Background

Deep Neural Networks are powerful and successful in
many applications, e.g., image classification. However,
they are also vulnerable to adversarial attacks, i.e.,
slightly perturbed images can easily fool neural networks.
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Adversarial Example

Question: Robust Classification?

Adversarial Training

Adversarial Training provides a principled approach to
improve robustness. minimize the empirical risk of train-
ing samples with certain injected maximal perturbations.

Formulation: Given n samples {(z;,y;)}"_{, we solve

the following minimax problem:

min@ % Z?:l [maX(SiEB(G) g(f(ajz - 5i7 (9)7 yz)] 9 (1)
® ;. vy;, 0;: i-th sample, label, and perturbation;

10i |00 < €);

e 3(¢) : Perturbation constraints (e.g.,
e / : Surrogate loss function (e.g., Cross-entropy);

e f(-;0) : Neural network classifier with parameter 6.

Two-player Game: Attacker generates adversarial sam-
ples to fool classifier; while classifier aims to correctly
classify adversarial samples generated by attacker.

Solving problem (1) is very challenging:

e Landscape is highly nonconvex-nonconcave,
and finding global equilibria is very difficult.

e WWe need to search over huge space for gener-
ating adversarial perturbations.
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Fundamental Hardness

Adversarial Training is essentially solving

ming % S h(x, 0,y;),
where h(x;, 0,y;) = maxs,cp(e) £(f (T + 04, 0), yi).
Ideal: At the (¢ + 1)-th iteration,

e Inner Maximization (Attacker):

51 = argmax;, o 0 (2 + 6;,00), y:);

e Outer Minimization (Classifier):
O+ = 91 — W ol(f(z; + 0, ,00), ;)
=0\ — nVgh(zi, 0", y;).

Difficulty: Since the inner maximization problem is highly
nonconcave, we obtain 5§t+1) + 5§t+1). Therefore,

O0(f(z; + 67, 0), y:)
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Handcrafted Algorithms

Reality: We solve the inner maximization problem by
some optimization-based algorithms:

e Fast Gradient Sign Method (FGSM);
e Projected Gradient Method (PGM);
e Carlini-Wagner Attack (CW).

Existing algorithms often fail to converge.
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Ideal Reality Limiting Cycle

Let us Go beyond Handcrafted Algorithms!

Learning to Learn/Optimize (L2L)
High Level Idea:

e Cast the optimizer as a learning model;

e Allow the model to learn to exploit the perturbation
structure automatically.

Implementation: Parameterize the optimizer as a neu-
ral network, and learn its parameters.
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L2L in Adversarial Training:

m@in mgxg(f(% + g(A(2s,9:,0);0);0),9:), (2)

subject to g(A(z;,y;,0);0) € Ble) Vie{l,---,n}.

One-Step Multi-Step

e g(-;¢): Neural network optimizer with parameter ¢;
e A(x,y,0): Input of g (decided by algorithm)

Problem (2) is closely related to generative adversarial
networks (GAN). Both contain two networks: generator
and classifier, that are jointly trained.

Simple L2L.

Simply use clean feature with A(x,y,0) = x.

The perturbation §; = g(x;;¢). Under this setting, L2L
training is similar to GAN training. However, optimizer g
lacks the interaction with classifier f.

Grad L2L.

Motivated by the gradient ascent method with
A(x,y,0) = |2,V L(f(z,0),y)].

The perturbation §; = g(x;, V 0(f(xz;,0),y;); ®). Under
this setting, optimizer ¢ interacts with classifier f via V¢
and exploits the gradient information, which essentially
represents an optimization algorithm.

—» Clean Loss
—

.
—p

>
Backapagation

it
— Adv. Loss
L 4 r Classifier f
2%
Original
Input /4]/

y —p 15t pass
7 — 2"dpass
— 3'd pass

Perturbed Inputs

o _
Concatenate . :
Ilnput and Gradierﬂ interact with f

Grad L2L Architecture

Optimizer g

XY Google Brain

Learning to Learn/Optimize (Cont’'d)
Multi-Step Grad.

Use Grad L2L as the cell of recurrent neural net-
work (RNN) to mimic PGM.

To avoid the significant computational burden in RNN's
backpropagation, we mainly focus on 2-Step Grad, in
which the corresponding perturbation becomes:

b = Tl (01" +g (w43, Vol (f(2i+0{”;0),1:):0) ),

where 6% = g(zs, Vo 0(f(2:,0),v:); ) and Tlg(o de-
notes the projection to B(e).

Advantages of L2L.

¢ Attacker can yield strong perturbations;
¢ Learn common structure across all perturbations;
¢ Ease the training process via overparametrization:;

¢ Reduce search space and enjoy computational efficiency.

Experiments

Classifier: A 32-layer Wide Residual Network.
Tolerance: ¢ = 8 pixels (RGB scale).

Attacker Architectures
Conv: k=3x3,c=128,s =1,p = 1], BN+RelLU
ResBlocks: [channel = 256]
ResBlocks: [channel = 128], BN
DeConv: [k=4X%x4,c=16,s=2,p=1], BN+RelLU
Conv: k=3x3,c=3,s=1,p=1], tanh

Running Time per Epoch on CIFAR-10

Plain Net PGM Net
1065 =+ 1.5 s 1310.8+ 14.2 s
Naive L2L Grad L2L 2-Step L2L
203.7 £3.1s  617.5+ 6.1s 805.1 + 8.1 s
Accuracy (Worst over 5 Runs)
Data Set CIFAR-10 CIFAR-100
Evaluation Clean PGM CW Clean PGM CW
Plain 90522 0.00 0.00 | 76.10 0.13 0.00
PGM 387.30 47.04 — 62.68 23.75 25.95
Naive L2L 94,53 0.01 0 — — —
Grad L2L 85.84 51.17 535 | 62.18 28.67 29.65
2-Step L2L | 85.35 b4.32 57.07| 60.95 31.03 32.28

Perturbation Visualization
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Top: PGM-20 Net; Bottom: 2-Step L2L Net.
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