The Physical Systems Behind Optimization Algorithms

The Classic Optimization Problem:
argmin,ey f (x)

Simple first order algorithm:

xk — yk=1 4y f(yk—l)’ yk = xk 4 a(xk _ xk—l)

J Vanilla Gradient Descent (VGD): a = 0
] Nesterov Accelerated Gradient Descent (NAG):

1/un —1
» Strongly convex f: a = Vi/k
J1/um +1
k—1
» General convex f:a = —
k+1
Iteration complexity:
VGD exp(—k/x) Strongly convex
VGD 1/k Convex
NAG exp(—k/vk) Strongly Convex
NAG 1/k? Convex

*conditioning number k = L/u, where u is the strong convexity constant of f
and L is the Lipchitz constant

How to understand these algorithms via an intuitive way?

Our answer: Study their continuous time limit and the physical
systems corresponding to these algorithms!

The iterates of the algorithm

The continuous-time limit
(step_size = 0) of iterates: a
curve described by an

ordinary differential equation
(ODE)
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How to connect discrete iterates to continuous iterates?

d Set (1) k(t): = L/LﬁJ or (2) k(t): = EJ and define X(t) = xk®

. [1] chooses (1) for AGD and chooses (2) for NAG

Our Solution: a unified framework for time-scaling

Set k(t): = lﬂ for all algorithms. Let the algorithm tell us what is h!

(x<k+” — x(k)) X (t)h + %X(t)hz +o(h),
Taylor expansion the

(k) _ \(k=1) 1 5
algorithm iterates: (2 =) = X () SX()h” +o(h),

and nVf [x(k) + (x(k) —x(k_l))] =nVf(X(t))+ O(nh).

A unified ODE that mX(t) + CX(t) T Vf(X(t)) = 0.

describe a damped m = 154 h; as the particle mass,
oscillator system: (1—a)h . .

| | C 1= as the damping coefficient,
Z Z % %

f(x) as the potential field.

A unified view of the choice of h:

VGD: massless system
X+VFfX)=0
C >m=0,c=1
= h=0(n)

NAG: massive system
mX +cX+Vf(X) =0

= h=0(y7),1—a=0(h)

Damping coefficient: ¢ —
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A damped harmonic oscillator system

Insights:

[ The energy of the physical system is a Lyapunov function of
the ODE

J Energy decreases fastest when the system is under critical
damping

The energy decreasing of the system:

Consider quadratic function f(x) = K |lx — x*||%/2

E(t)rxexp(—l S i—ﬁ]t)

2| m m?  m

Critical damping: c? = 4mK, which corresponds to NAG
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Our framework naturally extends to _ges
the PL-condition f: a

. _ _ 0.6 o VGD
u PL-c_ondltlon. 0c S0 1 ROCD
Jd K=L/u IVF(x))> ~ 2H ' ARCG

0ol —VGD ODE |

Our framework naturally extends to N g E‘ig ODE |
other optimization methods: .

(l) 0.5 1
. Randomized coordinate gradient descent (RCGD)

LB (k1) ”ij(x(k—l)) and xil;) _ x(\l]c_—l)

] ]
J Randomized accelerated coordinate gradient descent (ARCG)

(k) (k=1) (k) k—-1)
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