Multi-Domain Neural Machine Translation with Word Level Adaptive Layer-wise Domain Mixing

Haoming Jiang*, Chen Liang*, Chong Wang*, Tuo Zhao*

*Georgia Tech *ByteDance (Seattle)

Objective

Neural Machine Translation (NMT) Encoder Decoder

- **Motivation**: Handle data from multiple domains by sharing knowledge (Haddow et al. 2012).
- **Challenges**: Enforcing knowledge sharing lacks adaptivity to each individual domain.
- **Example**: Failure to handle word-level ambiguity across domains: The word "articles" has different meanings in laws and media domains.

Background

- **Recurrent Network based Encoder-Decoder**
 1. Computationally Expensive (Recursive Nature)
 2. Fail to Capture Long-term Dependency
 3. Various Training Issues (e.g. Gradient Exploding/Vanishing)
- **Transformer Models** (Vaswani et al. 2017)
 - Feedforward Network based Encoder-Decoder
 - Transformer Models

Proposed Method

- **Word-Level Domain Proportion**
 \[D(x) = \frac{1 - \epsilon}{\text{softmax}(Rx) + \epsilon/k} \]
 - \(\epsilon \in (0, 1) \) : Smoothing parameter.
 - \(k \) : Number of domains.
 - \(x \) : Word vector.
 - \(R \) : Weight matrix of the softmax layer.
- **Word Level Adaptive Layer-wise Domain Mixing**

Experiment – Domain Proportion

- **Domain Proportion Visualization:**
 T2D Domain (white) vs. Medical Domain (black)

- **Word-Level Analysis:**
 Top Layer: The phrase is well understood and finding has little need to borrow domain knowledge.
 Bottom Layer: The phrase is domain specific.

- **Histograms of the Domain Proportions**
 Within each histogram, 0 means Medical domain, and 1 means T2D domain.

Experiment – Translation

- **Training Perplexity:**
 - **Testing BLEU Scores:**
 - **English to German**
 - Direct Training
 - News 40.60 55.88
 - TED 40.43 55.85
 - News + TED 40.52 55.82
 - **English to French**
 - Direct Training
 - News 40.60 54.39
 - TED 40.60 54.30
 - **Chinese to English**
 - Direct Training
 - News 53.98 3.80
 - TED 54.93 3.80
 - Speech 53.88 3.80
 - Thaw 53.80 3.80
 - Mixed 48.97 3.80
 - **Chinese to French**
 - Direct Training
 - News 40.43 54.14
 - TED 40.43 54.14
 - Speech 40.40 54.14
 - Thaw 40.38 54.14
 - Mixed 40.35 54.14

- **Benefits of Transformer Models**
 1. High Efficiency (Parallel and Feedforward Structures)
 2. Capture Long-term Dependency (Attention Module)
 3. Enable Deeper Representation Learning

Diagram

- Encoder Output
- Decoder Output
- Domain Proportion
- Word Level Mixing
- Multi-head Attention
- Forward/Backward
- Attention
- Softmax
- Value Key
- Linear Combination
- Point-wise Linear
- Word vector
- Input
- Layer-1 2 3 4 5 6
- Epoches 0 10 20 30 40 50
- Perplexity News+TED Thes MTL AdvL PAdvL WDC w/ WL
- Testing BLEU Scores English to German English to French Chinese to English

Table

<table>
<thead>
<tr>
<th>Domain</th>
<th>Training BLEU Scores</th>
<th>Chinese to French</th>
</tr>
</thead>
<tbody>
<tr>
<td>News</td>
<td>(40.60, 55.88)</td>
<td>(40.43, 54.14)</td>
</tr>
<tr>
<td>TED</td>
<td>(40.43, 55.85)</td>
<td>(40.43, 54.14)</td>
</tr>
<tr>
<td>News + TED</td>
<td>(40.52, 55.82)</td>
<td>(40.38, 54.14)</td>
</tr>
<tr>
<td>Speech</td>
<td>(53.88, 3.80)</td>
<td>(53.88, 3.80)</td>
</tr>
<tr>
<td>Thaw</td>
<td>(53.80, 3.80)</td>
<td>(53.80, 3.80)</td>
</tr>
<tr>
<td>Mixed</td>
<td>(48.97, 3.80)</td>
<td>(48.97, 3.80)</td>
</tr>
<tr>
<td>News</td>
<td>(53.98, 3.80)</td>
<td>(53.98, 3.80)</td>
</tr>
<tr>
<td>TED</td>
<td>(54.93, 3.80)</td>
<td>(54.93, 3.80)</td>
</tr>
<tr>
<td>Speech</td>
<td>(53.88, 3.80)</td>
<td>(53.88, 3.80)</td>
</tr>
<tr>
<td>Thaw</td>
<td>(53.80, 3.80)</td>
<td>(53.80, 3.80)</td>
</tr>
<tr>
<td>Mixed</td>
<td>(48.97, 3.80)</td>
<td>(48.97, 3.80)</td>
</tr>
</tbody>
</table>