On Scalableand Efficient Computation of Large Scale

Introduction

e Optimal Transport (OT) in continuous setting:

The goal of optimal transport:
move the mass from one dis-
tribution to another with mini-
mum cost.

However, the direct mapping
from one support to another
Is not always feasible. There-
. fore, people turn to compute
the best joint distribution.

Mathematically, optimal transport seeks to solve

v = argmin E x y)[c(X,Y)], (1)

vyeIl(p,v)

— 1, v: two input distributions;
— II(w, v): requires the marginals of ~ to be u and v;
— ¢(+,-): the cost function;

— ~": the optimal transport plan, suggesting the way to
transport between p and v with minimum cost.

e Applications of optimal transport:

Resource Allocation

Domain Adaptation

e The Difficulty of solving optimal transport:
— Infinite dimensional optimization problem;

— If use discretization on the support, the number of grids
needs to scale exponentially w.r.t. dimension.

Background - Implicit Generative Learning

Implicit Generative Model: Given a latent variable Z, train a
mapping G(-) so that G(Z) and X, the random variable of
interest, have the same distribution.
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Several methods are of this kind:

e Generative adversarial networks (GAN):
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— Generator G wants to fool the discriminator:
— Discriminator wants to distinguish G(Z) from the real data.

e Neural ordinary differential equation (Neural ODE) uses an
ODE to characterize how the input latent variable Z evolves
towards the output G(Z) in continuous time,

§(2(1),1),

where £ is a neural network (Chen et al.,
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e Variational auto-encoder (VAE)

dz/dt =

2018).

® Non-linear independent components estimation (NICE)
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Scalable Pushforward based OT (SPOT)

e Approximate v* by an implicit generative model G(Z2),

l.e., we seek to train

co- e~ 5

Z~p, X~ Y ~u.

where

G(-)
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Substituting v = G(Z) into (1), we have

Ezplc(Gx(Z),Gy (Z))).

G* = argmin
G

subject to Gx(Z) ~pu, Gy(Z) ~v

Motivated by Wasserstein GAN, we cast the above formulation
as a minimax problem:

Ez~plc(Gx(Z),Gy(Z))]

min max
GEG AxeF5 Ay EFy

+1(Ez~pAx (Gx(2))] = Ex~p[Ax (X))
+Ezp[ Ay (Gy (2))] = Evu[Av (Y)]).

Here, Ax and Ay are two discriminators (Arjovsky, M., 2017)
encouraging Gx(Z) ~ u, Gy (Z) ~ v.
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An illustration of SPOT framework

e Qur proposed framework has three major advantages:

— Easily scales to very large OT problems by primal dual
stochastic gradient-type algorithms;

— Effectively adapts to data with intrinsic low dimensional
structures;

— Allows efficient sampling from the transport plans.

SPOT for Density Recovery

e Goal: Recover p-, the density of the transport plan.
e Method: Equip SPOT with Neural ODE.

Consider variable z(t),

The dynamic of z(t) is

:fl(z(t)at)a ZSQ(Z(t)at)°

Proposition 1. Under proper conditions, the log of joint den-
sity p(t) satisfies the following ODE:

alogtp(t) _ (tr (gi) P (giz))

where 0&1/0z1 and 02 /0z2 denote the Jacobian matrices of
&1 and &2, respectively.

le /dt dZQ/dt

e Experimental result: Density with entropy regularizer

eH = eEg(z)~~|logp,(G(Z))
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SPOT for Domain Adaptation

e Setting: {x;} ~ p with known labels, {y;} ~ v with
unknown labels. The goal is to predict the labels of {y,}.

e Method: DASPOT
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Neural networks D. x, D.x, Dey, and D,y are jointly

trained with G.

e Experimental results:

Source MNIST MNIST
Target USPS MNISTM
ROT 72.6% : . —
StochJDOT | 93.6% 66.7%
DeepJDOT | 95.7% 92.4%
DASPOT 97.5% 94.9%

Experiment — Computing WD

® Wasserstein Distance (WD): W = E(x y)y=[c(X,Y)],
I.e., the expected cost of optimal transport plan.
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Experiment — Sample Generation

e Synthetic Datasets

Input X and Y Generated Gx (Z) and Gy (Z)
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e MNIST-MNISTM:

Real images >
Generated images V

CoGAN (Liu et al., 2016)




