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Introduction

Optimal Transport (OT) in continuous setting:

The goal of optimal transport:
move the mass from one dis-
tribution to another with mini-
mum cost.

However, the direct mapping
from one support to another
is not always feasible. There-
fore, people turn to compute
the best joint distribution.

Mathematically, optimal transport seeks to solve

γ∗ = argmin
γ∈Π(µ,ν)

E(X,Y )∼γ [c(X,Y )], (1)

– µ, ν: two input distributions;

– Π(µ, ν): requires the marginals of γ to be µ and ν;

– c(·, ·): the cost function;

– γ∗: the optimal transport plan, suggesting the way to
transport between µ and ν with minimum cost.

Applications of optimal transport:

Resource Allocation Domain Adaptation

The Difficulty of solving optimal transport:

– Infinite dimensional optimization problem;

– If use discretization on the support, the number of grids
needs to scale exponentially w.r.t. dimension.

Background - Implicit Generative Learning

Implicit Generative Model: Given a latent variable Z, train a
mapping G(·) so that G(Z) and X, the random variable of
interest, have the same distribution.

Several methods are of this kind:

Generative adversarial networks (GAN):

– Generator G wants to fool the discriminator;

– Discriminator wants to distinguish G(Z) from the real data.

Neural ordinary differential equation (Neural ODE) uses an
ODE to characterize how the input latent variable Z evolves
towards the output G(Z) in continuous time,

dz/dt = ξ(z(t), t),

where ξ is a neural network (Chen et al., 2018).

Variational auto-encoder (VAE)

Non-linear independent components estimation (NICE)

...

Scalable Pushforward based OT (SPOT)

Approximate γ∗ by an implicit generative model G(Z),
i.e., we seek to train

G(Z) =

[
GX(Z)

GY (Z)

]
≈

[
X

Y

]
,

where Z ∼ ρ,X ∼ µ, Y ∼ ν.

Substituting γ = G(Z) into (1), we have

G∗ = argmin
G

EZ∼ρ[c(GX(Z), GY (Z))].

subject to GX(Z) ∼ µ, GY (Z) ∼ ν

Motivated by Wasserstein GAN, we cast the above formulation
as a minimax problem:

min
G∈G

max
λX∈F1

X
,λY ∈F1

Y

EZ∼ρ[c(GX(Z), GY (Z))]

+ η
(
EZ∼ρ[λX(GX(Z))]− EX∼µ[λX(X)]

+ EZ∼ρ[λY (GY (Z))]− EY∼ν [λY (Y )]
)
.

Here, λX and λY are two discriminators (Arjovsky, M., 2017)
encouraging GX(Z) ∼ µ, GY (Z) ∼ ν.
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An illustration of SPOT framework

Our proposed framework has three major advantages:

– Easily scales to very large OT problems by primal dual
stochastic gradient-type algorithms;

– Effectively adapts to data with intrinsic low dimensional
structures;

– Allows efficient sampling from the transport plans.

SPOT for Density Recovery

Goal: Recover pγ , the density of the transport plan.

Method: Equip SPOT with Neural ODE.

Consider variable z(t),

z(t) =

[
z1(t)

z2(t)

]
with

z(0) = Z
z1(1) = GX(Z), z2(1) = GY (Z)

The dynamic of z(t) is

dz1/dt = ξ1(z(t), t), dz2/dt = ξ2(z(t), t).

Proposition 1. Under proper conditions, the log of joint den-
sity p(t) satisfies the following ODE:

∂ log p(t)

∂t
= −

(
tr

(
∂ξ1
∂z1

)
+ tr

(
∂ξ2
∂z2

))
,

where ∂ξ1/∂z1 and ∂ξ2/∂z2 denote the Jacobian matrices of
ξ1 and ξ2, respectively.

Experimental result: Density with entropy regularizer

εH = εEG(Z)∼γ [log pγ(G(Z))].

SPOT for Domain Adaptation

Setting: {xi} ∼ µ with known labels, {yj} ∼ ν with
unknown labels. The goal is to predict the labels of {yj}.

Method: DASPOT

Neural networks De,X , Dc,X , De,Y , and Dc,Y are jointly
trained with G.

Experimental results:

Source MNIST USPS SVHN MNIST
Target USPS MNIST MNIST MNISTM
ROT 72.6% 60.5% 62.9% −
StochJDOT 93.6% 90.5% 67.6% 66.7%
DeepJDOT 95.7% 96.4% 96.7% 92.4%
DASPOT 97.5% 96.5% 96.2% 94.9%

Experiment – Computing WD

Wasserstein Distance (WD): W = E(X,Y )∼γ∗ [c(X,Y )],
i.e., the expected cost of optimal transport plan.

LR =10−3 LR =10−4 LR =10−5

Experiment – Sample Generation

Synthetic Datasets
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