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Simple first order algorithm:

𝑥𝑘 ← 𝑦𝑘−1 + 𝜂𝛻 𝑓 y𝑘−1 , 𝑦𝑘 = 𝑥𝑘 + 𝛼 𝑥𝑘 − 𝑥𝑘−1

 Vanilla Gradient Descent (VGD):  𝛼 = 0
 Nesterov Accelerated Gradient Descent (NAG): 

 Strongly convex 𝑓: 𝛼 =
1/𝜇𝜂 − 1

1/𝜇𝜂 + 1

 General convex 𝑓: 𝛼 =
𝑘−1

𝑘+1

Iteration complexity:

Mthods Error After k Iters Assuptions

VGD exp −𝑘/𝜅 Strongly convex

VGD 1/𝑘 Convex

NAG exp −𝑘/ 𝜅 Strongly Convex

NAG 1/𝑘2 Convex

How to understand these algorithms via an intuitive way?
Our answer: Study their continuous time limit and the physical 
systems corresponding to these algorithms!

a unified framework for time-scaling

*conditioning number 𝜅 = 𝐿/𝜇, where 𝜇 is the strong convexity constant of 𝑓
and 𝐿 is the Lipchitz constant

𝑥1

𝑥2
𝑥3

𝑥4

𝑥5

The iterates of the algorithm

The continuous-time limit 
(step_size → 0) of iterates: a 

curve described by an 
ordinary differential equation 

(ODE)
A damped harmonic oscillator system

How to connect discrete iterates to continuous iterates?

 Set (1) 𝑘 𝑡 :=
𝑡

𝜂
or (2) 𝑘 𝑡 :=

𝑡

𝜂
and define 𝑋 𝑡 = 𝑥𝑘 𝑡

 [1] chooses (1) for AGD and chooses (2) for NAG

Our Solution: 

Set 𝑘 𝑡 :=
𝑡

ℎ
for all algorithms. Let the algorithm tell us what is ℎ!

Taylor expansion  the 
algorithm iterates:

A unified ODE that 
describe a damped 
oscillator system:

A unified view of the choice of 𝒉:

NAG:  massive system
𝑚 ሷ𝑋 + 𝑐 ሶ𝑋 + 𝛻𝑓 𝑋 = 0

⇒ ℎ = Θ 𝜂 , 1 − 𝛼 = Θ(ℎ)

VGD:  massless system
ሶ𝑋 + 𝛻𝑓 𝑋 = 0

⇒𝑚 = 0, 𝑐 = 1
⇒ ℎ = Θ 𝜂

Our framework naturally extends to 
the PL-condition 𝒇:

Insights:
 The energy of the physical system is a Lyapunov function of 

the ODE
 Energy decreases fastest when the system is under critical 

damping

The energy decreasing of the system:

Consider quadratic function 𝑓 𝑥 = 𝐾 ||𝑥 − 𝑥∗||2/2

Critical damping: 𝑐2 = 4𝑚𝐾, which corresponds to NAG

 PL-condition:
 𝐾 = 𝐿/𝜇

Our framework naturally extends to 
other optimization methods:

 Randomized coordinate gradient descent (RCGD)

 Randomized accelerated coordinate gradient descent (ARCG)
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