

Meta Learning with Relational Information for Short Sequences

Yujia Xie¹, Haoming Jiang¹, Feng Liu², Tuo Zhao¹, Hongyuan Zha¹ ²Florida Atlantic University ¹Georgia Institute of Technology

HARMLESS – HAwkes Relational Meta LEarning for Short Sequence Introduction **Event** sequences Identity Proportion Vector • Key idea: identify and incorporate the relational information between tasks - The timestamps of tweets of a twitter user Sport 10% - Social graphs often exhibit community patterns Music 30% - The job hopping history of a person - Each subject may belong to multiple communities and thus Marvel 20% have multiple identities Short sequences \rightarrow Assign each subject *i* a sum-to-one **identity proportion vector** – Sparse event pattern Alice $\pi_i \in [0,1]^K$, where K is the number of communities - Job hopping histories **Mixture of Hawkes Process Model** Identity - Narrow observation window Mixture of Hawkes process model Alice - The criminal incidents after a regulation is published For the k-th identity of subject i, we adopt Hawkes process

• Challenging inference for short sequences

- - MLE for each sequence
 - Their lengths are insufficient for reliable inference.
 - Treat the collection of short sequences as i.i.d.
 - Highly biased against certain individuals.

Problem Setting

- Given:
 - A collection of sequences $T = \{ \boldsymbol{\tau}_1, \boldsymbol{\tau}_2 \cdots, \boldsymbol{\tau}_N \}$

- Grpah relational information among sequences, described by an $N \times N$ adjacency matrix as \boldsymbol{Y} .

• **Goal**: Relational information helps predicting the occurrence of future events.

 $\mathcal{H}(\theta_{k}^{(i)})$ to model the timestamps of the associated events. The O MMM N likelihood for the *i*-th sequence $\boldsymbol{\tau}_i$ is **Observed sequences** $p(\boldsymbol{\tau}_i) = \sum_{k=1}^{\infty} \pi_{i,k} \mathcal{L}_i(\widetilde{\theta}_k^{(i)}).$ Sport **Mixed Membership Blockmodel** Music Mixed Membership stochastic Blockmodel (MMB) Marvel $-z_{i \rightarrow j}$: the identity of subject *i* when subject *i* approaches subject \bigcirc $-z_{i\leftarrow j}$: the identity of subject j when j is approached by i \bigcirc $-z_{i \rightarrow j}^T B z_{i \leftarrow j}$: the probability of whether subject i and j **Observed** connections have a connection • Generative process: • For each subject *i*, Draw a K dimensional identity proportion vector $\pi_i \sim \text{Dirichlet}(\alpha)$. — - Sample the *i*-th sequence τ_i from the mixture of Hawkes processes in (1). • For each pair of subject *i* and *j*, - Draw identity indicator for the initiator $z_{i \rightarrow j} \sim \text{Categorical}(\pi_i)$ - Draw identity indicator for the receiver $z_{i \leftarrow j} \sim \text{Categorical}(\pi_j)$ - Sample whether there is an edge between *i* and *j*, $Y_{ij} \sim \text{Bernoulli}(z_{i \rightarrow j}^T B z_{i \leftarrow j})$.

Here, the observed variables are τ_i and Y_{ij} . The parameters are α , $\theta_k^{(i)}$, and B. The latent variables are π_i , z_i , $z_{i \rightarrow j}$ and $z_{i \leftarrow j}$.

• Meta inference for θ and θ . Instead of specifying that $\theta_k^{(i)}$ is sampled from a prior distribution, we adapt the k-th common model $\mathcal{H}(\theta_k)$ to sequence *i* using MAML-type updates, $\tilde{\theta}_k^{(i)} = \theta_k - \eta \mathcal{D}(\log \mathcal{L}_i, \theta_k)$. The gradient descent step on the log-likelihood of θ can then be written as

 $\theta_k \leftarrow \theta_k + \eta_{\theta} \nabla_{\theta_k} \left(\sum_{i=1}^N \gamma_{i,k} \log \mathcal{L}_i(\theta_k - \eta \mathcal{D}(\log \mathcal{L}_i, \theta_k)) \right).$

B

(1)

Background - Hawkes Process

 A Hawkes processes is a doubly stochastic temporal point process $\mathcal{H}(\theta)$ with conditional intensity function $\lambda = \lambda(t; \theta, \boldsymbol{\tau})$ defined as

$$\lambda(t; \theta, \boldsymbol{\tau}) = \mu + \sum_{\tau^{(m)} < t} \delta \omega e^{-\omega(t - \tau^{(m)})},$$
$$-\theta = \{\mu, \delta, \omega\},$$

 $-\mu$ is the base intensity, $- \boldsymbol{\tau} = \{ \tau^{(1)}, \tau^{(2)}, \cdots, \tau^{(M)} \}$ are the timestamps of the events occurring in a time interval $[0, t_{end}]$.

Self-exciting

- The past events always increase the chance of arrivals of new events

Background - Meta Learning

• Meta Learning

 $\mathcal{T}_i \in \Gamma$

- Given a set of tasks $\Gamma = \{\mathcal{T}_1, \mathcal{T}_2, \cdots, \mathcal{T}_N\}$ – Each task contains a very small amount of data

Experiment – Synthetic Graphs

• Data generation: 50 Nodes, 6 Communities, S: Sparsity of the Graph, K_0 : Number of Specified Communities

• Experiment: Community Assignment

Experiment – Real Graphs

HARMLESS (Reptile)

Dataset	911-Calls	LinkedIn	MathOverflow	StackOverflow
MLE-Sep	4.0030 ± 0.3763	0.8419 ± 0.0251	0.5043 ± 0.0657	0.2862 ± 0.0177
MLE-Com	4.5111 ± 0.3192	0.8768 ± 0.0028	1.7805 ± 0.0345	1.5594 ± 0.0134
DMHP	4.4812 ± 0.3434	0.8348 ± 0.0030	1.5394 ± 0.0347	N ackslash A
MTL	4.4621 ± 0.3173	0.9270 ± 0.0027	1.7225 ± 0.0336	1.4910 ± 0.0089
HARMLESS (MAML)	4.5208 ± 0.3256	1.4070 ± 0.0105	1.8563 ± 0.0345	1.3886 ± 0.0082
HARMLESS (FOMAML)	4.6362 ± 0.3241	1.0129 ± 0.004	1.8344 ± 0.0348	1.5988 ± 0.0083

 0.9540 ± 0.0082

 4.4929 ± 0.3503

- Model-Agnostic Meta Learning (MAML)
- Train a common model for all tasks,

 $\min_{\theta} \sum \mathcal{F}_{\mathcal{T}_i}(\theta - \eta \nabla_{\theta} \mathcal{F}_{\mathcal{T}_i}(\theta))$

where $\mathcal{F}_{\mathcal{T}_i}$ is the loss function of task \mathcal{T}_i , θ is the parameter of the common model, η is the step size.

- Find the common model that is expected to produce maximally effective behavior on that task after performing update $\theta - \eta \mathcal{D}(\mathcal{F}_{\mathcal{T}_i}, \theta)$.
- Variants to alleviate the computational burden:
 - First Order MAML (FOMAML)
 - Reptile

Experiment – Ablation Study				
IVIETNOD	Log-Likelinood			
HARMLESS (MAML)	1.4070 ± 0.0105			
HARMLESS (FOMAML)	1.0129 ± 0.0042			
HARMLESS (Reptile)	0.9540 ± 0.0082			
Remove inner heterogeneity $(K = 3)$	0.9405 ± 0.0032			
Remove inner heterogeneity $(K = 5)$	0.9392 ± 0.0032			
Remove grouping (MAML)	0.9432 ± 0.0031			
Remove grouping (FOMAML)	0.9376 ± 0.0031			
Remove grouping (Reptile)	0.9455 ± 0.0041			
Remove graph (MAML)	0.9507 ± 0.0032			
Remove graph (FOMAML)	0.9446 ± 0.0032			
Remove graph (Reptile)	0.9489 ± 0.0072			

Reference

• HAWKES, A. G. (1971). Spectra of some self-exciting and mutually exciting point processes. *Biometrika*fg, 58 83?90.

 1.6017 ± 0.0097

 1.8663 ± 0.0342

• FINN, C., ABBEEL, P. and LEVINE, S. (2017). Modelagnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR. org.

• AIROLDI, E. M., BLEI, D. M., FIENBERG, S. E. and XING, E. P. (2008). Mixed membership stochastic blockmodels. Journal of machine learning research, 9 1981?2014.