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Background
• Large complex Networks are hard to understand and often
not fully/explicitly observable

Figure 1: Protein-Protein Interaction Network

• Learning from a "random walk" associated with the network

Problem of Interest: Given streaming sample trajec-
tory of state transition of the unknown Markov chain:
• how to extract its reduced-order information?
• how to recover the latent network partition?
in an online fashion with low computational and stor-
age cost, and small sample complexity.

Model Assumptions
Nearly Low-Rankness: Denote D = diag{µi} and P =
(pi,j) as stationary distribution and transition matrix, the
product DP has a strictly positive singular gap, i.e., it has
the decomposition:

DP = Udiag(σ1, · · · , σr)V > + F and σr > ‖F ‖2.

Meta-State Structure: The associated Markov chain has
a lumpable structure, i.e., there exists a state partition S =
S1 ∪ S2 . . . ∪ Sr, such that

∀ sk, sh ∈ Si, ∀ j ∈ {1, · · · , r},
∑
s`∈Sj

pk,` =
∑
s`∈Sj

ph,`

Remark (Weinan et al., 2008). If Markov chain is lumpable
and low rank, then one can recover its exact partition by clus-
tering the reduced-order representations M = D−1V .

Learning Reduced-Order State Representation
Down sampling to handle data dependency:

s(1), s(2), . . . ,s(τ), s(τ+1), . . . , s(2τ), . . . , s((b−1)τ+1), . . . , s(bτ)

Construct sample matrix Z(k) = 1{s(kτ−1), s(kτ)}
• Z(k)’s are close to i.i.d. samples and
• E

[
Z(k)

∣∣s(0)] ≈DP = Udiag(σ1, · · · , σr)V > + F

Estimating V reduces back to streaming PCA problem!

(U∗,V ∗) = arg max
Ũ ,Ṽ ∈Rm×r

tr
[
Ũ>EZṼ

]
subject to Ũ>Ũ = Ṽ >Ṽ = Ir.

Recast into a symmetric problem:

W ∗ = argmax
W∈R2m×r

tr
[
W>EAW

]
subject to W>W = Ir,

where EA =

[
0m×m EZ
EZ> 0m×m

]
andW = 1√

2

[
U>,V >

]>.
Generalized Hebbian Algorithm (GHA)
Input: sample trajectory s(k), block size τ , step size η.
Init: set random W (0) with orthonormal columns;
set k ← 1.
Repeat:
Construct matrix A(k) from sample s(kτ−1), s(kτ);
W (k+1) ←W (k) + η(A(k)W (k) −W (k)W (k)>A(k)W (k))

s← s+ 1;
Until stopping condition is satisfied
Output: [Û ; V̂ ]←

√
2W (k).

F Streaming algorithm with low computational cost
O(|S|r) and low storage cost O(|S|r)!

Recovering Network Partition

(1) Run GHA on Markov transition data to obtain [Û ; V̂ ].
(2) Let µ̂ be the empirical estimate of the stationary distri-
bution, i.e.,

µ̂i =
n∑
k=1

I(s(k) = i)/n.

Let D̂ = diag(µ̂1, µ̂2, . . . , µ̂m). Each row of M̂ = D̂−1V̂
gives an approximate r-dimensional representation for the cor-
responding state/vertex.
(3) Find a set of centers C = {c1, c2, . . . , cr} ⊂ Rr by solving
the following problem:

Ĉ = argminC
∑m
i=1 minc∈C d

2(M̂i∗, c),

where d(M̂si∗, cj) =
∥∥∥M̂si∗ − cj

∥∥∥
2
is the Euclidean distance.

(4) Partition by assigning each state to its closest center.

Theory
F Down sampling size: By choosing block length τ :

τ ≥
[

2

Φ2
log

(√
µmax

µmin

1

η

)]
,

the data samples are sufficiently close to i.i.d. samples drawn
from the stationary distribution of the Markov chain.
F Convergence analysis for GHA:

Principle Angle: Given two matrices U ∈ Rm×r and
V ∈ Rm×r with orthonormal columns, the principle an-
gle between U and V is defined as:

Θ(U, V ) = diag
[
cos−1(σ1(U>V )), . . . , cos−1(σr(U

>V ))
]

• ODE Characterization: Global convergence!

Discrete:
γ2i,t+η − γ2i,t

η
= Fi,tγ2i,t +O(η).

weakly
ww� η → 0

Continuous: dγ2i = biγ
2
i dt

As η → 0 and t→∞,

‖ sin Θ(V , V̂ (t))‖2F + ‖ sin Θ(U , Û(t))‖2F → 0.

• SDE Characterization: Convergence rate!

Discrete:
ζij,t+1 − ζij,t√

η
= Fij,tζij,t +O(η).

weakly
ww� η → 0

Continuous: dζij = Kijζijdt+GijdBt,

For sufficiently small ε > 0, let

N = Õ
(

r

ε(σr(DP )− σr+1(DP ))2

)
and t = Nη,

we have

lim
ε→0

P
[∥∥ sin Θ

(
Û(t),U

)∥∥2
F

+
∥∥sin Θ

(
V̂ (t),V

)∥∥2
F
> ε
]
≤ 1

10

F Recovery of network partition: Suppose that the esti-
mate Û , V̂ , and empirical distribution µ̂ satisfy∥∥∥sin Θ(Û ,U)

∥∥∥2
F

+
∥∥∥sin Θ(V̂ ,V )

∥∥∥2
F
≤ ε and

max
i∈[m]

|µ̂i − µi| ≤
√
εµi.

for some ε ∈ (0, 1). Let M̂ := diag(µ̂)−1V̂ and M =
D−1V . Then for any si, sj ∈ S,∣∣∣∣∥∥∥M̂si∗ − M̂sj∗

∥∥∥2
2
−
∥∥Msi∗ −Msj∗

∥∥2
2

∣∣∣∣ ≤ Cε
µ2
min
.

Experiments

We look at Manhattan taxi data with 1.1 × 107 trip records
of NYC Yellow cabs from January 2016. Each entry records
the coordinates of the pick-up and drop-off locations.

We discretize the map into a fine grid and model each taxi
trip as a single state transition sample generated by an implicit
city-wide random walk.

GHA: 4 clusters GHA: 10 clusters

GHA: 15 clusters SVD: 4 clusters

A practically impressive observation is: our algorithm uses
less than 1 Mbytes memory for r = 4, 10, 15. In contrast,
the batch partition uses about 200 Mbytes memory even for
r = 4.


