

Online Generalized Eigenvalue Decomposition: Primal Dual Geometry and Inverse-Free Stochastic Optimization

Zhehui Chen[†], Xingguo Li[¢], Lin Yang[¢], Jarvis Haupt^{*}, Tuo Zhao[†] [†]Georgia Tech [⋄]Princeton University *University of Minnesota

Background

Generalized Eigenvalue Decomposition (GEV) problem [2]:

$$X^* = \underset{X \in \mathbb{R}^{d \times r}}{\operatorname{argmin}} - \operatorname{tr}(X^{\top} A X)$$
 s. t. $X^{\top} B X = I_r,$ (1)

where $A, B \in \mathbb{R}^{d \times d}$ and B is positive semidefinite. GEV covers a broad family of problems:

- Linear Discriminant Analysis
- Canonical Correlation Analysis
- Generalized Rayleigh Quotient Problem
- Sliced Inverse Regression

Popular settings:

- Finite sum: $A = \frac{1}{n} \sum_{k=1}^{n} A^{(k)}$ and $B = \frac{1}{n} \sum_{k=1}^{n} B^{(k)}$
- Online/Stochastic: $A = \mathbb{E}A^{(k)}$ and $B = \mathbb{E}B^{(k)}$

Geometric Interpretation

Recast GEV problem (1) as an <u>unconstrained min-max</u> problem by the method of Lagrange multipliers:

$$\min_{X} \max_{Y} \mathcal{L}(X, Y) = -\operatorname{tr}(X^{\top} A X) + \langle Y, X^{\top} B X - I_r \rangle.$$
 (2)

By KKT conditions, X and Y at a stationary point satisfy

$$\begin{cases}
\nabla_X \mathcal{L}(X,Y) = 2BXY - 2AX = 0 \\
\nabla_Y \mathcal{L}(X,Y) = X^\top BX - I_r = 0
\end{cases} \implies Y = \underbrace{X^\top AX}_{\mathcal{D}(X)}.$$

For simplicity, we denote

$$\nabla \mathcal{L} \triangleq \left[\begin{array}{c} \nabla_X \mathcal{L}(X, Y) \\ \nabla_Y \mathcal{L}(X, Y) \end{array} \right] = \left[\begin{array}{c} 2BXY - 2AX \\ X^\top BX - I_r \end{array} \right].$$

Definition. Given $\mathcal{L}(X,Y)$, a pair (X,Y) is:

- (1) An equilibrium of $\mathcal{L}(X,Y)$, if $\nabla \mathcal{L} = 0$;
- (2) An unstable equilibrium of $\mathcal{L}(X,Y)$, if (X,Y) is an equilibrium and for any neighborhood $\mathcal{B}\subseteq\mathbb{R}^{d imes r}$ of X, \exists $X_1, X_2 \in \mathcal{B}$ s.t.

$$\mathcal{L}(X_1, Y)|_{Y=\mathcal{D}(X_1)} \le \mathcal{L}(X, Y)|_{Y=\mathcal{D}(X)} \le \mathcal{L}(X_2, Y)|_{Y=\mathcal{D}(X_2)},$$

and $\lambda_{\min}(\nabla_X^2 \mathcal{L}(X,Y)|_{Y=\mathcal{D}(X)}) < 0;$

(3) A stable equilibrium of $\mathcal{L}(X,Y)$, if (X,Y) is an equilibrium, $\nabla_X^2 \mathcal{L}(X,Y) \succeq 0$, and $\mathcal{L}(X,Y)$ is strongly convex over a restricted domain.

Motivated by [1], for GEV problem (1), we aim to

- Find the set of equilibria of $\mathcal{L}(X,Y)$.
- Distinguish stable and unstable equilibria.

Invariant Group

Some terminologies:

- **Group Action** ϕ for a group \mathcal{H} and a set \mathcal{X} : 1. $\phi(\mathbf{1}, x) = x \quad \forall x \in X$, where 1 is the identity of \mathcal{H} ; 2. $\phi(gh,x) = \phi(g,\phi(h,x)) \quad \forall g,h \in H, x \in X.$
- Stationary Invariant Group of a function f(x,y) w.r.t. two group actions of \mathcal{H} , ϕ_1 on \mathcal{X} and ϕ_2 on \mathcal{Y} :

$$f(x,y) = f(\phi_1(g,x), \phi_2(g,y)) \ \forall x \in \mathcal{X}, \ y \in \mathcal{Y}, \ g \in \mathcal{H}.$$

Given $\mathcal{G} riangleq \left\{ \Psi \in \mathbb{R}^{r imes r} : \Psi \Psi^ op = \Psi^ op \Psi = I_r
ight\}$, $\mathcal{L}(X,Y)$ in (2) has a stationary invariant group w.r.t two action groups of \mathcal{G} , ϕ_1 on $\mathbb{R}^{d \times r}$ and ϕ_2 on $\mathbb{R}^{r \times r}$:

$$\phi_1(\Psi, X) = \Psi X, \ \phi_2(\Psi, Y) = \Psi^{\top} Y \Psi.$$

$$\Longrightarrow \mathcal{L}(X,Y) = \mathcal{L}(X\Psi, \Psi^{\top}Y\Psi) \quad \forall (X,Y), \ \Psi \in \mathcal{G}.$$

• Equivalence Relation: $(X,Y) \sim (X\Psi, \Psi^{\top}Y\Psi)$.

Symmetry Property

Notations: Symmetric Matrix M, Dimension d, Index Set \mathcal{I} . Complement Index Set: $\mathcal{I}^{\perp} = [d] \setminus \mathcal{I}$, where $[d] = \{1, ..., d\}$; Column Submatrix of M indexed by \mathcal{I} : $M_{:,\mathcal{I}}$; Eigenvalue Decomposition of M: $M = O^M \Lambda^M (O^M)^\top$;

Index Sets with r elements: $\mathcal{X}_d^r \triangleq \{\mathcal{I} \subseteq [d], |\mathcal{I}| = r\}$.

Assumption. Given a symmetric matrix $A \in \mathbb{R}^{d \times d}$ and a positive definite matrix $B \in \mathbb{R}^{d \times d}$, the eigenvalues of $\widetilde{A} =$ $B^{-\frac{1}{2}}AB^{-\frac{1}{2}}$, denoted by $\lambda_1^A,...,\lambda_d^A$, satisfy

$$\lambda_1^{\widetilde{A}} > \dots > \lambda_r^{\widetilde{A}} > \lambda_{r+1}^{\widetilde{A}} > \dots > \lambda_d^{\widetilde{A}}$$
.

Theorem 1. Suppose Assumption holds. Then $(X, \mathcal{D}(X))$ is an equilibrium of $\mathcal{L}(X,Y)$, if and only if X can be written as

$$X = (O^B(\Lambda^B)^{-\frac{1}{2}}O_{:,\mathcal{I}}^{\widetilde{A}}) \cdot \Psi,$$

where index set $\mathcal{I} \in \mathcal{X}_d^r$ and $\Psi \in \mathcal{G}$.

Remark. Under the equivalence relation, there are $\binom{d}{r}$ equilibria of $\mathcal{L}(X,Y)$. Each corresponds to an $O_{:,\mathcal{I}}^A$. Whole equilibria set is generated by $O_{:,\mathcal{I}}^{A}$'s with the transformation matrix $O^B(\Lambda^B)^{-\frac{1}{2}}$ and the invariant group action induced by \mathcal{G} .

Unstable Equilibria vs. Stable Equilibria

Denote the **Hessian matrix** of $\mathcal{L}(X,Y)$ w.r.t. X as $H_X \triangleq \nabla_X^2 \mathcal{L}(X,Y)|_{Y=\mathcal{D}(X)}$.

Theorem 2. Suppose Assumption holds, and $(X, \mathcal{D}(X))$ is an equilibrium in (2). By Theorem 1, X can be represented as $X=(O^B(\Lambda^B)^{-\frac{1}{2}}O^A_{:,\mathcal{I}})\cdot \Psi$ for some $\Psi\in\mathcal{G}$ and $\mathcal{I}\in\mathcal{X}^r_d$. Then, if $\mathcal{I} \neq [r]$, $(X, \mathcal{D}(X))$ is unstable with

$$\lambda_{\min}(H_X) \le \frac{2(\lambda_{\max \mathcal{I}}^{\widetilde{A}} - \lambda_{\min \mathcal{I}^{\perp}}^{\widetilde{A}})}{\|X_{:,\min \mathcal{I}^{\perp}}\|_2^2} < 0,$$

where $\lambda_{\max / \min \mathcal{I}}^{\widehat{A}} = \max / \min_{i \in \mathcal{I}} \lambda_i^{\widehat{A}}$, and $\lambda_i^{\widehat{A}}$ is the i-th leading eigenvalue of A;

Otherwise, we have $H_X \succeq 0$ and $rank(H_X) = dr - r(r-1)/2$. Moreover, $(X, \mathcal{D}(X))$ is a stable equilibrium of problem (2).

Remark. When $\mathcal{I} = [r]$, all directions in the null space of H_X , i.e., non-increasing directions, essentially point to the primal variables of other stable equilibria; When $\mathcal{I} \neq [r]$, due to the negative curvature, these equilibria are unstable.

Inverse-Free Stochastic Optimization

Our stochastic GHA (SGHA) algorithm is a primaldual stochastic optimization algorithm in nature. Given $A^{(k)}, B^{(k)} \in \mathbb{R}^{d \times d}$ that are independently sampled from the distribution associated with A and B at k-th iteration, SGHA updates the primal variable by

$$X^{(k+1)} \leftarrow X^{(k)} - \eta \left(B^{(k)} X^{(k)} Y^{(k)} - A^{(k)} X^{(k)} \right) ,$$
 (3)

Stochastic Approximation of $\nabla_{\mathbf{X}} \mathcal{L}(\mathbf{X}^{(k)}, \mathbf{Y}^{(k)})$.

where $\eta > 0$ is learning rate. Then it updates dual variable as

$$Y^{(k+1)} \leftarrow \underline{X^{(k)\top}A^{(k)}X^{(k)}}, \qquad (4)$$
Stochastic Approximation of $\mathbf{X}^{(k)\top}\mathbf{A}\mathbf{X}^{(k)}$.

Combining (3) and (4), we have a dual-free update as

$$X^{(k+1)} \leftarrow X^{(k)} - \eta \left(B^{(k)} X^{(k)} X^{(k)\top} - I_d \right) A^{(k)} X^{(k)}.$$

- Simple and easy to implement.
- No matrix inversion in each iteration.
- Only need simple initial (one random vector with each entry independently following a mean zero and variance $\frac{1}{d}$ normal distribution).

Acknowledgment

Numerical Results

Let O(d) denote the d by d orthogonal matrices group. We have three different experiments. Their settings are as follows:

Setting 1	$\eta = 1e - 4$; $A_{ii} = \frac{1}{100}$, $\forall i \in [d]$;
rank 1;	$A_{ij} = 0.5/100, \forall i \neq j;$
deterministic;	$B_{ij} = 0.5^{ i-j }/3, \forall i \neq j.$
Setting 2	$\eta = 5e - 5$; random $U \in O(d)$;
rank 3; random ;	$A = U \cdot \text{diag}(1, 1, 1, 0.1,, 0.1) \cdot U^{\top};$
A,B convertible;	$B = U \cdot \text{diag}(2, 2, 2, 1,, 1) \cdot U^{\top}.$
Setting 3	$\eta=2.5e-5$; random $U,V\in O(d)$;
rank 3; random ;	$A = U \cdot \text{diag}(1, 1, 1, 0.1,, 0.1) \cdot U^{\top};$
A, B unconvertible;	$B = V \cdot \text{diag}(2, 2, 2, 1,, 1) \cdot V^{\top}.$

In each iteration independently sample 40 random vectors from N(0,A) and N(0,B). Use their covariance matrices as approximations of A and B to use SGHA. Repeat 20times.

Horizontal axis corresponds to the number of iterations, and vertical axis corresponds to the optimization error $||B^{1/2}X^{(t)}X^{(t)\top}B^{1/2} - B^{1/2}X^*X^{*\top}B^{1/2}||_{F}.$

Experiments indicate SGHA converges to a global optimum.

Convergence Analysis

Assumption. $A^{(k)}$'s and $B^{(k)}$'s are independently sampled from two different distributions \mathcal{D}_A and \mathcal{D}_B respectively. (a) All the sample's are unbiased, i.e.,

$$\mathbb{E}A^{(k)} = A, \quad \mathbb{E}B^{(k)} = B.$$

Moreover, $B \succ 0$.

(b) A and B are simultaneously orthogonal diagonalizable, i.e., there exists an orthonormal matrix O such that

$$A = O\Lambda^A O^{\top}$$
 and $B = O\Lambda^B O^{\top}$,

where $\Lambda^A = \operatorname{diag}(\lambda_1, ..., \lambda_d)$, $\Lambda^B = \operatorname{diag}(\mu_1, ..., \mu_d)$, $\lambda_j \neq 0$ 0, $\forall j \in [d]$. Moreover $\frac{\lambda_1}{\mu_1} > \frac{\lambda_2}{\mu_2} \geq \cdots \geq \frac{\lambda_d}{\mu_d}$ and $\mu_{\max} = 0$ $\max\{\mu_2, ..., \mu_d\}.$

(c) $A^{(k)}$ and $B^{(k)}$ satisfy the following moment conditions:

$$\mathbb{E}||A^{(k)}||_2^2 \le C_0, \quad \mathbb{E}||B^{(k)}||_2^2 \le C_1,$$

where $||\cdot||_2$ is the spectral norm, and C_0 , C_1 are constants.

Theorem. Suppose that Assumption holds. Given a sufficiently small pre-specified error $\epsilon > 0$, we choose a step size

$$\eta symp rac{\epsilon \cdot \mathsf{gap}}{d \cdot \left(rac{1}{\mu_1} C_0 \cdot C_1 + \mu_{\max} C_1
ight)},$$

where gap $=\frac{\lambda_1}{\mu_1}-\frac{\lambda_2}{\mu_2}$. Then with probability at least $\frac{3}{4}$, the number of iterations required to achieve $||W^{(N)} - W^*||_2^2 \le \epsilon$ is at most

$$N = \mathcal{O}\left[\frac{d\left(\mu_1^{-1} + \mu_{\max}\right)}{\epsilon \cdot \mathsf{gap}^2 \cdot \mu_{\min}} \log\left(\frac{d^{1+\mu_{\max}/\mu_1}}{\epsilon \cdot \mathsf{gap}}\right)\right]. \tag{5}$$

Proof Sketch

- (1) Given a random initial, the trajectory of algorithm can be approximated by an ordinary differential equation (ODE);
- (2) The norm of each iterate converges to a constant;
- (3) By proper rescaling, the algorithm can be characterized by a stochastic differential equation (SDE);
- (4) Obtain the convergence rate by the solution of SDE.

References

- [1] X. Li, Z. Wang, J. Lu, R. Arora, J. Haupt, H. Liu, and T. Zhao. Symmetry, saddle points, and global geometry of nonconvex matrix factorization. arXiv preprint arXiv:1612.09296, 2016.
- [2] J. H. Wilkinson and J. H. Wilkinson. The algebraic eigenvalue problem, volume 87. Clarendon Press Oxford, 1965.