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Motivating Example 1 — Deep £NN Efficient Implementation

e Deep NN classification. OT aims to find the optimal plan to trans- e Consider deep kNN in classification. Minimizing the loss for each query
port mass between two distributions. sample is a bilevel optimization problem:
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Preliminary: Optimal transport (OT)
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[ ] Top-k Prediction : ' ' :
t : /gzoziur;caetngl target distributions; U I o {z y'}; 2, are query samples, {z?, y:}it, are template samples;
Loss e I' transport plan. e ((-,-) is the zero-one |oss;

o Cii(0) = c(fo(x}), fo(x})), c(-,-) is the squared Euclidean distance;

o fo(:) is the feature extractor parametrized by 6.

Differentiability — SOFT Top-k
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e Efficient gradient computation. When optimizing ming >_,%, JF;(6)
using SGD, KKT conditions yield closed-form expression of V ¢ (9)A°(0):
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e Parameterizing Top-k Operator as an OT Problem:
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End-to-end training is prohibitive using first-order methods, e.g.,

SGD, since top-k operation is not differentiable!
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e Bubble? Heap? Quicksort partition? — gradient cannot be computed. p: empirical distribution of the input
. . . 5 v: Bernoulli(k/n)
e (Consider tOp—k as a function returns an indicator vector: . . ® The gradient of SOFT top-k operator
0

The first entry is the largest

- e Computationally efficient: simple matrix operations;
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e Memory efficient: no need to store intermediate steps.

Output indicator vector A: which en-
tries are aligned to 1

e Smoothing using Entropy Regularization: Experiment = Deep ENN

Motivating Example 2 — Beam Search "¢ = argmin(C,I") + eH(I'), st., T'ly,=up, I''1, =y, Backbone: Algorithm CIFARIO
r'=0 ResNet-18 kNN 35.4%

ENN+PCA 40.9%
where H(T') =}, . I'i;logI'; j, m,n are the input and output dimensions. kNN+pretrained CNN 91.1%
RelaxSubSample 90.1%
ENN+NeuralSort 90.7%
kNN+Cuturi (2019) 84.8%
ENN+Softmax k times 92.2%
CE-+CNN (He, 2016) 91.3%
Theorem 1. kKNN+SOFT Top-k 92.6%

(1) (Nonzero gradient) Under mild conditions, SOFT top-k operator is differ-
entiable; its Jacobian matrix always has nonzero entries.

(2) (Small approximation error) ||[I'"¢ — I'*||lp = O (ﬁlogn), where gap, Experiment — Beam Search

n-gapy,
denotes the gap between the (k + 1)-th and the k-th largest input entries.

e A popular inference method in machine translation tasks.
e Recursively keeps k sequences with the largest likelihoods, and feeds
them into the decoder to predict the next token.
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> Misalignment between training and inference.
e In the training stage, the ground truth sequence is fed into the decoder;

Sutskever (2014)

Bahdanau (2014)

Jean (2014)

Bahdanau (2014) (Our implementation)
Beam Search + SOFT Top-£

e In the inference stage, the tokens generated by the decoder are used.
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