

Towards Understanding the Importance of Shortcut Connections in Residual Networks

Tianyi Liu¹, Minshuo Chen¹, Mo Zhou², Simon S. Du³, Enlu Zhou¹, Tuo Zhao¹

Georgia Institute of Technology ² Duke University

Institute for Advanced Study

Background

Success of Deep Neural Networks (DNNs):

- Speech and image recognition;
- Nature Language Processing;
- Recommendation Systems.

Among different types of networks, ResNet is a Milestone!

- Shortcut connections: skip layers in the forward step of an input.
- Success over CNNs: He et al.(2016a), He et al.(2016b), Srivastava et al.(2015), Huang et al.(2017).
- Our Empirical Observation:

# of Layers	≤ 30	≥ 30
CNN	Good	Bad
RNN	Good	Good

Shortcut connections helps training.

Existing Results:

- Empirical: Veit et al. (2016), Balduzzi et al. (2017), Li et al. (2018).
- Hardt and Ma (2016): Linear ResNet has no spurious optima.
- Li and Yuan (2017): Two-layer ResNet with only one unknown layer has no spurious local optima and saddle points.

Question: How does the Shortcut Connection help training in the presence of bad optima?

- We Study: Two-Layer Nonoverlapping Convolutional NNs:
 - 1. A non-trivial spurious local optimum;
 - 2. GD gets trapped with constant probability $(\frac{1}{4} \sim \frac{3}{4})$;

A non-trival example provides new insights!

Teacher Network

Two-layer Nonoverlapping CNNs:

$$f(\boldsymbol{w}^*, \boldsymbol{a}^*, \boldsymbol{Z}) = \sum_{j=1}^k a_j^* \sigma(\boldsymbol{Z}_j^\top \boldsymbol{w}^*),$$

 $- ||\boldsymbol{w}^*||_2 = 1, \, \boldsymbol{w} \in \mathbb{R}^p$, $\boldsymbol{a} \in \mathbb{R}^k$, $\sigma(\cdot) = \max\{\cdot, 0\}$.

- $\mathbf{Z} = [\boldsymbol{Z}_1,...,\boldsymbol{Z}_k]$ with \boldsymbol{Z}_j 's i.i.d. $N(\mathbf{0},\mathbf{I})$,

Student Network

Student Network with shortcut connection:

$$h'(\boldsymbol{w}, \boldsymbol{a}, \boldsymbol{Z}) = \sum_{j=1}^{k} a_j \sigma \left(\boldsymbol{Z}_j^{\top} \left(\frac{1}{\sqrt{p}} + w \right) \right)$$

Normalization to achieve identifibility:

$$h(\boldsymbol{w}, \boldsymbol{a}, \boldsymbol{Z}) = \sum_{j=1}^{k} a_j \sigma \left(\boldsymbol{Z}_j^{\top} \frac{1/\sqrt{p} + \boldsymbol{w}}{||1/\sqrt{p} + \boldsymbol{w}||_2} \right).$$

Nonconvex Optimization:

$$(\widehat{\boldsymbol{w}}, \widehat{\boldsymbol{a}}) = \underset{\boldsymbol{w}, \boldsymbol{a}}{\operatorname{argmin}} \mathcal{L}(\boldsymbol{w}, \boldsymbol{a}),$$

where $\mathcal{L}(oldsymbol{w},oldsymbol{a})=\mathbb{E}_{\mathbf{Z}}(f(oldsymbol{v}^*,oldsymbol{a}^*,oldsymbol{z})-h(oldsymbol{w},oldsymbol{a},oldsymbol{Z}))^2.$

ullet $(oldsymbol{w},oldsymbol{a})$ is a global optimum , if

$$1/\sqrt{p} + \boldsymbol{w} = \alpha \boldsymbol{v}^*$$
 and $\boldsymbol{a} = \boldsymbol{a}^*$.

ullet $(oldsymbol{w}, oldsymbol{a})$ is a spurious local optimum, if

$$\overline{\boldsymbol{w}} = -\boldsymbol{w}^*, \ \overline{\boldsymbol{a}} = (\mathbf{1}\mathbf{1}^\top + (\pi - 1)\mathbf{I})^{-1}(\mathbf{1}\mathbf{1}^\top - \mathbf{I})\boldsymbol{a}^*.$$

Gradient Descent with Normalization

- ullet Initialization: $oldsymbol{a}_0 \in \mathbb{B}_0\left(|\mathbf{1}^ op oldsymbol{a}^*|/\sqrt{k}
 ight)$ and $oldsymbol{w}_0 = oldsymbol{0}$.
- ullet At the t-th iteration, we update $oldsymbol{w}$ and $oldsymbol{a}$ by

$$egin{aligned} \widetilde{m{w}}_{t+1} &= m{w}_t - \eta_{m{w}}
abla_{m{w}} \mathcal{L}(m{w}_t, m{a}_t), \ m{w}_{t+1} &= rac{\mathbb{1}/\sqrt{p} + \widetilde{m{w}}_{t+1}}{||\mathbb{1}/\sqrt{p} + \widetilde{m{w}}_{t+1}||_2} - rac{\mathbb{1}}{\sqrt{p}}, \ m{a}_{t+1} &= m{a}_t - \eta_{m{a}}
abla_{m{a}} \mathcal{L}(m{w}_t, m{a}_t). \end{aligned}$$

where $\mathcal{L}(oldsymbol{w},oldsymbol{a})=\mathbb{E}_{\mathbf{Z}}(f(oldsymbol{v}^*,oldsymbol{a}^*,\mathbf{Z})-h(oldsymbol{w},oldsymbol{a},\mathbf{Z}))^2$.

Normalization ensures

$$\operatorname{Var}\left(\boldsymbol{Z}_{j}^{\top}(\mathbb{1}/\sqrt{p}+\boldsymbol{w}_{t+1})\right)=1,$$

 \iff a population version of the batch normalization.

Skip-Layer Prior

Assumption. There exists a w^* with $||w^*||_2 \le 1$, such that $v^* = w^* + 1/\sqrt{p}$.

- Supported by Existing Results:
 - Li et al. (2016) and Yu et al. (2018): The weight has a small and vanishing magnitude.
 - Hardt and Ma (2016): For linear ResNet, the norm of the weight in each layer scales as O(1/D) with D being the depth.
 - \bullet Bartlett et al. (2018): The norm of the weight of order $O(\log D/D)$ is sufficient to express differentiable functions.

Comparison

Skip-layer prior helps avoid spurious local optima!

Convergence Analysis

Partial Dissipativity Condition: Given any $\delta \geq 0$ and $c \geq 0$,

C1:
$$\langle -\nabla_w \mathcal{L}(w, a), w^* - w \rangle \ge c||w - w^*||_2^2 - \delta;$$

C2: $\langle -\nabla_a \mathcal{L}(w, a), a^* - a \rangle \ge c||a - a^*||_2^2 - \delta;$

- Stage I: Avoid the spurious local optimum:
 - C1 holds \iff Improvement of a.
 - C2 does not hold, but w will not move far away!

Theorem 1. Initialize with arbitrary a_0 $\mathbb{B}_0\left(\frac{|\mathbb{1}^\top a^*|}{\sqrt{k}}\right)$ and $w_0=0$. We choose step sizes

$$\eta_a = \frac{\pi}{20(k+\pi-1)^2} = O\left(\frac{1}{k^2}\right), \ \eta_w = C||a^*||_2^2 \eta_a^2 = \widetilde{O}(\eta_a^2)$$

for some constant C > 0. Then, we have

$$\phi_t \le \frac{5\pi}{12}$$
 and $0 \le m \le a_t^\top a^* \le M,$ (1)

for all $t \in [T_1, T]$, where 0 < m < M are some constants and

$$T_1 = \widetilde{O}\left(\frac{1}{\eta_a}\right), \quad T = O\left(\frac{1}{\eta_a^2}\right).$$

- Stage II: Converging to Global Optima:
 - C1, C2 jointly hold ←⇒ Convergence!

Theorem 2. Given the output (1), for any $\delta > 0$, choose

$$\eta_a = \eta_w = \eta = \min \left\{ \frac{m}{2M^2}, \frac{5\pi^2}{4(k+\pi-1)^2} \right\} = \widetilde{O}\left(\frac{1}{k^2}\right),$$

then we have

$$||w_t - w^*||_2^2 \le \delta$$
 and $||a_t - a^*||_2^2 \le 5\delta$

for any
$$t \geq T_2 = \widetilde{O}\left(\frac{1}{\eta}\log\frac{1}{\delta}\right)$$
.

• Remark: Step Size Warm Up: $\eta_{\boldsymbol{w}}^1 < \eta_{\boldsymbol{w}}^2$.

Experiments

• Success Rates with p=8 and Varing k.

- The skip-layer connection improves the success rate.
- Step size warm-up makes ResNet even better .
- Empirical Convergence:

-1st Row: The algorithm has a phase transition.

-2nd Row: GD w/o SSW is trapped in the spurious local optimum.