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e Event sequences

— The timestamps of tweets of a twitter user
— The job hopping history of a person

e Short sequences

— Sparse event pattern
- Job hopping histories

— Narrow observation window
- The criminal incidents after a regulation is published

e Challenging inference for short sequences

— MLE for each sequence
- Their lengths are insufficient for reliable inference.

— Treat the collection of short sequences as i.i.d.
- Highly biased against certain individuals.

Problem Setting

e Given:
— A collection of sequences T' = {7m1, 72 -+ , T~}
— Grpah relational information among sequences, described
by an N x N adjacency matrix as Y.
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e Goal: Relational information helps predicting the occur-
rence of future events.

Background - Hawkes Process

e A Hawkes processes is a doubly stochastic temporal point
process H () with conditional intensity function A = X\(¢; 0, 1)
defined as

A0, 7)=p+ > Swe =T,

r(m) <¢
-0 = {Ma 0, CU},
— 1 is the base intensity,
- T = {T(l),T(Q), ce ,T(M)} are the timestamps of the
events occurring in a time interval |0, tend].
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e Self-exciting

e Key idea: identify and incorporate the relational information between

tasks

— Social graphs often exhibit community patterns
— Each subject may belong to multiple communities and thus

have multiple identities

—Assign each subject 7 a sum-to-one identity proportion vector

i € |0, 1]K, where K is the number of communities
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Mixture of Hawkes Process Model
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e Generative process:
e For each subject 7,

— Draw a K dimensional identity proportion vector 7; ~ Dirichlet(a).
— Sample the i-th sequence 7; from the mixture of Hawkes processes in (1).
e For each pair of subject 7z and 7,
— Draw identity indicator for the initiator z;_,; ~ Categorical(;)
— Draw identity indicator for the receiver z;.; ~ Categorical(7;)
— Sample whether there is an edge between i and j, Y;; ~ Bernoulli(z,_, ; Bz ;).

Here, the observed variables are 7; and Y;;. The parameters are «, 5,8) and B. The

M,

Observed sequences

latent variables are m;, z;, zi—; and z; ;.

Observed connections

Identity Proportion Vector
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e Mixture of Hawkes process model
__For the k-th identity of subject ¢, we adopt Hawkes process
7—[(9,?)) to model the timestamps of the associated events. The
likelihood for the i-th sequence T; is

K
p(’Tz) p— Z Wi,kﬁi (91(;))
k=1

e Mixed Membership stochastic Blockmodel (MMB)
— zi—;: the identity of subject < when subject ¢ approaches
subject j
— 2« . the identity of subject j when j is approached by i
— Zg—;jBZr“_j: the probability of whether subject 7 and j

have a connection
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e Meta inference for  and 6. Instead of specifying that 5,8) Is sampled from a prior distribution, we adapt the k-th common
model H(0) to sequence i using MAML-type updates, 6,(;) = 0 — nD(log L;, Ok).
The gradient descent step on the log-likelihood of @ can then be written as

Experiment — Synthetic Graphs

O < O + 779V9k (Z,ﬁil Vi, k log ﬁ,;(@k — nD(log Ef,;, Qk))>

e Data generation: 50 Nodes, 6 Communities, S: Sparsity of the Graph, Ko: Number of Specified Communities

e Experiment: Community Assignment

e Experiment: Likelihood

S  Ground Truth
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Experiment — Real Graphs

— The past events always increase the chance of arrivals
of new events
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Background - Meta Learning

e Meta Learning

— Given a set of tasks I' = {71, 72, -+, Tn}
— Each task contains a very small amount of data

e Model-Agnostic Meta Learning (MAML)

— Train a common model for
all tasks,

m@in Z Fr1.(0 —nVeFT,(0))

T; el

where Fr is the loss function of task 7T;,
0 is the parameter of the common model,
n is the step size.

— Find the common model that is expected to produce
maximally effective behavior on that task after
performing update 6 — nD(Fr,,0).

e Variants to alleviate the computational burden:

— First Order MAML (FOMAML)
— Reptile
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