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Background

Generalized Eigenvalue Decomposition (GEV) problem [2]: Notations: Symmetric Matrix M, Dimension d, Index Set T _et O(d) denote the d by d orthogonal matrices group. We

Complement Index Set: 71 = [d\Z, where [d] = {1, .., d}: nave three different experiments. Their settings are as follows:

Column Submatrix of M indexed by Z: M. z; Setting 1 n=1e—4; A;; = 130, Vi € [d];
Eigenvalue Decomposition of M: M = OMAM(OM)"; rank 1; Ai; = 0. 5/100 Vi #

Index Sets with r elements: Xj = {Z C [d],|Z] =r}. deterministic; Bi; = 0.5"791/3, Vi#j.

: : : : Setting 2 n = 5e — 5; random U € O(d);
Assumption. Given a symmetric matrix A € and a rank 3: random: A=U-diag(1,1,1,0.1,...01)-UT:

positive definite matrix B € Rdxf, the eigenvalues of A = A B convertible: B=U-diag(2,2,2,1,..,1) - UT .
B~3AB™3, denoted by A\, ..., Ny, satisfy Setting 3 n = 2.5e — 5; random U,V € O(d);
T I I T rank 3; random:; A =U -diag(1,1,1,0.1,...,0.1) - U ';

AT 22 A > A0 22 Ag. A, B unconvertible; B =V -diag(2,2,2,1,...,1)- V.
Theorem 1. Suppose Assumption holds. Then (X, D(X)) is

an equilibrium of L(X,Y"), if and only if X can be written as In each iteration independently sample 40 random vectors
from N (0, A) and N (0, B). Use their covariance matrices as

X = (OB(AB)_%OEI) U approximations of A and B to use SGHA. Repeat 20times.

X* =argmin —tr(X'AX) s. t. X' BX =1., (1)
X cRAXr

where A, B € R?*? and B is positive semidefinite.
GEV covers a broad family of problems:

Rdxd

e Linear Discriminant Analysis

e Canonical Correlation Analysis

o Generalized Rayleigh Quotient Problem

e Sliced Inverse Regression

Popular settings:
e Finitesum: A=21%" A% and B=21>7  BW
e Online/Stochastic: A =EA*) and B =EBW® &<

where index set 7 € X; and ¥ € G.
Remark. Under the equivalence relation, there are (%) equi-

libria of L(X,Y). Each corresponds to an Of‘vz. Whole equi-

libria set is generated by Of‘z 's with the transformation matrix
Recast GEV problem (1) as an unconstrained min-max prob- OB(AB)—%

lem by the method of Lagrange multipliers:

Geometric Interpretation

and the invariant group action induced by G.

L(X,Y) L(X,)Y)

minmax £(X,Y) = —tr(X ' AX) + (Y, X 'BX — I,). (2) 1

X Y 1

. . . . 0.5 - Horizontal axis corresponds to the number of iterations,
By KKT conditions, X and Y at a stationary point satisfy

0 and vertical axis corresponds to the optimization error
VxL(X,Y)=2BXY —24AX =0 - |BY2x W xMTRL/2_ gl/2 x=x*T Bl/2||p.
{ VvL(X,Y)=X"'BX -1,=0 — ¥ = w _ _ _ _ Experiments indicate SGHA converges to a global optimum.
D(X)

For simplicity, we denote

Unstable Equilibria vs. Stable Equilibria

VxL(X,Y) } [ 2BXY —2AX :
VL £ ’ = . Convergence Analysis
{ Vy L(X,Y) X'BX — I, Denote the Hessian matrix of £(X,Y) w.r.t. X as . k Y ;
e 52 2(X. Y Assumption. A%™’s and B®)’s are independently sampled
Definition. Given L(X,Y), a pair (X,Y) is: x = VxL(X,Y)ly=p(x)- from two different distributions D4 and Dp respectively.
(1) An equilibrium of L(X,Y), if VL = 0; Theorem 2. Suppose Assumption holds, and (X, D(X)) is an (a) All the sample’s are unbiased, i.e.,

equilibrium in (2). By Theorem 1, X can be represented as
X = (OB(AB)_%OfI) - U for some W € G and I € X.
Then, if Z # [T], (X,D(X)) Is unstable with Moreover, B > 0.

()\maXI )\I‘im L) (b) A and B are simultaneously orthogonal diagonalizable, i.e.,
<0, there exists an orthonormal matrix O such that

(2) An unstable equilibrium of L(X,Y), if (X,Y) is an EA®™ = A, EB"™ = B.
equilibrium and for any neighborhood B C R%*" of X, 3

Xl,XQ c B s.t.

L(X17Y)|Y:D(X1) S ‘C(X7 Y)|Y:D(X) S £(X27Y)|Y:D(X2)7 )\mln(HX) S ||X min Z-1 H2

and Amin (VX L(X,Y)|ly—p(x)) <0; A=0A"0" and B=0A"0"

where \A = max / min;ez )\Z - and M2 is the i-th

max / minZ

(3) A st2able equilibrium of L(X,Y), ’:f (X,Y) is an equilib- leading eigenvalue ofA, where A" = diag(A1, ..., Aa), A¥ = diag(p1, ..., pa), Aj #
rium, VX L(X,Y) = 0, and L(X,Y) is strongly convex over Otherwise, we have Hx > 0 and rank(Hx) = dr—r(r—1)/2. 0, V5 € [d]. Moreover % > % > e > 2_2 and [max =

a restricted domain. Moreover, (X, D(X)) is a stable equilibrium of problem (2). max{ft2, ..., ha }.

(k) (B) oy . o
Remark. When Z = [r|, all directions in the null space of Hx, (c) A" and B satisty the following moment conditions.

i.e., non-increasing directions, essentially point to the primal ]EHA(k)Hg < Co ]EHB(k)H% < O
variables of other stable equilibria; When Z # [r|, due to the - -

negative curvature, these equilibria are unstable. where || - || is the spectral norm, and Cy, C are constants.

Equilibrium
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i P _ Theorem. Suppose that Assumption holds. Given a suffi-
Inverse-Free Stochastic Optimization ciently small pre-specified error ¢ > 0, we choose a step size

Equilibium 5,

Our stochastic GHA (SGHA) algorithm is a primal- 7
Motivated by [1], for GEV problem (1), we aim to dual stochastic optimization algorithm in nature. Given n = €-8ap |
AR B ¢ RI*4 that are independently sampled from the d - (M_llco .Cq + ,umax01>
o Find the set of equilibria of £L(X,Y"). distribution associated with A and B at k-th iteration, SGHA
e Distinguish stable and unstable equilibria. updates the primal variable by where gap = % - % Then with probability at least 2, the
x*H o xRy (B(’“)X(k)Y(k) - A(k)X("“)) . (3) | | number of iterations required to achieve ||[W™) — W*||3 < e
~ ~- < IS at most
Stochastic Approximation of VX[,(X(]“C) : Y(k’)). - ( ) ) ) _
Invariant Grou d(py " + frmax g Hmax/ 1
P where n > 0 is learning rate. Then it updates dual variable as N=0 € - 2ap2 - fimin log c - gap (5)
Some terminologies: - -
(k+1) (k)T p(k) x (k)
e Group Action ¢ for a group H and a set X: Y R S S ST (4) Proof Sketch:

1. gb(]_, CIZ) = x Vx € X, where 1 is the identity of H: Stochastic Approximation of X (F) T Ax (k)
2. ¢(gh,z) = ¢(g,¢(h,x)) Vg,h € Hx € X.
e Stationary Invariant Group of a function f(z,y) w.r.t.
two group actions of H, ¢1 on X and ¢2 on V: x (k1) x (k) _ 7 (B(k)X(k)X(k)T _ Id) AK) x (k)
(3) By proper rescaling, the algorithm can be characterized

= \Y% X . . : . : :
f(@,y) = f(¢1(g,2), 92(9,9)) Vo € X, y €V, g€ H e Simple and easy to implement. by a stochastic differential equation (SDE);
Given G = {U e R0V ' =0 U =711}, L(X,Y)in e No matrix inversion in each iteration.
(2) has a stationary invariant group w.r.t two action groups of e Only need simple initial (one random vector with each

dXr X7,
G ¢1onR and ¢z on RT7: entry independently following a mean zero and variance
01(U,X)=UX, ¢o(V,Y)=0'YVU. normal distribution). References
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(1) Given a random initial, the trajectory of algorithm can be
Combining (3) and (4), we have a dual-free update as approximated by an ordinary differential equation (ODE);

(2) The norm of each iterate converges to a constant;

(4) Obtain the convergence rate by the solution of SDE.
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