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Three-layer Network with Representation Optimization and Generalization

> Deep NNs outperform shallow ones (He et al. 2016): > Prototypical trainable Model: Theorem 1. Assume
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e Bounded representation: ||h(x)||, < By almost surely;

e Differentiable activation: sup,.p |¢"'(t)| < const.

d - : .
x € R® is the raw input data; (1) (Optimization) Given any ¢ > 0, 7 = ©(1), and some

radius B, . > 0, suppose the width m > O(B{AB2 ,e') and
coefficient A > 0 chosen properly. -
Then any second-order stationary point (SOSP) W of the

regularized risk ﬁx(f‘%) satisfies H\/R\/'HQA < O(By.«), and
achieves

ﬁx(f‘%) < (1+7)

W = [wq,..., Wy, is the weight matrix;

¢ is the activation function;
Common belief: deep neural networks are able to

perform efficient hierarchical learning. h: R — R" is a fixed representation function.

> One-layer Neural Representation Function:

h(x) =0(Vx+b).
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(2) (Generalization) For any radius B,, > 0, we have with

o V cRPX?and b € RP are fixed weight parameters; high probability (over (a, Wy)) that

e o0 is some nonlinear function. ) o - ]
By | sup [RUG) = RUF|| <
> Similar to a three-layer neural network: e Wiy 4 <Buw W i ]
N - - (B2B2 M, |
X) = —a W VX—|—b . O h W 2P 9
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We let W be trainable and fix (V,b). where M? = B, ’Ex [||£ >0, h(x;)h(x;)"||,] and R, R
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are unregularized population and empirical risks, respectively.

> Classical Approximation Theory

Linearized / Taylorized Models

e Depth separation theory: deep networks can well ap-

proximate certain structured functions, yet shallow net-
works cannot (Telgarsky 2016; Eldan and Shamir 2016).

> We consider the linearized / taylorized versions: Implications of Theorem 1

. 1" N . e Efficient optimization: escaping-saddle type
fw(x) = Jm Zar¢/(wo,rh(x))(wr h(x)), (NTK-h) algorithms, e.g., noisy SGD, can efficiently op-
r=1

e Universal approximation theory: deep networks are more

efficient in approximating dense function classes, e.g.,
Sobolev and Hélder functions (Yarotsky 2017).

No optimization and generalization guarantees.

Optimization landscape

timize R(f\?v);

e Feature isotropicity: isotropic h(x) = small
M}, op = good generalization.

R ) = 5= D et (w B(30) (w/ B(0))%. (Quad-h)

e Wi is the initialization:;

e W is overloaded to denote the increment of weights. , _
Whitened Representations

Note: (NTK-h) and (Quad-h) are the linearized / quadratic

expansions of the 3-layer neural network w.r.t. the W layer. > Whitened Representation:

> Supervised Learning — Minimizing Regularized Risk: h(x) = 2_1/28(3‘1)» with  g(x) = o(

Training> ). 1 n _ oA 1 no . ~\T.
.5 4 e Sample convariance matrix X = — » .’ g(X;)g(X;) ' ;
min K (f\?v) = Zf (f\%(%‘%%) + A [[W 2,4 P 1o 2.i=1 8(Xi)8(Xi)
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Sparsely | |
® Saddle points, local optima,

connected
o Data: {(x;,v;)}"* , are data points with x; € S~ and i .
Yy € y{( sk i o v, & N(O,I;) and b ~ N(0,Ip); fixed during training.

~ 1o "y |
o {x;}.%, are additional unlabeled samples;

Input global minimum, global maximum

> Neural Tangent Kernels (Jacot et al. 2018): Assumption 1 (Lower bounded covariance). For any k and

D < O(d*), with high probability over V,b (as d — o), we
have the minimum eigenvalue

)\min(z) Z >\k

e Loss: /(-,y) is a convex loss function, twice differen-
tiable with bounded derivatives, and |[£(0,y)| < 1 for
any y € Y, e.g., logistic loss and soft hinge loss;

e Lazy training: overparameterized neural networks can
be efficiently optimized and generalize as well as shallow
learners, e.g., kernels (Allen-Zhu et al. 2018).

e Regularization: ||W/| 42174 =" w5,

Cannot benefit from the hierarchical structure. o Initialization: wy ., I.i.d N(0,1p) and a, .1.d. Unif({-

for some constant A\, > 0 that only depends on k but not d,
where 3 = Ex|loc (Vx+b)o (Vx+b) |.
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Main Result: Learning Low-Rank Polynomials

> Low-Rank Polynomials:
o) =S aa(BT %), (Low-rank poly)
s=1

where |ag| < 1, ||(,88TX)p8

L, S 1, ps <p for all s.

> Sample Complexity Bounds:
e Assumption 1 holds;

e 1 f, of the form (Low-rank poly) that achieves low
risk: E[4(f,(x),y)] < OPT,;

o o(t) =1{t >0} and ¢(t) = ReLU*(¢)/2;
o D=0 (poly(r.,p) ¥, 1837/ e2571),
m > O (poly(r*,D)e_25_1) ., ng = 5(D5_2).

We compare learning with representations and raw inputs:

Quad-h Quad-Raw
O (dh?/ﬂ) O (a1
V.S.

NTK-h NTK-Raw
Q(dP) O(dP)

Quad-h significantly outperforms Quad-Raw (when

p > 4), while NTK-h does not improve on NTK-Raw.

> Benefit of Representations — Hierarchical Learning:

Quad-h model can express polynomials hierarchically, us-
ing weight matrices with much smaller norms than that of a
shallow learner.

Target f, (X) 3

Improved sample complexity: hierarchically expressing a
degree-p polynomial, NO “heavylifting” on a single layer

T

Output . : :
Reduced complexity: low complexity functions need to be
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learned by the top layer based upon the expressivity of h

L

Rich base: linear combinations of h yields expressive

nonlinear functions, e.g., degree-k polynomials (k < p)

e Unwhitened representation: using a data dependent regu-
larizer can also achieve the improved sample complexity.

: ﬁdreg Q _ - . . .
Ty (fw) . )

e Implications of Assumption 1. h(x;)'s are not too corre-
lated, which roughly requires that the distribution of x spans
all directions in R?.



