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Background

e Large complex Networks are hard to understand and often
not fully/explicitly observable
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Figure 1: Protein-Protein Interaction Network

e Learning from a "random walk" associated with the network

e ~-O

@ associated Markov chain @

Markov chain M = (S, p)
Transition Probability p; ; =
Stationary Distribution p; = =3

Network G = (5, F)
Undirected: w; ; = w;; > 0
Connected: w; = Zj w; i >0

Problem of Interest: Given streaming sample trajec-
tory of state transition of the unknown Markov chain:
e how to extract its reduced-order information?

e how to recover the latent network partition?

in an online fashion with low computational and stor-
age cost, and small sample complexity.

Model Assumptions

Nearly Low-Rankness: Denote D = diag{u;} and P =
(pij) as stationary distribution and transition matrix, the
product DP has a strictly positive singular gap, i.e., it has
the decomposition:

DP = Udiag(o1, -+ ,0,)V' + F and o, > || F|..

Meta-State Structure: The associated Markov chain has

a lumpable structure, i.e., there exists a state partition S =
S1USy...UJS,, such that

YV sk,sp €95, Vje{l, -, r}, Z Pk ¢ = Z Dh.¢

SgESj SgESj

Remark (Weinan et al., 2008). I/f Markov chain is lumpable
and low rank, then one can recover its exact partition by clus-
tering the reduced-order representations M = D~V

Learning Reduced-Order State Representation

Down sampling to handle data dependency:

(S(l), 3(2)) .15 ,3(737 (3(T+1), B S(TT& o ’(S((b—1)7+1)7 N S(bT)

Construct sample matrix Z(¥) = 1{s(k7=1) k7)1

e Z(F)'s are close to i.i.d. samples and
o K [Z(k)‘s(m} ~ DP = Udiag(o1,--- ,0,) V' + F

Estimating V reduces back to streaming PCA problem!
(U*,V*) = argmax tr {ﬁT]EZ‘N/}
6,‘7€Rmx”“
subject to U'U=V'V=1,.
Recast into a symmetric problem:

W™ = argmax tr [WT]EAW} subject to W'W =1,

WERQmX’P
| Opxem EZ | o T+ o7
WhereIEA—_EzT Ome_andW_E[U VI

Generalized Hebbian Algorithm (GHA)

Input: sample trajectory s(*), block size 7, step size 7.
Init: set random W (9 with orthonormal columns;

set k < 1.

Repeat:

Construct matrix A*) from sample s(¢7—1)  g(k7).
WD W L AWWE gy BT A6 k)
s < s+ 1;

Until stopping condition is satisfied

Output: [U; V] + V2W®#).

% Streaming algorithm with low computational cost
O(|S|r) and low storage cost O(|S|r)!

Recovering Network Partition

(1) Run GHA on Markov transition data to obtain [ﬁ', ‘A/']
(2) Let p be the empirical estimate of the stationary distri-
bution, i.e.,

i =) I(s™ =i)/n.
k=1

Zim). Each row of M = D'V
gives an approximate r-dimensional representation for the cor-
responding state/vertex.

(3) Find a set of centers C' = {¢q, ca, . ..
the following problem:

Let D = diag(fi1, liz, . . -

, ¢+ C R” by solving
C = argming » ., Min.cc d2(]\//_7i*, c),

A

where d( M, ., c;) = HMS* — ¢j H Is the Euclidean distance.
2

(4) Partition by assigning each state to its closest center.

Theory

% Down sampling size: By choosing block length 7

2 fmax 1) |
TZ 578 W . 5)_ ’

the data samples are sufficiently close to i.i.d. samples drawn
from the stationary distribution of the Markov chain.

% Convergence analysis for GHA:

Principle Angle: Given two matrices U € R™”*" and
V € R™*" with orthonormal columns, the principle an-
gle between U and V is defined as:

O(U,V) = diag [cos_l(al(UTV)), . ,COS_l(O'r(UTV))}

e ODE Characterization: Global convergence!

22
Discrete: —1 50 — F..~2 1+ O(n).
/,7 Y
weakly ﬂ n— 0
Continuous: dvy? = byy7dt

As n — 0 and t — o0,

|sin@(V, V(1)||2 + || sin©U,U(t))||z — 0.

e SDE Characterization: Convergence rate!

Discrete: Gigit+1 — Gijt
V1

weakly H n— 0
Continuous: dCZ] — Kijcijdt—l— Gr,;det,

ii.tCiit + O(m).

For sufficiently small € > 0, let

r

N=0 <e<ar<DP> - arH(DP))?) and b=

we have

lim P[|| sin © ((7( ),U)Hé—k“sin@ (‘7( )7V>H12? > €] <

e—0

% Recovery of network partition: Suppose that the esti-
mate U, V', and empirical distribution gt satisfy

~ 2 R 2
‘ sin (U, U)HF + ‘ sinO(V, V)HF < € and
g% s — | < Ve,

for some ¢ € (0,1). Let M = diag(f)~ 'V and M =
D~'V. Then for any s;,s; € S,
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Experiments

We look at Manhattan taxi data with 1.1 x 107 trip records
of NYC Yellow cabs from January 2016. Each entry records
the coordinates of the pick-up and drop-off locations.
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State-transition sample (s4, s3)
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We discretize the map into a fine grid and model each taxi
trip as a single state transition sample generated by an implicit
city-wide random walk.

Map data ©2017 Google

GHA: 4 clusters

Map data ©2017 Google

GHA: 10 clusters

Map data ©2017 Google

GHA: 15 clusters

Map data ©2017 Google

SVD: 4 clusters

A practically impressive observation is: our algorithm uses
less than 1 Mbytes memory for » = 4,10,15. In contrast,

the batch partition uses about 200 Mbytes memory even for
r = 4.



