

Differentiable Top-k with Optimal Transport

Yujia Xie 1 , Hanjun Dai 2 , Minshuo Chen 1 , Bo Dai 2 , Tuo Zhao 1 , Hongyuan Zha 1 , Wei Wei 3 , Tomas Pfister 3

 1 Georgia Institute of Technology 2 Google Brian

³Google Cloud AI Research

Motivating Example 1 – Deep kNN

• Deep kNN classification.

End-to-end training is prohibitive using first-order methods, e.g., SGD, since top-k operation is **not differentiable**!

- Bubble? Heap? Quicksort partition? gradient cannot be computed.
- Consider top-k as a function returns an indicator vector?

Motivating Example 2 – Beam Search

- A popular inference method in machine translation tasks.
- ullet Recursively keeps k sequences with the largest likelihoods, and feeds them into the decoder to predict the next token.

- Misalignment between training and inference.
 - In the training stage, the ground truth sequence is fed into the decoder;
 - In the inference stage, the tokens generated by the decoder are used.

End-to-end training requires beam search to be "differentiable"!

Preliminary: Optimal transport (OT)

OT aims to find the optimal plan to transport mass between two distributions.

$$\Gamma^* = \underset{\Gamma \ge 0}{\operatorname{argmin}} \langle C, \Gamma \rangle,$$

- μ, ν source and target distributions;
- C cost matrix;
- ullet Γ transport plan.

Differentiability — SOFT Top-k

ullet Parameterizing Top-k Operator as an OT Problem:

Input vector

Output indicator vector A: which entries are aligned to $\mathbf{1}$

• **Smoothing** using Entropy Regularization:

$$\Gamma^{*,\epsilon} = \underset{\Gamma \geq 0}{\operatorname{argmin}} \langle C, \Gamma \rangle + \epsilon H(\Gamma), \quad \text{s.t.,} \quad \Gamma \mathbf{1}_m = \mu, \ \Gamma^{\top} \mathbf{1}_n = \nu,$$

where $H(\Gamma) = \sum_{i,j} \Gamma_{i,j} \log \Gamma_{i,j}$, m,n are the input and output dimensions.

SOFT top-k operator: input vector $\mapsto A^{\epsilon} := n\Gamma^{*,\epsilon} \cdot [0,1]^{\top}$.

Theorem 1.

- (1) (Nonzero gradient) Under mild conditions, SOFT top-k operator is differentiable; its Jacobian matrix always has nonzero entries.
- (2) (Small approximation error) $||\Gamma^{*,\epsilon} \Gamma^*||_F = O\left(\frac{\epsilon \log n}{n \cdot gap_k}\right)$, where gap_k denotes the gap between the (k+1)-th and the k-th largest input entries.

Efficient Implementation

• Consider deep $k{\sf NN}$ in classification. Minimizing the loss for each query sample is a **bilevel optimization** problem:

$$\mathcal{F}_i(\theta) = \sum_{j=1}^{n_{\mathrm{t}}} A_j^{\epsilon}(\theta) \ell(y_i^{\mathrm{q}}, y_j^{\mathrm{t}}), \quad \text{s.t.,} \quad A^{\epsilon}(\theta) = n\Gamma^{*,\epsilon}(\theta) \cdot [1, 0]^{\top},$$

$$\Gamma^{*,\epsilon}(\theta) = \underset{\Gamma>0}{\operatorname{argmin}} \langle C(\theta), \Gamma \rangle + \epsilon H(\Gamma), \quad \Gamma \mathbf{1}_m = \mu, \quad \Gamma^\top \mathbf{1}_n = \nu.$$

- $\{x_i^q, y_i^q\}_{i=1}^{n_q}$ are query samples, $\{x_j^t, y_j^t\}_{j=1}^{n_t}$ are template samples;
- $\ell(\cdot, \cdot)$ is the zero-one loss;
- $C_{ij}(\theta) = c(f_{\theta}(x_i^q), f_{\theta}(x_i^t)), c(\cdot, \cdot)$ is the squared Euclidean distance;
- $f_{\theta}(\cdot)$ is the feature extractor parametrized by θ .
- Efficient gradient computation. When optimizing $\min_{\theta} \sum_{i=1}^{n_{q}} \mathcal{F}_{i}(\theta)$ using SGD, KKT conditions yield *closed-form expression* of $\nabla_{C(\theta)} A^{\epsilon}(\theta)$:

- Computationally efficient: simple matrix operations;
- Memory efficient: no need to store intermediate steps.

Experiment – Deep kNN

Backbone:	Algorithm	MNIST	CIFAR10	
ResNet-18	\overline{k} NN	97.2%	35.4%	
	kNN+PCA	97.6%	40.9%	
	kNN $+$ pretrained CNN	98.4%	91.1%	
	RelaxSubSample	99.3%	90.1%	
	kNN + NeuralSort	99.5 %	90.7%	
	kNN+Cuturi (2019)	99.0%	84.8%	
	kNN+Softmax k times	99.3%	92.2%	
	CE+CNN (He, 2016)	99.0%	91.3%	
	kNN+SOFT Top- k	99.4%	92.6 %	

Experiment – Beam Search

Algorithm	BLEU
Luong (2014)	33.10
Durrani (2014)	30.82
Cho (2014)	34.54
Sutskever (2014)	30.59
Bahdanau (2014)	28.45
Jean (2014)	34.60
Bahdanau (2014) (Our implementation)	35.38
	Luong (2014) Durrani (2014) Cho (2014) Sutskever (2014) Bahdanau (2014) Jean (2014)

Beam Search + SOFT Top-k

36.27