Background

Success of Deep Neural Networks (DNNs):
e Speech and image recognition;
e Nature Language Processing;
e Recommendation Systems.
Among different types of networks, ResNet is a Milestone!

e Shortcut connections: skip layers in the forward step of an
Input.

e Success over CNNs: He et al.(2016a), He et al.(2016b),
Srivastava et al.(2015), Huang et al.(2017).

e Our Empirical Observation:

# of Layers] < 30 > 30
CNN Good Bad
RNN Good Good

e Shortcut connections helps training.

Existing Results:

e Empirical: Veit et al. (2016), Balduzzi et al. (2017), Li et
al. (2018).

e Hardt and Ma (2016): Linear ResNet has no spurious op-
tima.

e Li and Yuan (2017): Two-layer ResNet with only one un-
known layer has no spurious local optima and saddle points.

Question: How does the Shortcut Connection help

training in the presence of bad optima?

e We Study: Two-Layer Nonoverlapping Convolutional NNs:
1. A non-trivial spurious local optimum;
2. GD gets trapped with constant probability (i ~ 2);

A non-trival example provides new insights!
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e Two-layer Nonoverlapping CNNs:
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Student Network

e Student Network with shortcut connection:
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e Normalization to achieve identifibility:
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e Nonconvex Optimization:

(w,a) = argmin L(w, a),

=Ez(f(v*,a*,Z) — h(w,a,Z))*.

e (w,a) is a global optimum , if
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e (w, a) is a spurious local optimum, if

where L(w, a)
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Gradient Descent with Normalization

e Initialization: ag € By (|1Ta*|/\/E) and wg = 0.
e At the ¢-th iteration, we update w and a by
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where L(w,a) = Ez(f(v*,a™,Z)
e Normalization ensures

Var (ZJ-T(]I/\/]?—I—thrl)) =1,

— h(w,a,Z))”.

<—> a population version of the batch normalization.

Skip-Layer Prior

Assumption. There exists a w* with |lw™||2 < 1, such

that v* = w* +1/,/p.

e Supported by Existing Results:

e Lietal (2016) and Yu et al.
small and vanishing magnitude.

(2018): The weight has a

e Hardt and Ma (2016): For linear ResNet, the norm of the
weight in each layer scales as O(1/D) with D being the
depth.

e Bartlett et al. (2018): The norm of the weight of order
O(log D/ D) is sufficient to express differentiable functions.

Convergence Analysis

Partial Dissipativity Condition: Given any 6 > 0 and ¢ > 0,

Cl: (—VuL(w,a),w” —w) > c|llw—w*||3 —9;
C2: (—VoL(w,a),a* —a) > c|la—a*||3 — 9;

e Stage |: Avoid the spurious local optimum:
e C1 holds <= Improvement of a.

e C2 does not hold, but w will not move far away!

Theorem 1. Initialize with
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for some constant C > 0. Then, we have
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for all t € [T1,T], where 0 < m < M are some constants

e Stage |Il: Converging to Global Optima:
e C1, C2 jointly hold <= Convergence!

Theorem 2. Given the output (1), for any 6 > 0, choose
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then we have

|lwe —w*||5 <8 and ||las —a*||3 < 56

foranytZngé(%log%).

e Remark: Step Size Warm Up: n,, < ns,.
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ResNet

Skip-layer prior helps avoid spurious local optima!

Experiments

e Success Rates with p = 8 and Varing k.
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— The skip-layer connection improves the success rate.
— Step size warm-up makes ResNet even better .
e Empirical Convergence:
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—1st Row: The algorithm has a phase transition.

—2nd Row: GD w/o SSW is trapped in the spurious local optimum.



