Background

Clean Example

> Adversarial Examples: “Flying Pig” [2].

Perturbation

X ¥ Well-trained
: Neural Network

Implicit Bias of Gradient Descent Based Adversarial Training

Adversarial Example

“Airliner”

All current deep neural network (DNN) models are

subject to adversarial examples.

> Practical Implications:
e Autonomous driving system.
e Biometric authentication system.

How could we obtain a robust model? Unfortunately, no

definite answer with theoretical justification yet.

Popular practice: Adversarial training. Directly minimize

the worst-case loss for a given perturbation set A:
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Question: How does adversarial training promote ro-

bustness?
Existing Results:

Robust VC-dimension, Distribu-

tionally robust optimization, Adversarial risk via func-

tion transformation, etc.

All existing results hold uniformly within a function class, while

SGD only explores a limited subset of the class.

We propose to study from a computational per-

spective which has implications on
ory.

Implicit Bias: Neural network can easily overfit training data.
Training algorithm biases toward a certain kind of solutions.

(a).

learning the-

(b).
Implicit Bias of Algorithms: network (a) is learnt by SGD (Smooth Boundary).
Both networks overfits training data. Only network (a) generalizes well.
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Implicit Bias of Gradient Descent

Directly analyzing DNNs is beyond current technical limit.
> A simplified yet non-trivial example, training a linear classi-

0, = argmax min

Experiments

c=0.95. n=0.1 for GDA

PennState

Linear Classifiers: We generate data with v = 1. We set
and n = 1 for standard training.

fier on linearly separable data {(x;,¥y;)}i~,. We aim to solve 16]],=1 =Ls--n |6 .
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where 6, (here ¢ = 2) and the optimal value 7, is defined by:
with 1/p+1/q = 1.
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Clean Training v.s. GDAT (¢ perturbation)
Neural Networks: We use MNIST dataset. Network consists

of one hidden layer. The width of hidden layer varies in {64 x
64,128 x 128, 256 x 256, 512 x 512}. We use /.. perturbation
with perturbation level e € {0.1,0.15,0.20}.

Theorem 2. let ¢ < 7, 7 1 and nt
n < min{l/M,,1} for t > 1, where M,

[(1 +ev/d)? A C@Q—l)diii?} exp(ev/d). Then
1 — <6t/ H(9t||2 ,Hq,c> = O (logn/logt).
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GDAT on Separable Data
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e For projection of #' onto the space M = span(6,), its
increment satisfies Generalized Perceptron Lemma:

(0 = 0°,0,) > 0 Logy (07) (72 — ¢).

e No finite minimizer = investigate implicit bias.

e Minimization with no finite solution is rarely studied in
the optimization literature.

e For non-separable data, adversarial training is equivalent
to regularization [4].
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