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Background
. Adversarial Examples: “Flying Pig” [2].
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All current deep neural network (DNN) models are
subject to adversarial examples.

. Practical Implications:
• Autonomous driving system.
• Biometric authentication system.

How could we obtain a robust model? Unfortunately, no
definite answer with theoretical justification yet.
Popular practice: Adversarial training. Directly minimize
the worst-case loss for a given perturbation set ∆:

θrobust = argmin
θ∈Rd

1

n

n∑
i=1

max
δi∈∆

`(xi + δi, yi, θ).

Question: How does adversarial training promote ro-
bustness?
Existing Results: Robust VC-dimension, Distribu-
tionally robust optimization, Adversarial risk via func-
tion transformation, etc.

All existing results hold uniformly within a function class, while
SGD only explores a limited subset of the class.

We propose to study from a computational per-
spective which has implications on learning the-
ory.

Implicit Bias: Neural network can easily overfit training data.
Training algorithm biases toward a certain kind of solutions.

Implicit Bias of Gradient Descent
Directly analyzing DNNs is beyond current technical limit.
. A simplified yet non-trivial example, training a linear classi-
fier on linearly separable data {(xi, yi)}ni=1. We aim to solve

min
θ∈Rd

L(θ) =
1

n

n∑
i=1

`(yix
>
i θ), ` exponential/logistic loss. (1)

• Only the direction of the linear classifier is important.
• There is no finite minimizer of L(θ) = 1

n

∑n
i=1 `(yix

>
i θ).

But there exists infinite amount of solutions at infinity.

✓t/k✓tk2: Standard Training

• Implicit bias [1, 3] of gradient descent to solve (1) :

1−
〈
θt/
∥∥θt∥∥

2
, θ2

〉
= O(log n/ log t),

where θq (here q = 2) and the optimal value γq is defined by:

θq = argmax
‖θ‖p=1

min
i=1,...,n

yix
>
i θ, with 1/p+ 1/q = 1.

GDAT on Separable Data

GDAT on Separable Data with `q Perturbation
Input: Data points {(xi, yi)}ni=1, perturbation level
c < γq and step sizes {ηt}T−1

t=0 .
Init: Set θ0 = 0.
For t = 0 . . . T − 1:
For i = 1 . . . n, solve δ̂i = argmax‖δi‖q≤c `(yix

>
i θ

t).

Set x̃i = xi + δ̂i, for i = 1 . . . n.
Update θt+1 = θt − (ηt/n) ·∑n

i=1∇`(yix̃iθt).

Question: When can GDAT possess implicit bias?

Theorem 1. When perturbation level c < γq, no fi-
nite stationary point exists for Ladv(θ). For c > γq,
Ladv(θ) admits a unique finite minimizer.

Remarks:

• No finite minimizer ⇒ investigate implicit bias.
• Minimization with no finite solution is rarely studied in

the optimization literature.
• For non-separable data, adversarial training is equivalent

to regularization [4].

Questions: Can we characterize the implicit bias of
GDAT on separable data? How is it related to adver-
sary geometry?

GDAT Adapts to Adversary Examples
Consider the following large margin classifier:

θq,c = argmax
‖θ‖2=1

min
i=1,...,n

min
‖δi‖q≤c

yi(xi + δi)
>θ.

Robustness: θq,c is in the same direction to the solution of
min
θ∈Rd

‖θ‖2 s.t. yix̃>i θ ≥ 1 for all ‖x̃i − xi‖q ≤ c,∀i = 1 . . . n.

Minimum mix-norm: θq,c is in the same direction to the
solution of (here 1/p+ 1/q = 1)

min
θ∈Rd

‖θ‖2 + η(c) ‖θ‖p s.t. yix>i θ ≥ 1,∀i = 1 . . . n.
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Theorem 2. Let c < γq, η0 = 1 and ηt =
η ≤ min{1/Mp, 1} for t ≥ 1, where Mp =[
(1 + c

√
d)2 + c(p−1)

γ2,q
d

3p−2
2p−2

]
exp(c

√
d). Then

1−
〈
θt/
∥∥θt∥∥

2
, θq,c

〉
= O (log n/ log t) .

GDAT Accelerates Convergence (q = 2)

Theorem 3. Let c and total number of iterations T

satisfy γ2 − c =
(
n1+1/α log T

ηT

)1/2

, set η0 = 1 and

ηt = η for t = 1 . . . T − 1. We have θ2,c = θ2, and

1−
〈
θT /

∥∥θT∥∥
2
, θ2

〉
= O

(
n(1+1/α)/2K log T√

ηT

)
.

Exponential Acceleration by GDAT!

Key Technical Ingredients:

• Projection of θt onto the orthogonal spaceM⊥ = {θ :
〈θ, θ2〉 = 0} is bounded for all t ≥ 0.

• For projection of θt onto the spaceM = span(θ2), its
increment satisfies Generalized Perceptron Lemma:〈

θt+1 − θt, θ2

〉
≥ ηtLadv(θt)(γ2 − c).

GDAT
M = span(✓2)
M?

Experiments
Linear Classifiers: We generate data with γ2 = 1. We set
c = 0.95. η = 0.1 for GDAT and η = 1 for standard training.
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Clean Training v.s. GDAT (ℓ2 perturbation)
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Neural Networks: We use MNIST dataset. Network consists
of one hidden layer. The width of hidden layer varies in {64×
64, 128×128, 256×256, 512×512}. We use `∞ perturbation
with perturbation level ε ∈ {0.1, 0.15, 0.20}.

A
cc

u
ra

cy
:

cl
ea

n
d
at

a
A

cc
u
ra

cy
:

cl
ea

n
d
at

a

100%

90%

80%

70%

60%

50%

100%

90%

80%

70%

60%

50%

Width: 64 × 64 Width: 128 × 128

Width: 256 × 256 Width: 512 × 512

Clean Training

ǫ = 0.1
ǫ = 0.15
ǫ = 0.20

Iterations Iterations

References
[1] Ji, Z. and Telgarsky, M. (2019). The implicit bias of gradient descent

on nonseparable data. In Proceedings of the Thirty-Second Conference on
Learning Theory.

[2] Madry, A., Makelov, A., Schmidt, L., Tsipras, D. and Vladu, A.
(2018). Towards deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations.

[3] Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S. and Sre-
bro, N. (2018). The implicit bias of gradient descent on separable data.
The Journal of Machine Learning Research 19 2822–2878.

[4] Xu, H., Caramanis, C. and Mannor, S. (2009). Robustness and regu-
larization of support vector machines. Journal of Machine Learning Research
10 1485–1510.


