )

ed2mfor2(0) 27 forar (9) ]T 3)

with ()" denoting the transpose. Assuming that the transmit
array of the radar is calibrated, a(6) is a known function of .

It follows from (1) that the power of the probing signal at a
generic focal point with location 6 is given by

P(#) = a*(§)Ra(d), 4
where R is the covariance matrix of x(n), i.e.,

R = E{x(n)x*(n)}. (3)
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The “spatial spectrum” in (4), as a function of #, will be called
the transmit beampattern (a more detailed derivation of, and
further discussions on, (1)—(5) above can be found in [3], [8]).

One of our problems consists of choosing R, under a uniform
elemental power constraint

Ry = ﬁ m=1,...,M; withcgiven (6
where R,,,, denotes the (m, m)th element of R, to achieve the
following goals.

(a) Maximize the total spatial power at a number of given
target locations, or more generally, match a desired
transmit beampattern.

(b) Minimize the cross-correlation between the probing sig-
nals at a number of given target locations; note from (1)
that the covariance between the probing signals at loca-
tions # and @ is given by a*(§)Ra(f).

According to (a) above, we would like to choose R such
that the available transmit power is used to maximize the
probing signal power at the locations of the targets of in-
terest and to minimize it anywhere else. This is a natural goal
that needs no additional comments. Regarding (b), we note
from [6] and its references that the statistical performance of
any adaptive MIMO radar technique depends heavily on the
cross-correlation (beam)pattern a*(8)Ra(f) (for § # f): the
said performance degrades rapidly as the cross-correlation
increases (to emphasize the importance of this fact, we note
that in the phased-array radar case, the probing signals at any
two (different) target locations are fully correlated/coherent
and, as a consequence, the standard adaptive techniques are
not applicable). We will illustrate the above fact numerically in
Section IV, where we apply the adaptive techniques of [6] to
the data collected by a simulated MIMO radar with identically
located transmit and receive antennas. Such data, under the
simplifying assumption of point targets, can be described by
the equation (see, e.g., [6] and [7])

K
y(n) =" Bra’(fi)a’ (9k)x(n) + €(n) (7)
k=1

where K is the number of targets that reflect the signals back
to the radar receiver, {0} are the complex amplitudes pro-
portional to the radar-cross sections (RCSs) of those targets,
{0y} are their location parameters, €(n) denotes the interfer-
ence-plus-noise term, and (-)¢ denotes the complex conjugate.

Another beampattern design problem we consider is to
choose R, under the uniform elemental power constraint in (6),
to achieve the following goals.

(a) Minimize the sidelobe level in a prescribed region.
(b) Achieve a predetermined 3-dB main-beam width.

In Section IV, we will show how to formulate mathematically
the goals in (a) and (b) or in (&) and (b) above, and how to solve
the so-obtained design problems for R.

Remark: The optimal designs presented in Section III, par-
ticularly those in Sections III-C and E, can be modified in a

straightforward manner to accommodate other transmit power
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constraints, for example, a nonuniform elemental power con-
straint or a total transmit power constraint, tr(R) = ¢, where
tr(-) denotes the matrix trace. However, the constraint in (6)
appears to be the most practically relevant one.

Another aspect of interest here concerns the use of equality
constraints, such as (6) above, as opposed to the use of the cor-
responding inequality constraints, such as R,,,, < ¢/M. For
some of the designs presented in Sections III and IV, such as
(10) with p = M and (12), it is easy to show that the in-
equality constraint leads to the same solution as the equality
constraint. On the other hand, for other designs, such as the
beampattern matching design in (19) with fixed «, the weaker
inequality constraint leads to a solution with a smaller matching
error than that obtained with the equality constraint counter-
part. However, the difference in the matching errors associated
with the two said solutions is minor in many cases. More im-
portant, the power at the target locations achieved using the in-
equality-constraint-based design is typically smaller than that
obtained using the equality-constraint-based design counterpart.
Such a behavior agrees with the practical intuition that the radar
should transmit at the maximum available power. For this reason
and to simplify the discussions that follow, in this paper we
focus on the equality constraint in (6); and leave a more detailed
analysis of the differences between the designs obtained using
equality and, respectively, inequality constraints for a possible
future study. O

Once R has been determined, a signal sequence {x(n)} that
has R as its covariance matrix can be synthesized in a number of
ways. Herein we simply set x(n) = RY?w(n), where {w(n)}
is a sequence of i.i.d. random vectors with mean zero and co-
variance matrix I, and R'/2 denotes a square root of R. How-
ever, we note that such a synthesizing procedure may not give
a signal that satisfies all practical requirements of a real-world
radar system (e.g., the above signal does not have a constant
modulus). The topic of synthesizing practical probing radar sig-
nals with a given covariance matrix is left for future research
(see [8] for some preliminary results on this aspect).

III. OPTIMAL DESIGNS

We consider four MIMO design problems in this section, that
rely on no or some prior information and which employ dif-
ferent criteria to formulate mathematically the goals (a) and (b)
or goals (a) and (b) in the previous section. The phased-array
counterparts of several of the MIMO designs will be discussed
as well.

To begin with, we assume that the radar has no prior informa-
tion about the scene of interest.

A. Maximum Power Design For Unknown Target Locations

Let us assume that there are K (K < K) targets of interest.
Without loss of generality, they are assumed to be at locations
{6} . Then the cumulated power of the probing signals at
the target locations is given by

> a*(6x)Ra(by) = tr(RB) (8)

k=1
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where

B = a(bh)a* (bx). )

k=1

In this subsection, we assume that the radar has no prior knowl-
edge on B. As a consequence, we can think of choosing R such
that it maximizes (8) in the worst-case scenario
maxmin tr(RB)
R B
&

bjectto  Ropm = —,
subject to U

R>0

B >0and A\,(B) > ¢, forsomee > 0

and some p € [1, M] (10)
where the notation R > 0 means that R is a positive semi-
definite matrix, A,(B) > e denotes the smallest eigenvalue of
B that is different from zero, and the constraint \,(B) > ¢ is
required to eliminate the trivial “solution” B = 0 to the inner
minimization.

The solution to a maximin design problem similar to (10),

but with the uniform elemental power constraint R,,,,, = ¢/M,

m = 1,..., M, replaced by a less stringent total power con-
straint tr(R) = ¢, was shown in [10] to be

R= —_TI

i Y

Because (11) also satisfies the uniform elemental power con-
straint, it is the solution to the maximin design problem in
(10) as well. This solution is easy to understand intuitively:
without prior information as to where the targets of interest are
located, the MIMO radar will transmit a spatially white probing
signal, which gives a constant power at any location #, namely
(c/M)||a()||*> = ¢ (note from (3) that ||a(6)||*> = M, where
|| - || denotes the Euclidean norm).

Next we consider three design problems which assume that
information about the (approximate) locations of the targets of
interest is available. We will explain in due course how the said
information can be obtained.

B. Maximum Power Design for Known Target Locations

Assume that an estimate B of B is available. Then the inner
minimization in (10) can be omitted, and the problem becomes
one of maximizing the total power at the locations of the tar-
gets of interest, under the uniform elemental power constraint.
While this problem is a semi-definite program (SDP) and can,
therefore, be efficiently solved numerically, it does not appear to
admit a closed-form solution, unlike (10). For this reason, in the
following we consider the said problem but with a total power
constraint instead of the elemental power one, namely

max tr(RB)

subjectto  tr(R) =¢

R >0. (12)
By a well-known inequality in matrix theory
tr(RB) < Amax(B)tr(R) = cAmax(B) (13)
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where Amax(ﬁ) denotes the largest eigenvalue of B, and where
the last equality follows from the constraint tr(R) = ¢. The
upper bound in (13) is evidently achieved for

R = cuu® (14)

where u is the (unit-norm) eigenvector of B associated with
Amax(B) (see also [10]).
Remark: For K = 1, (14) reduces to

f)a* (6
R = CM (15)
lla(d)]l
whose use leads to the delay-and-sum transmit beamformer
commonly employed in phased-array radar systems. O

The maximum power design in (14) is quite simple to com-
pute and use; in particular, the covariance matrix in (14) can be
synthesized using a constant-modulus scalar signal pre-multi-
plied by u. However, the design in (14) has a number of draw-
backs.

1) The elemental transmit powers corresponding to (14)
might vary widely.

2) While the design (14) maximizes the total power at the
locations of the targets of interest, the way this power is
distributed per each individual target is not controlled;
consequently, the resulting powers at the target locations
can be rather different from one another and from some
possible desired relative levels.

3) The design (14) does not control the cross-correlation
(beam)pattern either. The result is that for (14), and in
fact for any rank-one design, the normalized magnitude
of the pattern is given by (for  # 6)

|a* (9)Ra(§)| _ |a
[a*(6)Ra(h)]"/? [a*(O)Ra()] /> [a*(f

u||

a(6)| _
“(B)a]
(16)
(assuming that u is not orthogonal to either a(f) or
a(f)). The signals backscattered to the radar by any two
targets are therefore fully coherent, which in particular
makes the adaptive localization techniques inapplicable.

The next design replaces the maximum power criterion with a
beampattern matching one that accommodates the uniform ele-
mental transmit power constraint and allows the (approximate)
control of the power at each target location; the new criterion
also includes a term that penalizes large values of the cross-cor-
relation (beam)pattern.

Remark: Maximizing the signal-to-interference-plus-noise
ratio (SINR) at the receiver leads to a problem that has pre-
cisely the form in (10) or (12), but with a different matrix B.
To see this, note from (7) that maximizing the receiver’s SINR
with respect to R is equivalent to maximizing the following
criterion:

K K

tr Z Z BrB,ara;Ra,

k=1p=1

apT] 24y [RB} (17)
where ay, is a short notation for a(6y.), and

B= ZZ BiBy)

k=1p=1

(18)

(ay a%) (apay)
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(it can be readily checked that B > 0). Clearly, the cost func-
tions in (10), (12), and (18) have the same form. Furthermore,
for well-separated targets (for which agai ~ 0 for p # k) with
similar 3;,’s we have B &~ B (to within a multiplicative con-
stant).

Maximizing the SINR of the received data is presumably
a more justifiable goal than maximizing the signal’s power at
the target locations, as in (12). Nevertheless, we focus on (12)
herein, because (12) is closer than (17) to the general framework
of transmit beampattern matching design of Section III-C-E;
additionally, the design derived from (12), as well as the one in-
troduced in the following, rely only on a model for the transmit
beampattern [see (1)—(5)], whereas (17) and the corresponding
design would also require the use of a model for the received
data (as in (7)). O

C. Beampattern Matching Design

Let ¢(#) denote a desired transmit beampattern, and let
{ /u}lel be a fine grid of points that cover the location sectors
of interest. We assume that the said grid contains points which
are good approximations of the locations {f } X_, of the targets
of interest, and also like in the previous subsection, that we
dispose of (initial) estimates {6}/, of {0}, We will
explain how to obtain ¢(#) and {6z }X_, at the end of this
subsection and also in Section IV.

Our goal here is to choose R such that the transmit beam-
pattern, a*(¢)Ra(6), matches or rather approximates (in a least
squares (LS) sense) the desired transmit beampattern, ¢(6), over
the sectors of interest, and also such that the cross-correlation
(beam)pattern, a*(f)Ra(f) (for 6 # @), is minimized (once
again, in a LS sense) over the set {ék},{?’:l. Mathematically,
therefore, we want to solve the following problem:

{ % > wi[ag(m) — a* (m)Ra(w))”

min
a,R
2w K-1 K R T
t g 2 o [ (0uRa(,) }
B k=1 p=k+1
subject to Rmm:%, m=1,..., M

R>0 (19)
where w; > 0,1 =1,..., L, is the weight for the /th grid point
and w. > 0 is the weight for the cross-correlation term. The
value of w; should be larger than that of wy, if the beampat-
tern matching at y; is considered to be more important than the
matching at . Note that by choosing max; w; > w, we can
give more weight to the first term in the design criterion above,
and viceversa for max; w; < we.

The above criterion appears to improve, in several ways, over
a related design criterion used in [3] (the more recent paper [8]
has also proposed a minmax version of the least-squares crite-
rion in [3], which however did not offer any clear improvement
of performance and which will not be considered in this paper).
* The LS fitting in [3] is done to ¢'/?(f), for computational
reasons; fitting directly to ¢(), as in (19), is more natural
(this problem has been fixed in the recent full version [8]

of [3]).
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e In [3], the scaling factor « is determined in a suboptimal
manner, prior to the fitting of the beampattern, whereas
in (19) « is obtained optimally as part of the solution to
the LS matching problem. The reason for introducing «
in the design problem is that typically ¢(f) is given in a
“normalized form” (e.g., satisfying ¢() < 1,V6), and
our interest lies in approximating an appropriately scaled
version of ¢(6), not ¢(9) itself.

* The need to penalize large values of the cross-correlation
pattern was not recognized in [3], and thus the second term
in (19) did not appear in the criterion used in the cited
reference.

Additionally, as explained below, we show that the design
problem (19) can be efficiently solved in polynomial time as a
SQP; in contrast to this, [3] used a rather inefficient gradient-
based algorithm to minimize the related criterion considered
there (the recent full version [8] of [3] also considers the use of a
convex optimization algorithm, albeit less efficient than the SQP
algorithm proposed here, for solving the signal design problem).
We also explain how the prior information needed to define (19)
can be obtained, an aspect that was not addressed in [3].

To show that the problem (19) is a SQP, we need some addi-
tional notation. Let vec(R) denote the M? x 1 vector obtained
by stacking the columns of R on top of each other. Let r de-
note the M2 x 1 real-valued vector made from R, (m =
1,...,M) and the real and imaginary parts of R,,,, (m,p =
1,...,M;p > m). Then, given the Hermitian symmetry of R,
we can write

vec(R) = Jr (20)

for a suitable M2 x M? matrix J whose elements are easily
derived constants (0, £7, £1). Making use of (20) and of some
simple properties of the vec operator, the reader can verify that
(the symbol ® denotes the Kronecker product operator)

a*(u)Ra(u) = vec [a*(m)Ra(um)]
[a” (ju) @ a* ()] Ir

>l

r 21)
and

a*(6)Ra(f,)

[aT(ép) ® a*(ék)] Jr
£dj r. (22)

Inserting (21) and (22) into (19) yields the following more
compact form of the design criterion (which shows clearly the
quadratic dependence on r and «)

L
23w [og(m) + &)’
=1

2w K-1 K )
e DD
K?-K k=1 p=k+1
1 X 2
=S w{loe &1)7)}
=1
2w K-1 K o 2
Sy DI LTSI
K- K k=1 p=k+1 t
2 p'Tp, (23)
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where
p= m (24)
and L
Py [ }[am>gﬂ
- K-1 K
+R Z > [ } [0 df,]l¢ (25
=1 p=k+1

with Re(+) denoting the real part. The matrix I" above is usually
rank deficient. For example, in the case of an M -sensor uni-
form linear array with half-wavelength or smaller inter-element
spacing and for w. = 0, one can show that the rank of I is 2M.
The rank deficiency of I, however, does not pose any serious
problem for the SQP solver outlined below.

Making use of the form in (23) of the design criterion, we can
rewrite (19) as the following SQP (see, e.g., [11], [12]):

min 8
b0
subjectto ||g]| < ¢
Rmm(g):% m:17"'7M
R(e) >0 (26)
where (I''/? denotes a square root of I)
0e=T"%p 27)

and where we have indicated explicitly the (linear) dependence
of R on p. For practical values of the array size M, the SQP
above can be efficiently solved on a personal computer using
public domain software (e.g., [11]).

In some applications, we would like that the synthesized
beampattern at some given locations be very close to the desired
values. As already mentioned, to a certain extent, this design
goal can be achieved by the selection of the weights {w, } of the
design criterion in (19). However, if we want the beampattern
to match the desired values exactly, then selecting the weights
{w,} is not enough and we have to modify the design problem
as we now explain.

Consider, for instance, that we want the transmit beampattern
at a number of points to be equal to certain desired levels. Then
the optimization problem we need to solve is (19) with the fol-
lowing additional constraints:

a’(fu)Ra(ju) = ¢,

where {(;} are predetermined levels. A similar modification of
(19) takes place when the transmit beampattern at a number of
points {ji;}1-, is restricted to be less than or equal to certain
desired levels. The extended problems (with additional either
equality or inequality constraints) are also SQP’s, and therefore,
similarly to (19), they can be solved efficiently using readily
available software [11], [12].

To conclude this subsection, we explain briefly how the de-
sired transmit beampattern, ¢(#), and the (initial) location esti-
mates can be obtained (this aspect is further discussed in Sec-
tion IV). Because at the beginning of the operation, the MIMO

l=1,...,L (28)
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radar system is assumed to have no prior knowledge of the
scene, we transmit a maximin power optimal signal towards
the targets, for which R = (¢/M)I (see (11)). Using the data
y(n)N_; collected by the receiving array of the system, we then
compute the generalized likelihood ratio test (GLRT) function
in [6], which is given by

5 a*(f)R1a(f
Mﬂ:l_a§gaﬁ£5 >
where
" R,.a(f)a*(A)R?,
Q= Fn = ;*(;)%ixfa)(ﬁ)J .
with
. 1
Ry =+ ;y(mx 31)

and RM and R vy 51m1larly defined. (Note that, while R =
(¢/M)I, the sample matrix R, will in general be somewhat
different from (¢/M)I.) The above function ¢(f) possesses the
following useful properties (see [6] for details).

1) It has values close to one in the vicinity of the target
locations {f }X_,, and close to zero elsewhere.

2) Unlike the spatial (pseudo)spectra obtained with other
methods, (29) takes on small values even at the locations
of possibly strong jammers (assuming that the jamming
signals are uncorrelated with x(n)).

3) The peaks of (29) around the target locations have
widths that lead to a good compromise between resolu-
tion and robustness.

With the above features in mind, we can use the locations of
interest of the dominant peaks of ¢(6) as estimates of {6, }7—,
and also to obtain a desired transmit beampattern—see Sec-
tion IV for details. Note that, in view of the features above, the
MIMO radar will not waste power by probing either jammer lo-
cations (which may have the added bonus of making the radar
harder to detect) or locations of uninteresting targets (which al-
lows the radar to transmit spatially more power towards the tar-
gets of interest).

D. Minimum Sidelobe Beampattern Design

In some applications, the beampattern design goal is to min-
imize the sidelobe level in a certain sector, when pointing the
MIMO radar toward 6y (let us say). Such a minimum side-
lobe beampattern design problem, with the uniform elemental
transmit power constraint, can be formulated as follows:

wp ¢

subjectto a*(fg)Ra(fy) —a*(w)Ra(w) >t, Yu € Q
a*(Hl)Ra(ﬂl) = 05a*(00)Ra(90
a*(f2)Ra(f2) = 0.5a*(0g)Ra(by)
R>0
Rmm:%7 m=1,...,M (32)

where 05 — 61 (with 65 > 0y and 61 < 6y) determines the 3 dB
main-beam width and 2 is a discrete set that covers the sidelobe
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region of interest. This is a SDP that can be solved in polynomial
time using public domain software (e.g., [11]). Similarly to the
optimal SQP-based design of the previous subsection, if desired,
the elemental power constraint can be replaced by a total power
constraint. Note that we can relax somewhat the constraints in
(32) defining the 3 dB main-beam width; for instance, we can
replace them by (0.5 — §)a*(6p)Ra(by) < a*(6;)Ra(h;)<
(0.5 4+ 6)a*(fo)Ra(by), i = 1,2, for some small §. Such a
relaxation leads to a design with lower sidelobes, and to an op-
timization problem that is feasible more often than (32).

We can also introduce some flexibility in the elemental power
constraint by allowing the elemental power to be within a cer-
tain range around ¢/M, while still maintaining the same total
transmit power of c¢. Such a relaxation of the design problem
allows lower sidelobe levels and smoother beampatterns, as we
will show later on via some numerical examples.

E. Phased-Array Beampattern Designs

Finally, we comment on the conventional phased-array beam-
pattern design problem in which only the array weight vector
can be adjusted and therefore all antennas transmit the same dif-
ferently scaled waveform. We can readily modify the previously
described beampattern matching or minimum sidelobe beam-
pattern designs for the case of phased-arrays by adding the con-
straint

rank(R) =1 (33)
to (19) or (32), respectively, (other phased-array designs pro-
posed in the literature, see e.g., [13] and [14], are rather different
from (19) or (32) with (33), and they will not be considered in
this paper). However, due to the rank-one constraint, both these
originally convex optimization problems become nonconvex.
The lack of convexity makes the rank-one constrained prob-
lems much harder to solve than the original convex optimiza-
tion problems [15]. Semi-definite relaxation (SDR) is often used
to obtain approximate solutions to such rank-constrained opti-
mization problems [12]. The SDR is obained by omitting the
rank constraint. Hence, interestingly, the MIMO beampattern
design problems are the SDRs of the corresponding phased-
array beampattern design problems.

In the numerical examples of Section IV, we have used the
Newton-like algorithm presented in [15] to solve the rank-one
constrained design problems for phased-arrays. The said al-
gorithm uses SDR to obtain an initial solution, which is the
exact solution to the corresponding MIMO beampattern design
problem. Although the convergence of the Newton-like algo-
rithm is not guaranteed [15], we did not encounter any apparent
problem in our simulations (we have started the algorithm from
different initial solutions, including the all-zero vector, and
observed no significant difference between the “final” solutions
so obtained). An interesting detail here is that the approach in
[15] is for real-valued vectors and matrices; therefore we had to
re-write the rank-one constraint in (33) in terms of real-valued
quantities

rank(R) = 2 (34)
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where

~  [Re{R}
~ | Im{R}

—Im{R}
Re{R} (33)
with Re{x} and Im{x} denoting the real and imaginary parts
of x, respectively. The equivalence between (33) and (34) is
proven in the Appendix.

IV. NUMERICAL EXAMPLES

We present several numerical examples to demonstrate the
merits of the proposed probing signal designs for MIMO radar
systems. We consider a MIMO radar with a uniform linear array
(ULA) comprising M = 10 antennas with half-wavelength
spacing between adjacent antennas. The said array is used both
for transmitting and for receiving. Without loss of generality,
the total transmit power is set to ¢ = 1.

A. Beampattern Matching Design

Consider first a scenario where K = 3 targets are located at
61 = —40°, §; = 0°, and A3 = 40° with complex amplitudes
equal to 1 = (B2 = B3 = 1. There is a strong jammer at 25°
with an unknown waveform (uncorrelated with the transmitted
MIMO radar waveforms) with a power equal to 105 (60 dB).
Each transmitted signal pulse has N = 256 samples. The re-
ceived signal is corrupted by zero-mean circularly symmetric
spatially and temporally white Gaussian noise with variance 2.
We assume that only the targets reflect the transmitted signals.
In practice, the background can also reflect the signals. In the
latter case, transmitting most of the power towards the targets
should generate much less clutter returns than when transmit-
ting power omnidirectionally. Therefore, a MIMO radar system
with a proper transmit beampattern design might provide even
larger performance gains than those demonstrated herein.

Since we do not assume any prior knowledge about the
target locations, the initial probing relies on the maximum
power beampattern design for unknown target locations, i.e.,
R = (¢/M)I. The corresponding transmit beampattern is om-
nidirectional with power equal to ¢ = 1 at any #. Using the data
collected as a result of this initial probing, the target locations
can be estimated using the GLRT technique, (29)—(31), outlined
in the previous section. Alternatively, location estimates can be
obtained using the Capon technique, as the maximum points of
the following spatial spectrum (see [6] for details):

’a*(@)f{;}ﬁymac(ﬁ)’
— . . (36)
|2 (O)R/a(0)] [a” (6)Roaa(0)]
An example of the Capon spectrum for 02 = —10 dB is shown

in Fig. 1(a), where very narrow peaks occur around the target
locations. Note that in Fig. 1(a), a false peak occurs around
6 = 25° due to the presence of the very strong jammer. The cor-
responding GLRT pseudo-spectrum as a function of ¢ is shown
in Fig. 1(b). Note that the GLRT is close to one at the target
locations and close to zero at any other locations including the
jammer location. Therefore, the GLRT can be used to reject the
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Fig. 1. Capon spatial spectrum and the GLRT pseudo-spectrum as functions of
@, for the initial omnidirectional probing. (a) Capon. (b) GLRT.

jammer peak in the Capon spectrum. The remaining peak loca-
tions in the Capon spectrum are the estimated target locations.
Note that the Capon spectrum has sharper peaks than the GLRT
function and hence, if desired, we can use the Capon estimates
of the target locations in lieu of the GLRT estimates.

The initial target locations obtained by Capon or by GLRT
can be used to compute the maximum power design in (14); we
will use the GLRT estimates in what follows. An example of
the transmit beampattern synthesized using the so-obtained R
is shown in Fig. 2(a). Since the rank of R is equal to one for this
design, the MIMO radar operates as a conventional phased-array
radar in this case. As a consequence, in the presence of mul-
tiple targets, no data-adaptive approach can be used to obtain
enhanced estimates of the target locations since the signals re-
flected by the targets are coherent with each other.

The initial target location estimates obtained using Capon or
the GLRT can also be used to derive a desired beampattern for
the beampattern matching design. In the following numerical
examples, we form the desired beampattern by using the dom-
inant peak locations of the GLRT pseudo-spectrum, denoted as
él, el 0 » as follows (with K being the resulting estimate of
K): . ) .

o(0) = {1, Oelf,—Ab+ALk=1,... K

. (37)
0, otherwise

where 2A is the chosen beamwidth for each target (A should
be greater than the expected error in {6 }). Fig. 2(b) is obtained
using A = 10° in the beampattern matching design in (19) with
amesh grid size of 0.1°,w; = 1,1 =1,..., L,and w, = 0. The
dashed line shows the desired beampattern in (37) scaled by the
optimal value of a. Fig. 2(c) shows the corresponding optimal
phased-array beampattern (obtained using the additional con-
straint rank(R) = 1). Note that the phased-array beampattern
has higher sidelobe levels than its MIMO counterpart. Also, note
that the synthesized MIMO transmit beampattern is symmetric
(or nearly so), which is quite natural in view of the fact that
the desired pattern is symmetric, whereas the optimal phased-
array beampattern is asymmetric (generating a symmetric pat-
tern with a phased-array would worsen the matching perfor-
mance significantly). More importantly, in the presence of mul-
tiple targets, even though phased-arrays can be used to form
a transmit beampattern with peaks at the target locations, no
data-adaptive approach can be used for localization or detection
purposes since the signals reflected by the targets are coherent
with each other.
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Fig. 2. Transmit beampatterns formed via (a) maximum power design for
given target locations (estimated via initial omnidirectional probing), (b) MIMO
beampattern matching design with w. = 0 under the uniform elemental power
constraint when A = 10°, and (c) phased-array beampattern matching design
with w, = 0 under the uniform elemental power constraint when A = 10°.
The desired beampatterns (scaled by «) for (b) and (c) are shown by dashed
lines.

Note that although we used w. = 0 to obtain Fig. 2(b), we
have found out that the signals reflected by the targets exhibit
low cross-correlations among them. As A is decreased, how-
ever, the cross-correlations become stronger when w. = 0; con-
sequently to achieve low cross-correlations in such a case, we
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Fig. 3. MIMO beampattern matching designs with A = 5° under the uniform
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of R. (a) Beampattern difference versus & when N = 256. (b) Average MSE
of the beampattern difference as a function of the sample number N.

need to increase the weight of the second term of the cost func-
tion in (19). The normalized magnitudes of the cross-correlation
coefficients of the target reflected signals, as functions of w., are
shown in Fig. 3(a) for A = 5°. We note that when w,. is close
to zero, the first and third reflected signals are highly correlated,
which can degrade significantly the performance of any adaptive
technique. For w. = 1, on the other hand, all cross-correlation
coefficients are approximately zero. An example of the beam-
pattern obtained with w. = 1 is shown in Fig. 3(b), where it
is compared with the corresponding beampattern obtained with
w,. = 0. Note that the designs obtained with w. = 1 and with
w, = 0 are similar to one another even though the cross-cor-
relation behavior of the former is much better than that of the
latter.

In practice, the theoretical covariance matrix R of the trans-
mitted signals is realized via the sample covariance matrix
R.. = 1/N Zgzl x(n)x*(n), which may cause the synthe-
sized transmit beampattern to be slightly different from the
designed beampattern (unless R.. = R, which holds for in-
stance if x(n) = RY?w(n) and 1/N SN w(n)w*(n) = I
exactly; in what follows, however, we assume that {w(n)} is
a temporally and spatially white signal from which the last
equality holds only approximately in finite samples). Let €(6)
denote the relative difference of the beampatterns obtained by
using f{m and R

(6= *ORes ~R)a()
a*(#)Ra(6)
Fig. 4(a) shows an example of €(f), as a function of 6, for

the beampattern design in Fig. 3(b) with w. = 1 and for
N = 256. Note that the difference is quite small. We define the

6 € [-90°,90°].  (38)
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mean—squqred error (MSE) between the beampatterns obtained
by using R, and R as the average of the square of (38) over
all mesh grid points and over the set of Monte Carlo trials.
The MSE as a function of N, obtained from 1000 Monte Carlo
trials, is shown in Fig. 4(b). As expected, the larger the sample
number N, the smaller the MSE.

Next, we consider estimating the complex amplitudes {5}
of the reflected signals, (see (7)), in addition to estimating their
location parameters {6 }. We recommend using the approxi-
mate maximum likelihood (AML) approach of [16] to estimate
the amplitude vector 8 = [3; B " Let {8 1K | de-
note the estimated target locations and let
a(fz)]-

A =[a(dy) (39)

Then Trp—1 TA 1
Bamr, = [(A"T A%) © (AR, A)]

vecd(ATT™'R,.A) (40)

where ® denotes the Hadamard product, vecd(-) denotes a
column vector formed by the diagonal elements of a matrix,
and
T=R,, - R, A(A"R,,A) AR}, (41)
We examine the MSEs of the location estimates obtained
by Capon and of the complex amplitude estimates obtained by
AML. In particular, we compare the MSEs obtained using the
initial omnidirectional probing with those obtained using the
optimal beampattern matching design shown in Fig. 3(b) with
A = 5° and w.=1. Fig. 5(a) and (b) shows the MSE curves
of the location and complex amplitude estimates obtained for
the first target from 1000 Monte Carlo trials (the results for the
other targets are similar). The estimates obtained using the op-
timal beampattern matching design are much better: the SNR
gain over the omnidirectional design is larger than 10 dB.
Consider now an example where two of the targets are closely
spaced. We assume that there are K = 3 targets, located at
6, = —40°, 8 = 0°, and 03 = 3° with complex amplitudes
equal to 1 = (B2 = (33 = 1. There is a strong jammer at
25° with an unknown waveform, which is uncorrelated with the
transmitted MIMO radar waveforms, and with a power equal to
108 (60 dB). Each transmitted signal pulse has N = 256 sam-
ples. The received signal is corrupted by zero-mean circularly
symmetric spatially and temporally white Gaussian noise with
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Fig. 6. Capon spatial spectra and the GLRT pseudo-spectra as functions of 6.
(a) Capon for the initial omnidirectional probing. (b) GLRT for the initial omni-
directional probing. (c) Capon for the optimal probing. (d) GLRT for the optimal
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variance o2 = —10 dB. Fig. 6(a) and (b) shows the Capon spec-
trum and the GLRT pseudo-spectrum, respectively, for the ini-
tial omnidirectional probing; as can be seen from these figures,
the two closely spaced targets cannot be resolved. Using this ini-
tial probing result, we derive an optimal beampattern matching
design using (19) with a mesh grid size of 0.1°, w; = 1,1 =
1,...,L, and w, = 1. Since the initial probing indicated only
two dominant peaks, these two peak locations are used in (19).
The desired beampattern is given by (37) with A = 10° and
K =2 Fig. 6(c) and (d), respectively, show the Capon spec-
trum and the GLRT pseudo-spectrum for the optimal probing.
In principle, the two closely spaced targets are now resolved.
To conclude this subsection, we consider an example where
the desired beampattern has only one wide beam centered at 0°
with a width of 60°. Fig. 7(a) shows the result for the beam-
pattern matching design in (19) with a mesh grid size of 0.1°,
wy =1,1=1,...,L, and w. = 0. Fig. 7(b) shows the corre-
sponding phased-array beampattern obtained by using the addi-
tional constraint of rank(R)) = 1in (19). We note that, under the
elemental power constraint, the number of degrees of freedom
(DOF) of the phased-array that can be used for beampattern de-
sign is equal to only M — 1 (real-valued parameters); conse-

Fig. 9. Minimum sidelobe beampattern designs, under a relaxed (£20%) el-
emental power constraint, when the 3 dB main-beam width is 20°. (a) MIMO.
(b) Phased-Array.

quently, it is difficult for the phased-array to synthesize a proper
wide beam. The MIMO design, however, can be used to achieve
a beampattern significantly closer to the desired beampattern
due to its much larger number of DOF, viz. M 2 _ M. Inter-
estingly, we have observed in a number of cases that, under the
total power constraint, the optimal MIMO beampattern and the
optimal phased-array beampattern were quite close to one an-
other (it is unknown whether this holds in general or not). The
elemental powers of the phased-array design obtained under the
total power constraint, however, varied significantly, which may
be undesirable in many applications.

B. Minimum Sidelobe Beampattern Design

Consider the beampattern design problem in (32) with the
main-beam centered at y = 0° and with a 3 dB width equal
to 20° (; = —10°, 2 = 10°). The sidelobe region is 2 =
[—90°, —20°] U [20°,90°]. The minimum-sidelobe beampat-
tern design obtained by using (32) with a mesh grid size of
0.1° is shown in Fig. 8(a). Note that the peak sidelobe level
achieved by the MIMO design is approximately 18 dB below the
mainlobe peak level. Fig. 8(b) shows the corresponding phased-
array beampattern obtained by using the additional constraint
rank(R) = 1 in (32). The phased-array design fails to provide
a proper mainlobe (it suffers from peak splitting) and its peak
sidelobe level is about 5 dB higher than that of its MIMO coun-
terpart.

Fig. 9 is similar to Fig. 8 except that now we allow the ele-
mental powers to be between 80% and 120% of ¢/M = 1/10,
while the total power is still constrained to be ¢ = 1. Ob-
serve that by allowing such a flexibility in setting the elemental
powers, we can bring down the peak sidelobe level of the MIMO
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beampattern by about 3 dB. The phased-array design, on the
other hand, does not appear to improve in any significant way.

V. CONCLUSION

We have considered several transmit beampattern design
problems for MIMO radar systems. We have shown that
through beampattern design, by focusing the transmit power
around the locations of the targets of interest while minimizing
the cross-correlations of the signals reflected back to the radar,
we can significantly improve the parameter estimation accuracy
of the adaptive MIMO radar techniques as well as enhance their
resolution. We have also shown that, due to the significantly
larger number of degrees of freedom of a MIMO system,
we can achieve much better transmit beampatterns under the
practical uniform elemental transmit power constraint with a
MIMO radar than with its phased-array counterpart.

APPENDIX

Lemma: Let R € CMXM and let R € R2M*X2M pe a5
defined in (35). Then

rank(R) = M — m <= rank(R) = 2(M — m),

form=0,..., M. (42)

Proof: Letv € CM>1 v £ 0, be a vector in the null space
of R, N(R), ie.,

Rv = 0. (43)

This implies that

R[Re{vT} Im{vT}]" =o0. (44)
Moreover, since (43) also implies R(jv) = 0, we must also
have

R[-Im{vT} Re{vT}| = 0. (45)
The vectors appearing in (44) and (45) are linearly independent
of each other. Indeed, if we assume that they were not, then there

would exist a nonzero complex-valued scalar, say ¢ # 0, such
that

Re{v}

it —Im{v}} [RG{C}

Refv} | |Im{c}

which is a contradiction to the assumption that v # 0.

Thus, we have shown that from each v € N (R) we can ob-
tain (as in (44) and (45)) two linearly independent vectors in
N (f{) Furthermore, we can use an argument similar to (46)
to show that if the vectors vy, va,... € N(R) are linearly in-
dependent, then so are the corresponding vectors in N (f{) It
follows from these observations that

:|:0$V<:0$V:0
(46)

rank(R) = M — m = rank(R) < 2(M — m),

m e [0,M]. (47)
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Conversely, for each v # 0 satisfying Rv = 0 (ie.,
v € N(R)), we can write v as [Re{v?} Im{vT}]",
and therefore we can build a v such that v. € AN(R). Fur-
thermore, due to the structure of ft it follows, as above,
that also [—Im{vT%ﬂ Re{vT}]" € WN(R), and that
[Re{vT} Im{vT}]" and [-Im{vT} Re{vT}]" are
linearly independent of each other. Therefore, for any two
such linearly independent vectors in N/ (f{), there is one vector
v € N(R). Again, similarly to what was shown above, the
linear independence of the vectors in N’ (f{) implies that of the
corresponding vectors in N'(R). Therefore, we have shown that

rank(R) = 2(M — m) = rank(R) < M —m,
m € [0, M]. (48)
The stated result in (42) follows from (47) and (48). Indeed, if

rank(R) = M — m, then we must have rank(R) = 2(M —m)

(otherwise (47) and (48) would imply that rank(R) < 2(M —
m), by (47), and thus that rank(R) < M — m, by (48), which
is a contradiction). Similarly, (47) and (48) can be used to con-

clude that rank(R) = 2(M — m) = rank(R) = M —m. O

The above lemma is related to a number of results in [17] for
matrices of the form of (35), but it does not appear in the cited
paper. In fact, while the lemma’s result may possibly be known,
we have not been able to locate it in the literature, and this is
why we provided a proof of it in this Appendix.
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